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We study the worldvolume dynamics of 1=2-supersymmetric domain walls in N � 1 supersym-
metric QCD with Nf � N flavors, and exhibit an enhancement of supersymmetry for the reduced
moduli space associated with broken flavor symmetries. We provide an explicit construction of the
worldvolume superalgebra which corresponds to an N � 2 Kähler sigma model in 2� 1D deformed
by a potential, given by the norm squared of a U(1) Killing vector, resulting from the flavor symmetries
broken by unequal quark masses. This framework leads to a worldvolume description of novel two-wall-
junction configurations, which are 1=4-supersymmetric objects, but nonetheless preserve two super-
charges when viewed as kinks on the wall worldvolume.
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I. INTRODUCTION

One of the more profound features of supersymmetric
field theories is that solitonic field configurations
are often endowed with a special status, namely, they
are annihilated by a certain number of supercharges
and thus lie in shortened, or Bogomol’nyi-Prasad-
Sommerfield (BPS), representations [1]. This feature has
far-reaching consequences due to the ensuing nonrenorm-
alization theorems which affect the mass (or tension) and
spectrum of these solitons, some of which may play an
important role in the dynamics. In general, soliton con-
figurations exhibit a moduli space of solutions, and much
insight can be gleaned from a study of the low energy
collective coordinate dynamics on this space and its
induced metric [2]. This is particularly true in cases
where the moduli space is nontrivial in the sense that it
includes components beyond that associated with the
broken translation generators; the latter component is al-
ways present on the grounds that a soliton is a localized
configuration.

In the supersymmetric context, the moduli space M
locally admits the general decomposition,

M ’MSUSY �
~M; (1)

where MSUSY refers to the sector associated with bosonic
generators in the supersymmetry (SUSY) algebra which
are broken by the soliton, and in flat space always in-
cludes a translational component Rd �MSUSY, where d
is the codimension. The realization of supersymmetry in
this sector, associated with the unbroken generators, is
then fixed by the kinematics of the bulk superalgebra.

In contrast, ~M—the ‘‘reduced moduli space’’—is not
directly associated with broken generators in the super-
algebra. This has the important consequence that in cer-
tain cases the realization of worldvolume supersymmetry
is less constrained by the bulk kinematics. In particular,
we will argue here that there are situations in which the
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number of supercharges which act trivially on the reduced
moduli space of a BPS soliton can be larger than one
would infer directly from the preserved fraction of bulk
supersymmetry. The origin of this supersymmetry en-
hancement is that not all of the supercharges which are
realized on the worldvolume of the soliton lift to super-
charges in the full theory. The additional supernumerary
supercharges arise due to special geometric features of
the reduced moduli space, e.g., a Kähler or hyper-Kähler
structure, which are not present within the full theory.

The primary aim of this paper is to illustrate how this
novel feature plays an important role in the dynamics of
1=2-BPS domain walls in N � 1 supersymmetric QCD
(SQCD). In particular, we will focus on the theory with
gauge group SU(N) accompanied by Nf � N fundamen-
tal flavors with masses which are small relative to the
dynamical scale, 	N , of the theory. This theory has a low
energy description on the Higgs branch, in terms of
meson and baryon chiral superfield moduli, where it
reduces to a massive perturbation of a Kähler sigma
model on the manifold determined by the quantum con-
straint [3],

detM� B ~B � 	2N
N : (2)

The massive theory possesses N quantum vacua which,
with a hierarchical structure for the quark mass matrix,
are in the weak coupling regime. On decouplingN flavors,
these N vacua tend smoothly to the N quantum vacua of
pure N � 1 supersymmetric Yang-Mills (SYM) [4–8].

The N distinct vacua of this theory allow for domain
wall solutions which interpolate between them. The cor-
responding central charge is present in the superalgebra
[9] and such solitons are 1=2-BPS saturated. In previous
work [10], we studied the BPS wall spectrum in this
theory, following earlier work on BPS walls in other
variants of N � 1 SQCD [9,11–17]. The vacuum struc-
ture is illustrated in the plane of the superpotential in
03-1  2004 The American Physical Society
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FIG. 1 (color online). A schematic representation of the N
vacua, and a k-wall, for N � 1 SQCD with N flavors.
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Fig. 1, which also provides a graphical definition of a
k-wall, namely, a BPS wall which interpolates between
vacua differing in phase by 2
k=N. In [10] we argued, as
reviewed below, that k-walls exhibit a nontrivial classical
reduced moduli space ~Mk due to localized Goldstone
modes associated with the flavor symmetries which are
broken by the wall solution. The corresponding coset is a
complex Grassmannian [10],

~M k � G�k;N� 	
U�N�

U�k� � U�N � k�
: (3)

One can then formally deduce that the multiplicity of
k-walls, �k, is given by the worldvolume Witten index for
this Grassmannian sigma model, which depends only on
the topology of the space, and is given by the Euler
characteristic,

�k � 
G�k;N�� �
N!

k!�N � k�!
: (4)

This was the primary result of [10], which interestingly
was consistent with an alternative string-theoretic picture
of BPS walls in pure N � 1 SYM [18].

In the present paper, we wish to study the worldvolume
dynamics in more detail, and resolve some of the puzzles
which arise from a closer inspection of the above result.
One of these is the statement that the reduced moduli
space is a Kähler manifold. Since the worldvolume theory
lives in 2� 1D, the dual constraints of (i) a Kähler target
space, and (ii) Lorentz invariance, imply that the low
energy dynamics must preserve N � 2 supersymmetry,
namely, four supercharges! Since only two bulk super-
charges act trivially on the soliton solution, this conclu-
sion clearly requires some justification. A seemingly
related paradox was in fact noted some time ago in
considering the Kähler moduli space of lumps in
Kähler sigma models [19]. However, in the latter case,
the problem dissipates once one realizes that Lorentz
invariance places no constraint and one can consistently
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realize just two supercharges in terms of one-component
fermions [20]. The situation here allows for no such
resolution and, as alluded to above, in this case there is
indeed an enhancement of supersymmetry, at least at the
two-derivative level. This enhancement does not of course
apply to the (decoupled) translational sector, but only to
the reduced moduli space. We will provide an explicit
example of how this can occur, and then apply it to
k-walls in SQCD and more specifically to the simplest
case of 1-walls in the case of an SU(2) gauge group. We
note that the mechanism appears likely to apply more
widely for other solitons in N � 1 theories.

A second issue that we aim to resolve is to understand
what happens to the flavor moduli parametrizing ~Mk

when we explicitly break some of the flavor symmetries
by putting the quark mass matrix in a hierarchical form.
In such a maximally asymmetric regime, the wall no
longer breaks any additional global symmetries, and
one anticipates that the moduli space should be lifted.
We will provide evidence that this is indeed the case. In
particular, by considering the realization of the worldvo-
lume supercharges for the SU(2) Nf � 2 theory, we show
that, for a linear order perturbation in the mass matrix,
the effect is to introduce a potential on the moduli space
which geometrically is the norm squared of a U(1) Killing
vector. Such a ‘‘real mass’’ deformation in 2� 1D is
known to be consistent with N � 2 SUSY [21].
Moreover, one important consistency check is that the
result one obtains via this linear deformation is in fact
perfectly compatible with the opposite limit in which the
second flavor is integrated out.

The third and final aim of this work is to explore the
realization of other bulk solitons within the worldvolume
theory of domain walls. The example we focus on corre-
sponds to a novel class of two-wall 1=4-BPS junctions
which are possible by virtue of the degeneracy (4) of BPS
walls interpolating between the same two vacua. We will
provide evidence that these configurations can be identi-
fied with 1=2-BPS kinks in the worldvolume
Grassmannian sigma model. These configurations thus
preserve two worldvolume supercharges, only one of
which can be identified with the unbroken bulk super-
charge. As evidence for this identification, we will verify
for the SU(2) case that there is a direct match for the
tension between the bulk result obtained in the hierarch-
ical mass regime, and the appropriate limit of the kink
tension for the massive sigma model.

This paper is organized as follows. In the next section
we consider the moduli space of BPS solitons, and discuss
in some generality the worldvolume realization of super-
symmetry.We argue that the reduced moduli space may in
certain cases exhibit supersymmetry enhancement and
present a simple sigma model where this arises for the
worldline dynamics of BPS kinks. We then turn to the
specific case of BPS walls in Nf � N flavor SQCD in
-2



1Exceptions to this correspondence are known within super-
gravity [22], where the condition that Killing spinors be nor-
malizable at infinity becomes nontrivial.

2This includes the cases D � 2; 3 and 4 which we will focus
on here, but the argument should generalize appropriately to
dimensions without Majorana spinors.
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Sec. III, recalling the structure of the wall moduli space
[10] and then describing the worldvolume realization of
supersymmetry, which on the reduced moduli space is
enhanced to N � 2. We describe the structure explicitly
for the SU(2) case with unequal quark masses, as is
required to remain at weak coupling. This viewpoint is
applied in Sec. IV to consider novel 1=4-BPS two-wall
junctions from the viewpoint of the wall worldvolume.We
finish with some concluding remarks on other worldvo-
lume solitons, including lumps, in Sec. V. In an appendix,
we review the structure of tensorial central charges in
D � 2; 3 and 4, noting a subtlety with vectorial string
charges.

II. SUPERSYMMETRY AND WORLDVOLUME
MODULI

In this section we will discuss some aspects of the
matching between bosonic and fermionic moduli for
BPS solitons. We distinguish the translational sector,
which is essentially fixed on kinematic grounds, from
the remainder of the moduli—the reduced moduli
space —which we argue, by way of an explicit example,
can in certain situations exhibit an ‘‘enhancement’’ of
supersymmetry, in the sense that the associated dynamics
preserves more supercharges than one would infer from
the bulk superalgebra. The additional supercharges act
only on the reduced moduli space and are not present in
the bulk theory.

A. Counting moduli and the translational sector

We begin with a simple physical perspective on the
matching between bosonic and fermionic moduli of BPS
solitons. Recall that on general grounds the bosonic mod-
uli space for a configuration of solitons in flat space
locally admits the decomposition

M ’MSUSY �
~M; (5)

where MSUSY is the sector associated with broken (bo-
sonic) symmetry generators in the superalgebra. The sec-
ond factor in (5), ~M, encodes any other modes associated
with broken global symmetries, e.g., relative translations
or, as will be more relevant here, flavor symmetries.

Consider a bosonic soliton configuration S�x� in
D-dimensional Minkowski space which has finite mass
(or tension)—large relative to the scales of the underlying
theory—and is localized in d � D� 1 spatial dimen-
sions. Within a Lorentz invariant field theory, it is clear
that this configuration possesses d localized bosonic zero
modes as it spontaneously breaks translational invari-
ance. It follows that the minimal content of the moduli
space takes the form

Mmin
SUSY � Rd: (6)

For solitons within theories of extended supersymmetry,
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MSUSY may acquire additional bosonic dimensions, due
to the enforced Kähler or hyper-Kähler structure.

We would now like to argue that there are at least d
fermionic zero modes of the soliton configuration if the
bulk theory possesses linearly realized supersymmetry.
More precisely, we will consider a soliton in a globally1

supersymmetric field theory. Furthermore, to simplify
the discussion, we will assume a real representation for
the superalgebra.2 Since two SUSYvariations commute to
a translation, 
�1; �2�S�x� / ��@�S�x�, it follows that if
there are d broken translational generators, there are at
least d broken supersymmetry generators, and thus d
fermionic zero modes. In practice, the number may of
course be larger on account of Lorentz invariance or
extended SUSY.

While this matching is essentially enforced by the
representation theory of the worldvolume superalgebra
in many examples, it is interesting that this simple argu-
ment also applies even if the worldvolume of the soliton is
0� 1-dimensional, for which supersymmetric quantum
mechanics in principle imposes no fixed relation between
the number of bosonic and fermionic degrees of freedom.
Moreover, we did not need to assume the existence of a
well-defined fermion parity ��1�F on the states, and thus
representations could exist which are not Bose-Fermi
paired. As simple illustrations of the minimal one-to-
one matching consider first a putative BPS vortex in a
theory with minimal N � 1 SUSY (i.e. two super-
charges) in 2� 1D. Such a configuration would require
a worldvolume description with two bosonic zero modes,
but only one fermionic mode. This is not permitted by the
argument above, and indeed no configurations of this
type are known. Vortices always exhibit at least two
fermionic zero modes and are thus BPS only in N � 2
theories in 2� 1D. As a second example, consider an
SU(2) Yang-Mills instanton. Within the N � 1 super-
conformal algebra they possess eight bosonic, but only
four fermionic, zero modes, and are indeed BPS.
However, to exist as solitons we must lift them to 4�
1D where the minimal superconformal algebra possesses
16 generators and BPS instantons then exhibit eight fer-
mionic zero modes restoring the minimal one-to-one
matching.

Proceeding further, one notes that a one-to-one match-
ing between bosonic and fermionic modes (in practice a
two-to-one matching of phase space variables) is possible
only in the absence of nontrivial constraints from Lorentz
invariance, namely, when the worldvolume is 0� 1 or
1� 1-dimensional. These cases still cover the majority of
-3
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solitons present within theories in 3� 1D, and this mini-
mal matching is known to occur in many cases. The first
example where Lorentz invariance does impose a con-
straint arises for BPS walls in 3� 1D, where the mode
matching must be one-to-two. It is this case that will be of
interest here.

The discussion above focused on the translational or,
more generally, the ‘‘super-Goldstone’’ sector of the mod-
uli space MSUSY. The constraints imposed by Lorentz
invariance on ~M are the same, but in general the real-
ization of supersymmetry may be somewhat different.
This is the issue to which we turn next.

B. Supersymmetry enhancement for ~M: the
N � 1 S3 sigma model

The realization of SUSY in the translational sector of
the moduli space is highly constrained by kinematics. In
contrast, the reduced moduli space may contain moduli
which are unrelated to translational zero modes and the
structure of the superalgebra. Of course, this is not
necessarily the case if we consider a multisoliton con-
figuration where ~Mwill include moduli corresponding to
relative translations, but we have in mind a situation
where ~M is instead associated with other broken global
symmetries. In this case, we will argue that the reduced
moduli space may exhibit an apparent enhancement of
supersymmetry at the two-derivative level relative to the
full dynamics on M.

To motivate why supersymmetry enhancement for the
low energy dynamics on ~M can be rather natural, we will
first present an explicit example. Consider an N � 1
sigma model in 1� 1D with target space S3 accompanied
by its round metric [23], for which we introduce spherical
polar coordinates �a � f�; �;�g,

ds2 � r
d�2 � sin2��d�2 � sin2�d�2��: (7)

We also turn on a (real) superpotential,

W ��� � m cos�; (8)

which depends on only one of the angular coordinates
parametrizing the S3. The theory then has two vacua at
� � 0; 
.

Classical BPS kinks exist which interpolate between
the two vacua, having mass

Msol � Z � 2m; (9)

and satisfying the Bogomol’nyi equation,

@z�
a � gab@bW ���: (10)

The solutions have the simple sine-Gordon form

�sol�z� � 2 arctan
�
exp

�
�
m
r
�z� z0�

��
;

�sol � �0; �sol � �0; (11)

exhibiting three bosonic moduli fz0; �0; �0g.
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These bosonic moduli are Goldstone modes for the
symmetries broken by the wall: z0 is associated with the
breaking of translation invariance; �0 and �0 arise from
the SO(3) global symmetry of the target space which is
preserved in the vacua but broken to SO(2) by the kink
solution. We thus anticipate that �0 and �0 coordinatize
the coset SO�3�=SO�2� ’ S2. This may be verified by
inserting the solution into the bosonic Lagrangian and
computing the induced metric for the bosonic zero modes
[2], on allowing for weak time-dependence,

ds2M � 2mdz20 � hijdxidxj

� 2mdz20 �
2r2

m

d�2

0 � sin2�d�2
0�;

i; j � 1; 2;

(12)

where hij is the metric of the reduced moduli space ~M.
The bosonic moduli space is thus

M � R� ~M � R� S2; (13)

with the natural metric on each factor.
Let us now consider the fermionic sector. The S3 coor-

dinates �a are partnered under N � 1 SUSY by a set of
two-component Majorana spinors,  a$, $ � 1; 2. For each
bosonic zero mode xi, one finds a corresponding (one-
component) fermionic partner %i in the lower component
of  a$,

 asol � %i
@�a

sol

@xi
0
1

� �
� nonzero modes: (14)

Only one of these modes is guaranteed to exist by virtue
of the fact that the solution is classically 1=2-BPS and
thus breaks one of the two supercharges. The broken
supercharge is realized as

Q1 � 2Z%z; (15)

in terms of this ‘‘Goldstino’’ mode. Here %z is the super-
partner of z0.

We now come to a rather surprising feature of this
system. The reduced moduli space ~M is a Kähler mani-
fold and, since the bosonic and fermionic zero modes are
paired, exhibits N � 2 supersymmetry. One of these
supercharges is Q2, the unbroken charge present in the
bulk theory, while the second which we will call ~Q2 exists
only due to the complex structure J associated with ~M.
In the coordinate system (12),

J �
0 1
�1 0

� �
: (16)

We can represent the supercharges as3
-4
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QI 	

(
Q2 � hij _xi%j

~Q2 � hijJ
j
k _xi%k

(17)

and, noting that f%i; %jg � hij, one can verify that they
satisfy the algebra of N � 2 supersymmetric quantum
mechanics (SQM),

fQI;QJg �H SQM�
IJ; (18)

where H SQM � �M�Z� is the worldline Hamiltonian.
Introducing the complex coordinate

w � ei�0 tan
�0

2
(19)

on ~M, and its fermionic partner

 �
1

2
sec2 �0

2
ei�0�%� � i sin�0%��; (20)

we can rewrite the algebra in the form

fQ;Q�g �H SQM; �Q�2 � �Q��2 � 0; (21)

where

Q �
1

2
�Q1 � iQ2� � hw  w _ w ;

Q� �
1

2
�Q1 � iQ2� � hw  w _w   :

(22)

At this point we should emphasize that the arguments
for enhanced supersymmetry presented above refer to the
low energy or two-derivative sector of the worldvolume
theory. Since supersymmetry does not enforce this en-
hancement, nor indeed the Kähler structure of the re-
duced moduli space, it seems inevitable that higher
derivative terms on the worldvolume will not respect
N � 2 supersymmetry. We will not attempt to verify
this in detail,4 as we will focus on the worldvolume
vacuum structure for which the two-derivative sector of
the theory is sufficient.

In this specific example, one can show that on quanti-
zation there are no supersymmetric vacua, and thus no
quantum BPS kinks, since �Q2�

2 is bounded from below
by the scalar curvature R of ~M which is clearly positive.
More precisely [23], Q2 can be realized as the Dirac
operator on ~M,

Q2 �
1���
2
p +j��irj�; (23)

and thus one finds

�Q2�
2 �H SQM � �r

2 �
1

8
R; (24)

where r2 is the Laplacian on ~M.
4An example of this kind in the translational sector was
noted by Townsend [24].
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Although we focused on one particular example, the
mechanism for SUSY enhancement exhibited above
clearly generalizes readily to, for example, sigma models
with target spaces which are (nontrivial) U(1) bundles R
over Kähler manifolds K (e.g. regular Sasakian mani-
folds), where the soliton profile in the transverse coordi-
nate z lies entirely within the S1 fibre,

S1�z� 			!R

#

K (25)

and it would clearly be interesting to explore other gen-
eralizations. It is worth emphasizing here that a global
feature of this kind is ultimately what is responsible for
enhancing the supersymmetry on ~M. In other words, the
existence of a globally defined Kähler form on ~M, while
not strictly proven through our local considerations, is
ensured by an underlying geometric structure. Note also
that the nontriviality of the fibration is a necessary con-
dition ensuring that the f�0; �0g zero modes are normal-
izable, i.e., that they are localized to the kink.

Here we will note only one natural extension of the
example above, which is directly relevant to our subse-
quent discussion of BPS walls in SQCD. We can embed
the N � 1 S3 model in a Kähler N � �2; 2� sigma
model with target space T��S3�. The bosonic soliton so-
lutions persist, and depend only on the base S3 coordi-
nates. Consequently, the bosonic moduli space is
unchanged. However, the cotangent directions supply an
additional set of fermionic zero modes, so that the bosonic
and fermionic moduli are now paired one-to-two, and the
reduced moduli space preserves the action of four super-
charges constructed as above with % reinterpreted as a
two-component Majorana spinor. This in fact is crucial as
the system can then be lifted to a nonchiral theory in 1�
1D with N � �2; 2� supersymmetry and, more impor-
tantly, the natural N � 2 theory in 2� 1D on the world-
volume of a domain wall.

In the next section, we will review the origin of this
geometric structure within the context of BPS domain
walls in N � 1 SQCD, and describe in some detail the
worldvolume dynamics on the reduced moduli space.
III. DOMAIN WALL MODULI IN N � 1 SQCD

In the first part of this section we briefly review the
arguments which determine the topology of the reduced
k-wall moduli space in SU(N) SQCD withNf � N flavors
[10]. We then present a more explicit construction for
SU(2), exhibiting the enhancement of supersymmetry
on the reduced moduli space, and describing how the
imposition of a hierarchical structure for the quark
mass matrix leads to a potential which lifts the flavor
moduli. This potential, at least for linear deformations, is
geometrically the norm squared of a U(1) Killing vector.
-5
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below.
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A. Counting k-walls and the moduli space for Nf � N

N � 1 SQCD with Nf � N flavors is obtained by
adding N chiral superfields, Qf and ~Q  g (f;  g �
1; . . . ; N), transforming, respectively, in the fundamental
and antifundamental representations of the gauge group,
to the fields of N � 1 SYM with gauge group SU(N).
This matter content will ensure that the gauge symmetry
is completely broken in any vacuum in which the matter
fields have a nonzero vacuum expectation value. Provided
the mass gap is sufficiently large, the gauge fields may
then be integrated out, obtaining a low energy effective
description in terms of the meson moduli M  g

f � Qf
~Q  g.

The superpotential describing the resulting low energy
dynamics is given by

W � Tr�m̂M� � /�detM�	2N
N �; (26)

in terms of the meson matrixM, the dynamical scale 	N ,
and a Lagrange multiplier /. The Lagrange multiplier is
to be understood as a heavy classical field, for consistency
with the nonrenormalization theorem, which enforces a
reduced form of the quantum constraint [3],

detM� B ~B � 	2N
N ; (27)

containing in addition the baryon fields B and ~B. These
fields have been set to zero (their vacuum values) in (26)
as they do not play a role in the wall configurations we
will consider here.

An important constraint on the accessible parameter
space is the requirement that the vacua of the theory, and
generic domain wall trajectories, lie at weak coupling
where the gauge modes, which have been integrated out,
are indeed heavy. This condition is satisfied if the quark
mass matrix m̂ is chosen in a specific hierarchical form,
and the choice which retains the maximal global sym-
metry is given by

m̂ � diagfm;m; . . . ; m;mNg; 	N � mN � m:

(28)

The vacua are then given by diagonal meson vacuum
expectation values (VEVs) with components (no summa-
tion over i),

hMi
iik �

�
mN

m

�
1=N

	2
N!

k
N; !k

N � e2
k=N;

i � 1; . . . ; N � 1; k � 0; . . . ; N � 1:
(29)

The vacua are weakly coupled if the hierarchy is suffi-
ciently large, i.e., we require mN=m� eN . If we restrict
our attention to energy scales below mN , the effective
dynamical scale is 	2N�1

N�1 � mN	2N
N .

For the specific problem of deducing the multiplicity of
BPS walls the need for a hierarchical mass matrix can be
circumvented [10]. This counting problem amounts to
computing the Cecotti-Fendley-Intriligator-Vafa (CFIV)
index [25], which is formally defined as the following
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trace, suitably regularized, over the Hilbert space with
boundary conditions appropriate to a k-wall [25,26],

�k 	 TrF��1�F; (30)

where F is the fermion number operator. Note that only
shortened multiplets contribute. It will be useful to briefly
recall two approaches to the computation of this index in
the present context (see [10] for further details).

1. Hierarchical regime: Counting permutations

It is convenient to define dimensionless fields X �
m̂M��	2

N�
�1, with � 	 �detm̂�1=N , in terms of which

the superpotential exhibits the maximal SU(N) flavor
symmetry,

W � �	2
N
TrX� /�detX� 1��; (31)

while the hierarchical structure of the mass matrix is now
visible only in the rescaled Kähler potential. The super-
potential depends only on the eigenvalues f%ig of X,

W � �	2
N

"XN
i�1

%i � /

 YN
i�1

%i � 1

!#
; (32)

which exhibits the vacua at the roots of unity, h%iik � !k
N .

Specifying boundary conditions relevant for a k-wall, the
trajectory of each eigenvalue is characterized by its wind-
ing number w�%� which can take one of two possible
values: w1 � k=N and w2 � k=N � 1 (see also [27]).
The Bogomol’nyi equations then ensure that N � k of
the eigenvalues carry winding number w1 and k carry
winding number w2. It follows immediately that the wall
multiplicity is given by the number of permutations of the
eigenvalues subject to these conditions, i.e.

�k �
N
k

� �
�

N!

k!�N � k�!
: (33)

One observes that, since this construction depends only
on constraints on the N eigenvalues, it can be applied
consistently in the decoupling limit of the Nth flavor.

2. Symmetric regime: Quantizing moduli

An alternative approach, developed in [10], involves
noting that the CFIV index can also be deduced from the
Witten index Tr��1�F [4] of the worldvolume theory on
~Mk. Thus it depends only on the topology of the reduced

moduli space of BPS walls. These moduli are determined
by the flavor symmetries broken by the wall and parame-
trize a Kähler manifold.5 In particular, it is only the
induced metric on this space which is sensitive to the
precise specification of quark masses; the topology is
invariant. One then recalls that the CFIV index is inde-
-6
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pendent of smooth diffeomorphisms of the Kähler poten-
tial [25], and so we can restore its symmetry by such a
diffeomorphism if so desired.

The result (33) can then be understood via quantization
of the classical moduli space Lagrangian. In particular, it
follows from the constraints on the eigenvalues that the
maximal flavor symmetry that the k-wall can preserve is

SU�k� � SU�N � k� � U�1�; (34)

which is a subgroup of the full flavor symmetry SU(N).
Consequently, taking care with discrete factors, there
must be localized Goldstone modes on the wall parame-
trizing the Grassmannian coset [10],

~M k � G�k;N� 	
U�N�

U�k� � U�N � k�
: (35)

The CFIV index then reduces to the worldvolume Witten
index of the supersymmetric Grassmannian sigma
model, given by the Euler characteristic, with the result

�k � 
G�k;N�� �
N!

k!�N � k�!
(36)

for the multiplicity of k-walls, in the presence of a suitable
infrared regulator, consistent with the result above.

This latter computation relies heavily on the invariance
of the index under D-term deformations, in order to de-
form the theory to a symmetric mass regime. We now
wish to study this worldvolume theory in more detail and
consequently will need to consider more carefully the
transition back to the weakly coupled hierarchical mass
regime.

B. The SU(2) case and enhanced supersymmetry

In order to provide a more explicit discussion of the
resulting worldvolume dynamics on the moduli space of
BPS walls, we will limit our attention in what follows to
the simplest example with gauge group SU(2) and Nf � 2
flavors.

In addressing the full worldvolume dynamics, we are
no longer at liberty to perform diffeomorphisms of the
Kähler metric, and so it will be useful to introduce
another dimensionless meson field Z � M	�2

N in terms
of which the symmetry breaking induced by the hier-
archical mass matrix is visible within the superpotential.
A convenient basis is then provided by the following
decomposition,

Z � U$2�$1
�Z01� iZi+

i�U$2�$1
;

U$ � exp
�
i
4
$+3

�
;

(37)

where the (axial) rotation angle is the relative phase of the
two quark masses; mk � jmkjei$k for k � 1; 2. In this
basis, the moduli space constraint takes the form,
095003
X3
a�0

Z2
a � 1; (38)

and it describes a smooth complex submanifold of C4,
known as the deformed conifold [28]. This manifold is
symplectically equivalent to T��S3�.

In studying the BPS wall spectrum, it will be conve-
nient to first consider the decoupling regime with hier-
archical quark masses.

1. The decoupling regime

We first consider the regime where��������m2

m1

��������� 1; (39)

so that the second flavor can be integrated out. The super-
potential can be written as follows

W � ei�jm1j	
2
2

�
Z� �

��������m2

m1

��������Z�
�

�/�Z�Z� � Z2
1 � Z2

2 � 1�; (40)

where Z� � Z0 � iZ3 and � � �$1 � $2�=2 is an overall
phase. In the decoupling limit Z1 and Z2, since they are
sensitive to the heavy quark VEV, are set to zero hZ1i �
hZ2i � 0, and thus the moduli space contracts to

Z�Z� � 1; (41)

a submanifold which is locally R� S1. Solving this con-
straint directly, one recovers the Affleck-Dine-Seiberg
superpotential for the 1-flavor theory [6]. We will instead
proceed by restricting the fields Z� and Z� to lie on the S1

real section of (41), since this contains the two vacua at
hZ�i � hZ�i�1 � �

������������������
jm2=m1j

p
. Introducing an angular

coordinate � 2 
0; 
�, we define

Z� � Z�1
� �

�����������������������m2

m1

��������
s

e�i�; (42)

which ensures that the physical meson field M11 scales as
�	5

1=m1�
1=2 and thus remains finite in the decoupling

limit. The classical Kähler potential for M11, which is
reliable in this hierarchical regime, also scales as
�	5

1=m1�
1=2.

The superpotential reduces to

W � 2ei�
���������������
jm1j	

5
1

q
cos�; (43)

which we recognize as equivalent, up to normalization, to
the (real) superpotential of the S3 model analyzed in
Sec. II. The Bogomol’nyi equation takes the sine-
Gordon form,

@z� � �2jm1j sin�; (44)

and thus the solution,
-7
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�sol�z� � 2 arctan�e�2jm1j�z�z0��; (45)

exhibits a single bosonic modulus z0 corresponding to the
soliton position.We also observe from the Z2 ambiguity in
(42) that there are two solutions [11], consistent with the
value of the index �N�2

1 � 2.
Since there is no reduced moduli space for domain

walls in this regime, we will not discuss the realization
of supersymmetry explicitly. We note only that the trans-
lational sector is described by a single free N � 1 scalar
multiplet in 2� 1D. The results above will nonetheless
provide a useful comparison to those we will derive in the
symmetric mass regime below.

2. The symmetric regime

We would now like to consider this system outside the
decoupling regime. Although we will ultimately return to
the controllable hierarchical mass regime (albeit with m2

finite), we will first abstract slightly and consider what
happens when we set the quark masses equal m1 � m2 �
�. Although this puts the wall trajectory at strong-
coupling, it turns out that the enhanced symmetry will
still provide important constraints, and essentially the
only assumption we need to make is that the effective
description in terms of meson moduli is still valid. In
practice, we do this simply to study the kinematic struc-
ture of the resulting worldvolume superalgebra, and we
will partially remove the need for this assumption in the
next subsection where we consider how the resulting
picture is modified on detuning the two quark masses.

To proceed, it is now convenient to write the super-
potential in the following form

W � ei�	2
2
  mZ0 � i&mZ3� � /

 X3
a�0

Z2
a � 1

!
; (46)

where the (real) mass parameters are

 m � jm1j � jm2j; &m � jm2j � jm1j: (47)

Setting &m � 0, we observe that the two vacua, Z0 �
�1, now lie at the poles of the S3 which forms the real
section of the surface

P3
a�0 Z

2
a � 1. Supersymmetry de-

mands that the metric on this latter space be Kähler.
However its precise form is subject to quantum correc-
tions and is not known except in the asymptotic regime
where M  g

f � 	2
2. Fortunately, one can show that not only

the vacua but also the wall solutions lie entirely within the
S3 section [10] and we can ignore the metric structure of
the cotangent directions. Moreover, when both mass
terms are set to zero, the theory preserves an enhanced
SU(2)� SU(2) symmetry which demands that the in-
duced metric on the base S3 be the round one. We can
introduce a suitable set of coordinates f�0ag for the sur-
face

P
aZ

2
a � 1, or a submanifold thereof, which makes
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the symmetry of this embedding manifest, and we denote
the induced line element d'0

3��
0a�.

Let us also introduce a second coordinate system for
the S3, f�ag, given by the embedding into flat space, with
induced line element d'3��a�. Note that one obtains the
same result for the embedding within the classical Kähler
geometry Tr

����������
�  ZZ�

p
. The relation between the two induced

metrics d'0
3��

0a� and d'3��a� is nontrivial, and deter-
mined by the renormalization of the Kähler potential.
However, symmetry demands that we have

d'0
3��

0a� � f��a�d'3��a�; (48)

with a conformal factor f��a�, consistent with the isome-
tries, which must be nonsingular to preserve the known
vacuum structure. Note that this is a stronger constraint
than would apply to the entire Kähler metric. We now see
that, although f��a� is unknown in general, it will enter
the Bogomol’nyi equation for BPS walls in such a form
that it can be ‘‘removed’’ by a field-dependent rescaling
of the transverse spacetime coordinate to the wall. Such a
rescaling will affect the wall profile, but will not affect
the symmetries of the system and will allow us to proceed
with an analysis of the kinematics. Thus, for this sub-
section, we will perform this rescaling and set �0a � �a.
The induced metric on the S3, in spherical polar coordi-
nates f�; �; �g, then takes the form

ds2base � 	2
2
d�

2 � sin2��d�2 � sin2�d�2��; (49)

where the normalization is fixed by the only dimensionful
scale available, the dynamical scale 	2 of Nf � 2 SQCD.
When we turn the equal mass perturbation back on, the
corrections will be of order�=	2 which are subleading in
the light quark mass regime we consider here. In the next
subsection, we will consider unequal mass perturbations
which will move the wall trajectory back toward the
weakly coupled region.

We can now utilize the same coordinate system,
f�; �;�g, to rewrite the superpotential, restricted to the
S3 real section, in the form,

W � ei��	2
2TrZ 			! 2ei��	2

2 cos�; (50)

which is once again equivalent, up to normalization, to
the superpotential of the S3 model analyzed in Sec. II,
and the superpotential in the hierarchical regime deduced
above. In the latter context, the use of the same notation
for the angle � entering the superpotential is not acciden-
tal and will be justified later in this section. The vacua lie
at the poles � � 0; 
, and the Bogomol’nyi equations
reduce to

@z� � �2� sin�; @z� � @z� � 0; (51)

which are naturally equivalent to Eq. (10), and are solved
once again by the sine-Gordon soliton (11),
-8
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�sol�z� � 2 arctan�e�2��z�z0��;

�sol � �0; �sol � �0:
(52)

We conclude that the bosonic moduli space is the same as
that obtained within the S3 model, namely MN�2 � R�
CP1, which is consistent with the general discussion
above. Integrating over the wall profile, and reconstruct-
ing the spatial dependence using Lorentz invariance,
leads to the corresponding bosonic moduli space
Lagrangian,

L bose �
Z
d3x

�
�T1 �

1

2
T1@�z0@

�z0 �
1

2
hij@�x

i@�xj
�
;

(53)

where T1 � 4�	2
2 is the 1-wall tension, and hij is the

metric on the moduli space, given by

ds2M � T1dz20 � hijdxidxj

� T1dz20 � R ~M�d�
2
0 � sin2�0d�2

0�; (54)

with

R ~M �
	2

2

�
(55)

the scale of the reduced moduli space.
We are now in a position to explore the realization of

supersymmetry on the reduced moduli space. The first
point to note, following the comments at the end of
Sec. II, is that the present system has twice as many
fermions as the S3 model considered earlier. The second
set of fermions arise from the cotangent directions of
T��S3�. We can choose a basis where the complex fermi-
ons lying in the chiral multiplet Z decompose into two
(real) sets, one  1$ the N � 1partner of the S3 coordi-
nates of the base, and the other  2$ the N � 1partner of
the cotangent directions. One then finds that a second set
of fermionic zero modes arise from  21. The fermionic
mode decomposition takes the form

 a1$ �
�
%z1
@�a

sol

@z0
� %i1

@�a
sol

@xi

�
0

1

 !
$

� nonzero modes,

 a2$ �
�
%z2
@�a

sol

@z0
� %i2

@�a
sol

@xi

�
1

0

 !
$

� nonzero modes,

(56)

where f%iAg are two sets of fermionic operators satisfying

f%zA; %
z
Bg �

1

T1
�AB; f%iA; %

j
Bg � hij�AB; (57)

where hij is the reduced moduli space metric. Thus we
now find in full a one-to-two matching between the
number of bosonic versus fermionic zero modes. It is
important that since the worldvolume is now 2�
1-dimensional, this matching condition is a requirement
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of Lorentz invariance —a constraint that was not present
in our earlier discussion of 1� 1D kinks.

With this constraint in mind, it is convenient to com-
bine the fermionic moduli %A into a two-component
spinor % � �%1; %2�. The center-of-mass sector now com-
prises a real scalar z0 and a Majorana spinor %z, which is
sufficient to compose a scalar multiplet of N � 1 SUSY
in 2� 1D. This is the sector of the theory generated by
spontaneous breaking of translational invariance and the
two broken supercharges, since the state is 1=2-BPS.

The reduced moduli space CP1 is Kähler, and so from
the discussion of Sec. II, we would anticipate some en-
hancement of supersymmetry in this sector. Indeed, it is
clear that essentially the same construction as before,
now augmented with two-component spinors %i, will
lead to the dynamics admitting N � 2supersymmetry
in 2� 1D, or four supercharges, only two of which can
be identified with the unbroken generators of the bulk
superalgebra. This conclusion has important consequen-
ces, as this theory can be shown to have two supersym-
metric vacua (at least in 1� 1D or less), in contrast to the
‘‘chiral’’ theory which was realized in the S3 model.

In preparation for the following subsection, it will be
useful to describe explicitly the construction of the super-
charges. To this end, we will compactify the theory on a 2-
torus of radius R, and consider the N � �2; 2� super-
algebra in 1� 1D:

fQ$;Q
y
6g � 2����0�$6P�;

fQ$;Q6g � 2i��5�0�$6
 Z;

fQy$;Q
y
6g � 2i��5�0�$6Z;

(58)

choosing the �-matrices as follows

�0 � +2; �1 � i+3; �5 � �0�1 � �+1: (59)

We can now rotate to a Majorana basis Q$ �

e�i�=2�Q1
$ � iQ2

$�=
���
2
p

within which

fQi
$;Q

j
6g � 2�ij����0�$6P� � 2i��5�0�$6jZj+

ij
3 ; (60)

where � 	 arg�Z�, and takes the form � � �$1 � $2�=2
in the present case. In the rest-frame,

�Q1
1�

2 � �Q2
2�

2 � M� jZj;

�Q2
1�

2 � �Q1
2�

2 � M� jZj;
(61)

where M � T1R
2 in terms of the wall tension. Thus, we

see that for a BPS wall configuration Q2
1 and Q1

2 are the
unbroken supercharges which will be realized within the
worldvolume theory.

To compute these supercharges in terms of the moduli
we recall that for a Wess-Zumino model, as we have here,
the complex supercharge is given by

Q �
Z
dz�gab��@��a�0 b � i@  b

 W�0 �b�: (62)
-9
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To move to the Majorana basis, we decompose  � e�i�=2� 1 � i 2�=
���
2
p

, and obtain

Q1 �
Z
dz

gab _�a gab@z�a � ei�@  b
 W 0

gab@z�a � ei�@  b
 W 0 gab _�a

 !
 1b; (63)
with Q2
$ given by a similar expression in terms of  2.

Inserting the solutions for the fermionic zero modes one
obtains,

Q$ 	 �Q1
2; Q

2
1� � T1 _z0%z$ � hij _xi%i$; (64)

where we have combined the two unbroken charges into a
spinor, using the corresponding fermionic zero modes%$.
This is recognizable as a spinor analogue of the unbroken
supercharge within the S3 model. If we now drop the
translational zero modes, and restrict Q$ to the reduced
moduli space, with xi � f�0; �0g, then we discover that
there is a second unbroken spinor supercharge, existing by
virtue of the complex structure J associated with ~M �
S2, introduced earlier in (16).We can then form a complex
spinor charge QI

$

QI
$ 	

(
Q$ � hij _xi%j$;
~Q$ � hijJ

j
k _xi%k$;

(65)

and these charges satisfy the algebra of N � 4 SQM or
more importantly, when lifted back to 2� 1D, the N �
2 superalgebra.

The worldvolume theory is then an N � 2 CP1 sigma
model and, as noted above, the Witten index for this
theory is equal to two, consistent with our counting of
domain walls. Therefore, within this system, at least
when compactified to 1� 1D or below, there are indeed
two quantum vacua, and thus two BPS walls. This world-
volume structure also has important consequences for
worldvolume BPS solitons, a subject that we turn to in
the next section.

The crucial distinction to be made here with the N �
1 algebra arising for kinks in the S3 model is that with
two-component fermions the model has an additional
potential term associated with the Riemann tensor,

&V � �
1

12
Rijkl  %i%j  %k%l; (66)

with  % � %T�0, which precisely cancels the zero-point
curvature term in (24) in the quantum action of the
unbroken supercharges on the ground states. One way to
understand this is to recall6 that, while the one-
component worldvolume supercharges which arise in
the N � 1 S3 model are realized quantum mechanically
in terms of the Dirac operator, or alternatively (anti-)
6Similar issues arise in comparing the spectrum of dyons of
magnetic charge two in gauge theories with N � 2 [29] and
N � 4 supersymmetry [30].
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holomorphic (or Dolbeault) exterior derivatives [20], on
the reduced moduli space,

�Q;Q�� $ �  @y;  @�; (67)

the spinor supercharges arising in the N � 2 T��S3�
model are realized in terms of (de Rham) exterior de-
rivatives [4],

�Q;Qy� $ �d; d��: (68)

The supersymmetric vacua in the latter case correspond
to normalizable harmonic forms, of which there are two
for S2 corresponding to the Betti numbers b0 � b2 � 1.
However, supersymmetric vacua of the N � 1 theory
would be normalizable holomorphic harmonic forms on
the same manifold. The presence of such forms on a
Kähler manifold, which would necessarily have antiho-
lomorphic partners, is forbidden by the uniqueness of
harmonic forms in each de Rham cohomology class.

3. Quark mass splitting and a potential on the moduli
space

In the preceding discussion, we abstracted slightly in
ignoring the deformation imposed by considering a hier-
archical mass matrix for the quarks. As noted above, this
choice is enforced if we wish to retain a weakly coupled
description of the vacua between which the wall interpo-
lates. In this subsection, we rectify this by turning on this
deformation and demonstrating that the effect on the
reduced moduli space is, at linear order, to introduce a
new potential given by the norm squared of a U(1) Killing
vector. Such a potential is naturally associated with the
fact that turning on the quark mass difference, &m 	
jm1j � jm2j, breaks the non-Abelian part of the global
symmetry from SU(2) ! U(1). An important feature of
this particular deformation on the worldvolume is that it
preserves the enhanced N � 2 SUSY [21].

Using the same coordinate system as above, and re-
stricting once again to the real section, we can write the
superpotential in the form

W �W 0 � i&W � ei�  m	2
2
cos�� i: sin� cos��;

(69)

where the (real) deformation parameter is

: 	
&m
 m
: (70)

Rather than study the exact wall solutions within this
system, we will consider the impact at leading order in :
-10
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on the moduli space dynamics valid at &m � 0. Working
to linear order in :, it is consistent to make use of the
unperturbed wall solution in constructing the worldvo-
lume supercharges. The deformation is then apparent in
the presence of a correction term,

&Q1 �
Z
dz 0 ei�@b&

 W

�ei�@b&
 W 0

 !
 2b; (71)

with the correction to Q2
$ given by a similar expression.

It is now clear that at linear order in : the broken
supercharges Q1

1 and Q2
2 are not corrected on setting the

nonzero modes to zero. This is consistent with the fact
that corrections to the central charge start at O�:2�,

Z � 2ei�  m	2
2

�
1�

1

2
:2 � � � �

�
: (72)

In contrast, the unbroken supercharges are corrected,
and evaluating them using the zeroth order Bogomol’nyi
equations, we find

Q1
2 � T1 _z0%

z
1 � hij _xi%j1 � 
:	2

2 sin�0%
�
2 ;

Q2
1 � T1 _z0%

z
2 � hij _xi%j2 � 
:	2

2 sin�0%
�
1 :

(73)

The relative sign for the perturbations to Q1
2 and Q2

1
ensures that fQ1

2; Q
2
1g � 0 in the rest-frame as required.

We would now like to determine whether or not this
linearized deformation has preserved the additional su-
persymmetry, associated with the complex structure on
the reduced moduli space. In fact we can verify this
explicitly. To proceed, let us drop the decoupled transla-
tional mode as above and relabel the supercharges acting
on the reduced moduli space as follows

Q1
2 			! Q1

L

� 2
	2

2

 m

�
_�0%

�
1 � sin2�0

_�0%
�
1 �

1

2

:  m sin�0%

�
2

�
;

Q2
1 			! Q2

R

� 2
	2

2

 m

�
_�0%

�
2 � sin2�0

_�0%
�
2 �

1

2

  m: sin�0%

�
1

�
:

(74)

Remarkably enough one can write down a second set of
supercharges leading to the same Hamiltonian,

Q2
L � 2

	2
2

 m
sin�0

�
_�0%

�
1 �

_�0%
�
1 �

1

2

:  m sin�0%

�
2

�
;

Q1
R � 2

	2
2

 m
sin�0

�
_�0%

�
2 �

_�0%
�
2 �

1

2

:  m sin�0%

�
1

�
;

(75)

and one can verify that fQ1
L;Q

2
Lg � fQ

1
R;Q

2
Rg � 0, and

�Q2
L�

2 � �Q1
R�

2 �H . It follows that we can build com-
plex combinations of the form, QL � �Q1

L � iQ2
L�=2 and

QR � �Q1
R � iQ2

R�=2, i.e.
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QL�
	2

2

 m

�
� _�0%

�
1 � sin2�0

_�0%
�
1 � � i sin�0� _�0%

�
1 �

_�0%
�
1�

�
1

2
i
:  msin2�0%

�
2 �

1

2

:  m sin�0%

�
2

�
; (76)

such that

fQL;  QLg � fQR;  QRg �H ; (77)

with the other anticommutators vanishing in the absence
of central charges.

This structure is of course not accidental. We can make
the underlying complex structure manifest, by introduc-
ing complex coordinates associated with the stereo-
graphic projection. If, as in (19), we define:

w � ei�0 tan
�0

2
; (78)

the corresponding map for the fermions is given by

 L �
1

2
sec2 �0

2
ei�0�%�1 � i sin�0%

�
1 �; (79)

with a similar relation for  R in terms of%�2 and%�2 . With
these redefinitions, the somewhat lengthy expressions
above for QL and QR take the simple form

QL � hw  w
 _ w L � 
:  m  w R�;

QR � hw  w
 _ w R � 
:  m  w L�;
(80)

with the remaining supercharges given by  QL and  QR.
The Fubini-Study metric is

h  ww � 4
	2

2

 m
1

�1� jwj2�2
�

2R ~M

�1� jwj2�2
: (81)

This is precisely the structure expected for a deformation
by a Killing vector proportional to a ‘‘twisted’’ [31–33]
or ‘‘real’’ mass term in 1� 1D or 2� 1D respectively,
thus preserving N � 2 SUSY. In fact, since : is a real
parameter, we see that this deformation is most directly
interpreted as a real mass term in 2� 1D, as one would
expect for the worldvolume theory of a wall in 3� 1D. In
this context  L and  R are then the upper and lower
components, respectively, of a complex spinor.

We have focused on the impact of this deformation on
the supercharges, since we were working to linear order
and making use of the undeformed soliton solution. This
deformation is visible at the bosonic level as a potential
given by the norm squared of a U(1) Killing vector G �
Gi@i for rotations in �0,

Gi �
1

2

&m�i�0 : (82)

However, this contribution is of second order in the per-
turbation. Formally, we obtain
-11
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�Q1
2�

2 � �Q1
2�

2 �H �
1

2
hij _xi _xj �

1

4
 m	2

2�
:�
2sin2�0;

(83)

and thus the induced potential is of the form

&V �
1

2
hijGiGj �

1

4
 m	2

2�
:�
2sin2�0: (84)

Strictly speaking we have not verified that this struc-
ture indeed persists at second order in :. The difficulty is
that in perturbing away from the symmetric point, we
lose any semblance of control over the induced metric on
the moduli space, and one cannot rule out singularities
arising in the truncation to the real section—these would
most likely take the form of cusps appearing at the vacua.
This hinders a purely bosonic construction via completing
the square in the Hamiltonian á la Bogomol’nyi.
Nevertheless, we would like to emphasize here that the
picture one obtains from (84) is entirely consistent with
the results we obtained earlier in the opposite (hierarch-
ical) limit in which jm2=m1j ! 1. In particular, the
potential implies that the vacua lie at �0 � 0; 
. From
the polar coordinatization of the real section, we see that
this contracts the moduli space as follows:

Z� � Z0 � iZ3 � e�i�; Z1 � Z2 � 0: (85)

This is entirely consistent with the behavior of the wall
solutions we observed in the hierarchical limit, account-
ing for the fact that here jm1=m2j � 1�O�:�. This con-
sistency suggests that although we have only considered
the perturbation at linear order, the resulting physical
picture is valid more generally.

In concluding this section, we will comment briefly on
some subtleties that arise in extending these arguments to
higher N. Firstly, since the reduced moduli space for 1-
walls, CPN�1, can always be embedded within a suitably
oriented real section of the meson moduli space detM �
	2N
N , it seems clear that the one-to-two pairing between

bosonic and fermionic zero modes will hold more gen-
erally. This ensures that multiplets when realized in terms
of N � 1 SUSYare necessarily reducible, although this
structure may of course be lifted once one goes beyond
the two-derivative level. With this matching, N � 2
SUSY would follow immediately given a Kähler metric
on the reduced moduli space. It is this latter property,
namely, that the induced geometry is in fact globally
Kähler, which appears difficult to prove in generality. In
the symmetric mass regime, it of course follows directly
from the construction of the moduli space as a Kähler
quotient. However, this regime is not weakly coupled and
in the tractable hierarchical mass regime one loses the
isometry constraints on the induced metric. Nonetheless,
the explicit construction in the SU(2) case is certainly
suggestive that supersymmetry enhancement also arises
for generic N and ~Mk.
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It is worth noting that this conclusion is rather novel
when the Kähler structure is not imposed by the residual
supersymmetry of the BPS state. For pointlike or string-
like solitons one has additional freedom through the
possibility of realizing SUSY using one-component fer-
mions. Indeed, this is the conventional manner in which
worldline theories for, e.g., lumps in Kähler sigma mod-
els, and monopoles in N � 2 SYM, get around the
apparent contradiction of being 1=2-BPS states while at
the same time having a Kähler, or, respectively, hyper-
Kähler, moduli space [20,29]. The worldvolume theories
in question can be thought of as reductions of (0,2) and
(0,4) sigma models in 1� 1D, and this structure can
be understood from the fact that the same bosonic moduli
space arises in theories with twice as much supersymme-
try, namely, hyper-Kähler sigma models and N � 4
SYM, where the additional fermionic zero modes re-
store the ‘‘nonchiral’’ structure to the worldvolume
superalgebra.
IV. ON 1=4-BPS WALL INTERSECTIONS

In this section, we will turn our attention to a second
set of BPS configurations present in N � 1 SQCD. An
inspection of the N � 1 supertranslation algebra in
3� 1D shows that it admits central charges sup-
ported by domain walls and also stringlike sources (see
Appendix). The corresponding charges transform in the
(0,1) and �1=2; 1=2� Lorentz representations, respectively.
The SQCD theories considered here are not expected to
exhibit BPS string solutions, but one has the possibility of
forming (1=4-BPS) intersections or junctions of domain
walls supported by both wall and string charges. One
class of 1=4-BPS junctions arises from a multispoke
configuration of N domain walls in theories with N de-
generate vacua. The 1=4-BPS criterion amounts to the
statement that the superpotential evaluated on a path
through each wall surrounding the junction traces out a
closed polygon [34–37]. However, for SQCD, the exis-
tence of a degenerate spectrum of k-walls [10,11], presents
the possibility of forming a novel class of domain wall-
junction configurations consisting of only two walls.7 It is
these configurations that we will study in this section,
first from the bulk perspective, and then from the world-
volume point of view of the constituent walls. We will
generally restrict our attention to gauge group SU(2) with
Nf � 2, and make use of the worldvolume theory con-
structed in the previous section.

Before describing the explicit construction, we recall
some well-known (and some less well-known) features of
-12
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FIG. 2 (color online). A schematic representation of a
‘‘boosted’’ BPS junction, i.e., a junction superposed with a
wave of momentum P3.
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the kinematics. To this end, it is convenient to represent
the superalgebra in 2� 1D, which we can do by lifting
the corresponding discussion of Sec. III, phrased in a 1�
1D language appropriate to domain walls, to 2� 1D
compactified on a circle of radius L. Using the same
notation, with the identification �2 � i�5, we can extend
(60) as follows [36,39]:

fQi
$;Q

j
6g � 2����0�$6�ijP� � 2i��0�$6:ijZS

�2��2�0�$6�+3�
ij�jZWjL�; (86)

which includes, in addition to the lift of the kink (or wall)
charge, denoted ZWL, a new (real) charge, ZS, associated
with localized objects in 2� 1D—which we have taken
to be positive to simplify the discussion. In the rest-
frame, it is sufficient to focus on the sector of the two
unbroken supercharges in the background of a BPS do-
main wall, namely Q1

2 and Q2
1, which we relabel as Q0i for

i � 1; 2 respectively. The rest-frame algebra in this sub-
sector takes the form,

fQ0i; Q
0
jg � 2�ij�M� jZWjL� � 2�+1�ijZS; (87)

from which we observe that, in a background with both
central charges nonzero, only one of these supercharges
can annihilate the state, and the Bogomol’nyi bound takes
the form

M> jZWjL�ZS: (88)

1=4-BPS junction configurations are required to saturate
this bound.

When we lift this picture one further dimension to 3�
1D, an additional subtlety arises from the fact that the
charge ZS, now associated with stringlike sources, trans-
forms as a vector and is not algebraically independent of
the momentum, i.e., in 3� 1D,

fQ$;  Q _$g � 2����$ _$�P� �ZS
��: (89)

Ignoring the wall charges for now, if we orient the string-
like source in the x3 direction, we see that the BPS bound
takes a somewhat unusual form

T�S�  P3 �ZS
3  ZS

3 ; (90)

where the second relation follows on noting that for
configurations which saturate the bound (88) in 2� 1D,
the allowed boost in the x3 direction is chiral, namely, in
the current basis (with positive ZS) P3 is required to be
strictly positive [34]. The crucial point here is that
although the central charge is not algebraically indepen-
dent of the momentum, it is dynamically distinguished by
the existence of an alternate means of identifying P� via
the conserved, and symmetric, energy-momentum tensor.
One can of course pick the ‘‘rest’’ frame P3 � 0 to
recover a more standard form of the Bogomol’nyi bound
as discussed in [34–36], but one can alternatively
‘‘boost’’ the BPS soliton (see Fig. 2). The additional
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invariant which accounts for this is P�Z�, which in the
present coordinate system reduces to P3.

This example illustrates the general point that the full
spectrum of central charges is not always obtained by
lifting the algebra to the maximal allowed dimension,
and then matching the full number of components in the
anticommutator of supercharges, minus the momenta,
with the allowed set of tensor central charges. The reason
is that not all vectorial charges can be absorbed into the
momenta since, although they are not algebraically inde-
pendent, they are dynamically distinguished. We provide
a discussion of the central charge structure along these
lines in the Appendix.

Returning to the bound (90) in the present context, the
fact that the only configurations currently known which
saturate this bound in N � 1 theories are wall-junction
configurations may partially be explained by considering
the number of localized zero modes, as discussed in
Section II. The one broken supercharge furnishes the
junction with a single fermionic zero mode. This is paired
with a single bosonic zero mode whose origin is best
understood by viewing the junction as a kink-soliton on
the wall worldvolume. The bosonic zero mode then arises
from the breaking of translational invariance along the
wall. A second translational zero mode, associated with
the position of the junction in the orthogonal direction is
not localized as it corresponds to a shift of wall itself. In
this sense the worldvolume structure of the junction is
quite distinct from a localized source such as a vortex.

In 3� 1D this structure has a natural interpretation in
terms of the extension of the zero modes to worldvolume
fields in 1� 1D, i.e. we can now complete the single
fermionic zero mode to a chiral fermion, which we can
choose to be left moving. In the bosonic sector the single
-13
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FIG. 3 (color online). The wall-junction geometry, indicating
the field profiles in the W� and W� components. Note that, by
continuity, the fields near the junction must pass through the
strong-coupling regions near Y � 0, where the low energy
description breaks down.
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translational zero mode is completed to a bosonic field,
which we can decompose into a left and a right-mover.
Only the left-mover will be paired with the fermionic
zero mode under the residual chiral (0,1) worldsheet su-
persymmetry [34]. Now, when we turn on P3, we can
interpret the resulting junction which remains BPS as
equivalent to the ‘‘bare’’ P3 � 0 junction superposed
with a left moving wave of momentum P3. This configu-
ration is illustrated schematically in Fig. 2.

With these preliminaries, we now return to the specific
case of interest, namely, 2-wall junctions in N � 1
SQCD, and consider these solutions first in the hierarch-
ical quark mass limit with only one light flavor.

A. Junction tension for Nf � 1

We first consider the hierarchical regime for gauge
group SU(2), and integrate out the second flavor as in
the corresponding discussion of Sec. III. Since we take the
decoupling limit directly, and thus solve the constraint
Z�Z� � 1 explicitly for Z�, it is useful to introduce
another dimensionless field Y in the form Y ����������
M11

p
�	5

1m
�1
1 �

�1=4 �
�������
Z�
p

�m2m�1
1 �

�1=4, such that after
decoupling

W �
������������
m1	

5
1

q
�Y2 � Y�2�; and K �

���������������
	5

1m
�1
1

q
 YY:

(91)

Provided we take m1 ! 	1, the vacua hY2i � �1 lie at
weak coupling, and one can construct the two BPS wall
configurations we exhibited in (45) (first obtained in
[11]), which we reproduce here in the form (with ~� 2

�
;
�),

Y2
wall � ei~��x�; ~�sol�x� � �2 arctan�e�2jm1j�z�z0��:

(92)

The labeling of the two walls, W� and W�, reflects
whether the phase of Y2 interpolates between the two
(real) vacua via the upper or lower half-plane. The corre-
sponding trajectories are illustrated in Fig. 3.

Having two degenerate walls, we can contemplate the
possibility of a 2-wall-junction in the form illustrated in
Fig. 3. We choose coordinates so that the walls interpolate
from k � 0 at x � �1 to k � 1 at x � �1, and position
the walls at x0 � 0. The spatial worldvolume dimension
of the walls transverse to the junction will be denoted y,
with the junction located at y0 � 0.

Qualitatively, we see that at large jyj, remote from the
junction, the field profiles are essentially those for the
wall trajectories (92), i.e. W� for y positive or negative.
However, the evolution in y must interpolate smoothly
between W� and W�. A (presumably rapid) transition
necessarily occurs near x � 0; y � 0 where the junction
is located. In particular, such a smooth interpolation
means that near y � 0 our x trajectory necessarily runs
through the shaded domain of small Y shown on the right
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of Fig. 3, implying that strong dynamics must become
important.

We can understand this more clearly by studying the
Bogomol’nyi equation which follows either by minimiz-
ing the energy, or equivalently requiring a configuration
preserving one of the four supercharges in the N � 1
algebra. Introducing the complex spatial coordinate z �
x� iy, the equation can be written as [12,37]

g  YY@zY � �
1

2

@  W

@  Y
; (93)

which in the present case reduces to

@ẑY � �  Y �  Y�3; (94)

on introducing a dimensionless coordinate ẑ � jm1jz.
For configurations satisfying the Bogomol’nyi equa-

tion, the junction tension Tj saturates the BPS bound for
the �1=2; 1=2� central charge [36],

Tj � �
1

2

���������������
	5

1m
�1
1

q I
akdxk; ak � i  Y @k

$
Y; k � 1; 2;

(95)

where the integral runs over a large contour in the xy
plane. In the problem at hand it is convenient to choose a
rectangular contour which must lie in the plane of Fig. 3.
Then, on the vertical sides of the contour (i.e. those
parallel to the wall) the field Y is essentially constant;
therefore, ak � 0. Moreover, on the horizontal sides of the
contour (i.e. those perpendicular to the wall) only the
phase of Y changes, and so
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ak � �@k ~�; (96)

where the phase ~�was defined in Eq. (92). We do not need
to know precisely how ~� depends on x since the contour
integral can be done directly,I

akdxk � �&~�; with &~� � 2
; (97)

where the numerical result holds for the field configura-
tion depicted in Fig. 3. Thus,

Tj � 


�����������������������	5
1

m1

��������
s

: (98)

This tension is determined [36] by the (real) central
charge in the anticommutator f  Q;Qg as in (89).
However, in contrast to the wall tension, it is not holo-
morphic in parameters, and thus we cannot extrapolate
this result to large m where one recovers pure SYM.

Note that we can interpret (98) as implying that the
thickness of the junction in the y direction is of the same
order as the thickness of the wall itself in the x direction
and is large, "m�1. Because of this fact the presence of
an unknown core in the wall-junction (which is inevitable
since the Y trajectory runs through the strong-coupling
domain) is unimportant numerically since the relevant
scale is 	1. However, this point necessarily means that
the junction cannot fully be described within this effec-
tive theory, and we can ask whether the worldvolume
perspective may help in this regard.

B. Resolving the singularity on the worldvolume

The preceding analysis indicates that the Nf � 1 sys-
tem is rather inadequate for describing the detailed struc-
ture of the junction solution. In particular, the boundary
conditions at infinity in the plane transverse to the axis of
symmetry ensure the following symmetry of the solution,

Y�z� !  Y� z�: (99)

Along with continuity, this implies that the field Y2 must
pass through zero at the core of the junction. Since the
potential diverges at this point, we see that the description
breaks down within the shaded domain sketched at the
right in Fig. 3, and we cannot expect to find a solution
(even numerically) in this region. A similar singularity is
seen to arise, for similar reasons, for analogous 2-wall
junctions for higher N.

It is interesting then to address this question directly
from the worldvolume point of view, by adding an addi-
tional light flavor so that the two component walls arise
from the dynamics of a CP1 sigma model, or more
precisely a massive sigma model where the mass term is
identified with j
&mj=2 as discussed in the previous
section. This theory possesses 1=2-BPS kink solitons,
and it is natural to identify these kinks as the worldvo-
lume description of 1=4-BPS 2-wall junctions. We will
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now provide evidence for this identification by verifying
that the kink tension reproduces the tension of the junc-
tion, given in (98), in the appropriate limit.

Using complex coordinates for S2, as introduced in
(78), the bosonic sector of the massive CP1 sigma model
becomes

L �
2R ~M

�1� jwj2�2

�
j@�wj2 �

1

4
j
&mj2jwj2

�
; (100)

where R ~M is the Kähler parameter denoting the size of
the reduced moduli space. When j&mj is large relative to
any dynamically generated scale, the theory has classical
vacua at w � 0;1. Using the coordinate relation from
(78), w � tan�0

2 e
i�0 , one finds that classical BPS kink

solutions exist which satisfy (yet) another sine-Gordon
equation [33]

@y�0 � �
1

2

j&mj sin�0; @y�0 � 0: (101)

The corresponding tension of the junction is given by

Tj �
1

2

j&mj�2R ~M� �O�	wv�; (102)

where for the moment we assume &m is large and so
provides the dominant mass scale.

In the present case R ~M was computed in (55), and we
obtain

Tj � 

��������jm1j � jm2j���������������

jm1m2j
p ��������	2

2: (103)

A simple check on this result follows on integrating out
one of the flavors. On sending m2 !1, we must keep
	5

1 � m2	
4
2 fixed, so that

Tj � 

��������jm1j � jm2j���������������

jm1m2j
p ��������

���������
	5

1

jm2j

s
!

m2!1


���������
	5

1

jm1j

s
; (104)

which agrees precisely with the result obtained earlier in
Eq. (98) from a direct analysis of the 1-flavor model
[despite being derived in the small &m regime]. It is
worthy of note that the earlier determination that the
worldvolume real mass perturbation was indeed a real
parameter also finds a nice consistency check in this
expression. The resulting junction tension depends non-
holomorphically onm1 as one expects from the bulk point
of view.

Examining (103) we observe that as the mass splitting
is reduced we become sensitive to quantum effects on the
worldvolume, and indeed this is to be expected as the
bulk theory is also strongly coupled for m1 "m2. In this
regime, the junction configuration is still described by a
CP1 kink, and we conclude that the solution will be
nonsingular whenever the worldvolume IR dynamics is
sufficient to generate a mass gap. For example, it is
sufficient to compactify one of the spatial dimensions
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on an S1 of circumference L. The effective 1� 1D dy-
namics then generates a dynamical scale of the form

	wv � � exp
�
�

2


g2���

�
; g2��� �

1

R ~ML
; (105)

and it is this parameter which enters the �1=2; 1=2� central
charge and sets the tension, or ‘‘effective mass’’, of the
junction, reduced now to a localized soliton. This deter-
mines a contribution to Tj which is necessarily indepen-
dent of the contribution from the walls. Unfortunately,
since the relevance of such a worldvolume scale only
becomes apparent on entering the strong-coupling regime
when m1 "m2 it is difficult to make any concrete iden-
tification with bulk 3� 1D parameters.8 Nonetheless, this
scale does have a direct physical interpretation in 3� 1D
as the intrinsic junction tension.

The enhancement of worldvolume supersymmetry for
the reduced wall moduli space also has important con-
sequences for this identification of 1=4-BPS bulk junc-
tions with 1=2-BPS worldvolume kinks. In particular,
while the junction preserves only one of the bulk super-
charges, the kink preserves in addition one of the super-
numerary charges present on the worldvolume. Moreover,
since the junction not only preserves two worldvolume
supercharges, but also breaks two, it necessarily exhibits
two fermionic zero modes. Recalling the discussion at the
start of Sec. IV, we see that this is not the minimal chiral
content that one would anticipate based on the breaking of
bulk supersymmetry. In actual fact, the kink solutions
also have two bosonic moduli, the center-of mass position
and the phase � � �0 as is apparent from (101). Thus the
moduli space is two-dimensional

M kink � R� ~M1; (106)

where the reduced moduli space is ~M1 � S1. Note that
only one of these bosonic moduli— the translational
mode —would have been anticipated from a consideration
of the bulk kinematics. We see that the bosonic and
fermionic moduli form two (0,1) chiral multiplets and
two bosonic singlets. On the worldvolume, this structure
is enforced by the broken supersymmetry. However, from
the bulk point of view the second (0,1) chiral multiplet
and singlet are not required by supersymmetry consider-
ations, but presumably correspond to a Goldstone multi-
plet arising through the breaking of flavor symmetry, as is
the case for the wall itself.

In this context, the N � 2 worldvolume SUSY re-
solves an apparent paradox that arises when one tries to
verify that these junction solutions are BPS saturated at
the quantum level. In particular, were the worldvolume to
possess only N � 1 SUSY, putative BPS junctions would
8In contrast, an identification of the quantum scale is possible
within the analogous CPN�1 worldsheet dynamics of ‘‘non-
Abelian’’ vortices in the N � 2 Higgs phase [38].
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have to be realized as one-component multiplets. An
index to count such multiplets was introduced in [23],
which is formally expressed as

�LSV �
1

2Z
fTrQbrokeng

2; (107)

in terms of the broken supercharge. An observation of
[23] which is particularly relevant here is that the index
necessarily vanishes when the fermion parity ��1�F is
well-defined. This indicates that the multiplet is generally
reducible (containing two states) and can lift from the
BPS bound. In the present case, as noted above, the kinks
have an even number of bosonic, and consequently fer-
mionic, moduli. On quantization, the latter furnish a
representation of the Clifford algebra, in this case �i �
+1; +2, from which we can construct �5 � +3 which
represents ��1�F. Thus one would necessarily conclude
that no short N � 1 multiplets are allowed and there
would be no reason to expect that these junctions should
saturate the 1=4-BPS bound in 3� 1D. This would be
rather puzzling, and indeed as we have discussed this
problem is resolved due to the enhanced SUSY on the
reduced moduli space so that the junctions lie in BPS
multiplets of N � 2 SUSY, and are instead counted by
the CFIV index on the worldvolume.

C. Extensions for SU(N)

An immediate technical advantage of the realization of
junctions as BPS kinks on the wall worldvolume, is that
we can utilize our knowledge of these configurations for
arbitraryN to infer analogous results for junctions, which
are in fact rather difficult to obtain directly. Thus we now
identify 1=4-BPS 2-wall junctions in the SU(N) theory
with Nf � N with kinks in the worldvolume CPN�1

sigma model deformed by the relevant real mass terms.
We will limit our remarks here to two issues, namely, the
multiplicity of 2-wall junctions, and their tension.

In order to make this discussion concrete we must again
resort to compactifying the theory on a circle to ensure
that the low energy effective theory on the wall worldvo-
lume is 1� 1-dimensional and develops a mass gap. We
can then vary the quark masses across the range where the
dynamical scale 	wv becomes important and, for ex-
ample, sit in the strong-coupling region where &m!
	wv. Note that whether or not this restriction changes
the physical conclusion is tied to the question of whether
entering the strong-coupling domain in the bulk effec-
tively induces a mass gap within the (decompactified)
worldvolume theory.

Because of N � 2 SUSY, the junction multiplicity is
formally given by the CFIV index as noted above.
Focusing just on minimal walls for arbitrary N, a generic
intersection between two of the N possible walls, will
connect walls differing by p units of phase —we will
refer to this as a p-junction. The number of p-junctions is
-16
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formally (on compactification on S1, and taking the limit
j&mj ! 0)

�CFIV �
N
p

� �
: (108)

In practice, as noted above, the result can be somewhat
different in the limit j&mj � 	wv, which may in fact be
the only accessible regime in 2� 1D. In particular, in this
regime in 1� 1D one can turn on an arbitrary integer
‘‘dyonic’’ charge [33], due to a coupling to the corre-
sponding U(1) current in the superalgebra [40], although
this is also reflected in a change in the mass. Only a
certain number of these states survive (as above) in the
limit j&mj ! 0, due to the presence of marginal stability
curves [33].

Turning to the tension, in the hierarchical regime
j&mj � 	wv, the result is a natural generalization of
(102) determined by the various real mass terms. More
interesting perhaps is that, within the compactified re-
gime with j&mj ! 	wv, the result translated directly
from that for CPN�1 kinks is

Tp � 	wv sin
2
p
N

: (109)

Although this is a rather familiar formula in the context
of wall-like solitons, it takes on an interesting new in-
terpretation here as the junction is a stringlike source,
albeit wrapped on a small circle in the present construc-
tion. Since this result is naively protected by the enhanced
N � 2 worldvolume SUSY,9 we see that the wall junc-
tions actually realize the ‘‘sine-formula’’ for the ratio of
‘‘string’’ tensions for differing values of p first observed
for strings in softly broken N � 2 SYM by Douglas and
Shenker [41].10

This structure is not expected to apply to generic
p-strings in confining vacua of N � 1 SYM, since these
states are non-BPS, but here we find a situation where the
sine-formula appears to be exact, due to the enhanced
SUSY on the worldvolume. However, we should reiterate
that this discussion has been framed within a specific
scenario. If we decompactify the extra spatial dimension,
then to retain control over the vacuum structure, one
needs to reintroduce a hierarchy for the quark masses.
The kink spectrum, and also the tension, then changes
considerably on moving outside a ‘‘curve of marginal
stability’’, and many more states are present classified
by U(1) charges associated with the residual Abelian
flavor symmetries in the hierarchical case. After decom-
9This statement requires some caution as reference to
Eq. (104) indicates that, due to the embedding, the dependence
of the tension on the mass scale in the hierarchical limit is not
holomorphic. This is in accord with expectations for the junc-
tion charge in the bulk.

10A heuristic model relating the wall tension and the string
tension (109) was discussed recently in [42].

095003
pactification, if we try to remove the hierarchy the system
reenters a strong-coupling regime that at present appears
intractable.

V. CONCLUDING REMARKS

In this paper we have presented a detailed exploration
of the worldvolume moduli space dynamics of 1=2-BPS
domain walls in N � 1 SQCD with gauge group SU(2)
and Nf � 2 flavors. We have also discussed how novel
1=4-BPS 2-wall junctions may be realized as kinks
within the worldvolume theory. We concentrated on the
SU(2) example where much of the analysis could be
performed explicitly, but we anticipate that most of the
conclusions should extend to the generic SU(N) case with
Nf � N flavors. In particular, the appearance of an en-
hanced N � 2 worldvolume supersymmetry on the re-
duced moduli space is essentially guaranteed by the
corresponding construction as a Kähler quotient. In this
concluding section, we will make a couple of more specu-
lative remarks on localized worldvolume solitons which
may (or may not) find a bulk interpretation.

The N � 2 algebra in 2� 1D includes, in addition to
a tensorial central charge for the 1� 1D kink which we
have interpreted as a 2-wall-junction, a Poincaré invari-
ant charge supported by localized lump solitons. When
the worldvolume theory is naturally embedded in the
relevant linear sigma model, lumps are realized as semi-
local vortices. Consequently, with reference to the inter-
pretation of such walls as D-branes for SYM strings [43],
it is tantalizing to speculate that these configurations may
have a relation to the endpoints of SQCD strings.11 Note,
in particular, that at energy scales below the UVcutoff on
the wall, of order 1=�, such strings are stable to quark
pair production. The result �k for the wall multiplicity is
also consistent with the interpretation that 1-walls lie in
the fundamental representation of SU(N), or more gen-
erally admit an action of the corresponding Weyl group,
and form antisymmetric bound states. Moreover,
although these configurations are BPS on the worldvo-
lume, they would indeed be non-BPS within the bulk.

In spite of these intriguing hints it seems difficult,
for several reasons, to make a precise identification of
this type. For example, lumps carry integer charges

2�CP

1� � Z, rather than charges under ZN that one
might associate with the center-of the gauge group. A
contraction of the charge lattice, Z ! ZN , might occur
due to physics occurring above the worldvolume UV cut-
off, but there is another more significant roadblock in the
way of a quantitative study of this question. This is the
fact that in the hierarchical mass regime where the theory
is tractable there is a potential on the moduli space. In the
11Note that worldvolume vortices on BPS walls were shown to
represent string endpoints in gauge theories with eight super-
charges [44] (see also [45]).
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presence of such a deformation, lumps are no longer
stable, via Derrick’s theorem, unless one turns on addi-
tional U(1) charges. Such time-dependent Q-lumps are
known, forN > 2, to have a ringlike structure and locally
carry the junction charge [46]. Thus these configurations
appear as domain wall bubbles on the worldvolume. It is
far from clear what may happen to these configurations as
one sends &m! 0 and returns to strong-coupling, and
this hinders a direct bulk interpretation.

In a similar regard, we can also speculate about con-
figurations which one might dub ‘‘junctions of junctions’’.
In particular, the counting argument for junctions de-
scribed above suggests that, even in the minimal SU(2)
case, there are two inequivalent junctions. One may then
anticipate that a further intersection, now within the
worldvolume, would be possible —a 1=4-BPS state on
the worldvolume (since it sources both the kink and
lump central charges), but again non-BPS in the bulk.
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APPENDIX A: ON CENTRAL CHARGES IN
D � 2; 3 AND 4

In this Appendix we will briefly discuss the central
charge (CC) content of the superalgebras in D � 2; 3 and
4 relevant to this paper, and their inter-relations.

One may recall that some time after the minimal four
dimensional superalgebra was first written down by
Golfand and Likhtman [47], central charges were intro-
duced algebraically as Poincaré invariant, and thus sca-
lar, elements of the superalgebra commuting with all the
other generators [48,49] (see also [50]). Their dynamical
role was subsequently made apparent by Witten and Olive
[1], who showed that such charges are supported by the
topological charges of solitons. While it was appreciated
for some time that not all central charges are Lorentz
scalars (see e.g. [51]), the dynamical role of these addi-
tional tensorial charges was not fully understood until
somewhat later, when they were shown to be nonzero in
the presence of extended objects (p-branes) within super-
gravity [52] (see also [53]). Their occurrence in N � 1
SYM in D � 4 (via a quantum anomaly) was first ob-
served in [9].

We will concentrate on the algebras in D � 2; 3 and 4,
for which the analyses in [54] for D � 2, and [39] (see
also [36]) for D � 3 and 4, are particularly relevant.
While most of what follows comprises review material
collected here for completeness, we will extend the dis-
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cussion in [39] of vectorial central charges, namely, those
with the Lorentz structure of P�.

1. Minimal SUSY

Limiting ourselves to two, three and four dimensions
we observe that the minimal number of supercharges is 2,
3, and 4, respectively. Two-dimensional theories with a
single supercharge, although algebraically possible, re-
quire the loss of F and ��1�F. Therefore, if one wishes to
keep the distinction between ‘‘bosons’’ and ‘‘fermions’’,
the minimal number of supercharges in D � 2 is two.

Working in a real representation with �Q supercharges,
it is clear that, generally speaking, the maximal possible
number of CC’s is determined by the dimension of the
symmetric matrix fQi;Qjg of size �Q � �Q, namely,

�CC �
�Q��Q � 1�

2
: (A1)

In fact, D anticommutators have the Lorentz structure of
the energy-momentum operator P�. Therefore, up to D
central charges could be absorbed in P�. However, in
particular situations this number can be smaller, since
although algebraically the corresponding CC’s have the
same structure as P�, they are dynamically distinguish-
able. The point is that P� is uniquely defined through the
conserved and symmetric energy-momentum tensor of
the theory.

The total set of CC’s can be arranged by classification
with respect to their Lorentz structure. Below we will
present this classification for minimal supersymmetry in
D � 2; 3 and 4. We then consider the extended N � 2
supersymmetry algebras in D � 2 and D � 3 obtained
via dimensional reduction from D � 4, and consider the
analogous decomposition in terms of Lorentz and
R-symmetry representations.

A. D � 2

Consider two-dimensional theories with two super-
charges. From the discussion above, on purely algebraic
grounds, three CC’s are possible:

fQ$;Q6g � 2����0�$6�P� � Z�� � 2i��5�$6Z; (A2)

one Lorentz-scalar Z and a two-component vector Z�.
The latter case would require the existence of a vector
order parameter taking distinct values in different vacua.
This will break Lorentz invariance and supersymmetry
of the vacuum state. Limiting ourselves to supersymmet-
ric vacua we conclude that only one (real) Lorentz-scalar
central charge is possible. This central charge is relevant
to kinks in N � 1 theories.

B. D � 3

The central charge allowed in this case is a Lorentz-
vector Z�, i.e.
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fQ$;Q6g � 2����0�$6�P� � Z��; (A3)

which we should arrange to be orthogonal to P�. By an
appropriate choice of reference frame it can always be
cast in the form (0,0,1). In fact, this is the central charge
of the previous section elevated by one dimension. It is
associated with a domain wall (or string) oriented along
the second axis.

C. D � 4

Maximally one can have ten CC’s which are decom-
posed into Lorentz representations as �0; 1� � �1; 0� �
�1=2; 1=2�:

fQ$;  Q _$g � 2����$ _$�P� � Z��;

fQ$;Q6g � �4
���$6  Z
���;

f  Q _$;  Q _6g � �
 4��� _$ _6Z
���;

(A4)

where �4���$6 � �+
��$ _$�  +

�� _$
6 is a chiral version of +��

(see e.g. [55]). The antisymmetric tensors Z
��� and  Z
���
are associated with domain walls, and reduce to a com-
plex number and a spatial vector orthogonal to the do-
main wall. The �1=2; 1=2� CC Z� is a Lorentz-vector
orthogonal to P�. It is associated with strings (flux
tubes), and reduces to one real number and a three-
dimensional unit spatial vector parallel to the string.

2. Extended SUSY

We will limit our attention here to exploring the re-
duction of the minimal SUSYalgebra in D � 4 to D � 2
and 3, namely, the N � 2 SUSYalgebra in those dimen-
sions. As should be clear from the discussion above, the
maximal number of CC’s is of course the same, and the
only distinction we must make is to provide a decompo-
sition into both Lorentz and R-symmetry irreps.

A. N � 2 in D � 3

The superalgebra can be decomposed into Lorentz and
R-symmetry tensorial structures as follows:

fQi
$;Q

j
6g � 2����0�$6
�P� � Z���ij � Z�ij�� �

�2��0�$6Z
ij�; (A5)
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where �0 is the charge conjugation matrix. The maximal
set of ten CC’s enter as a triplet of spacetime vectors Zij�—
which we decompose into an R-symmetry singlet trace
term, denoted Z�, and a trace-free symmetric combina-

tion Z�ij�� —and a singlet Z
ij�. The singlet CC is associated
with vortices (or lumps), and corresponds to the reduction
of the �1=2; 1=2� charge or the 4th component of the
momentum vector in D � 4. The R-symmetry singlet
Z� is algebraically indistinguishable from the momentum
and is equivalent to the vectorial charge in the N � 1

algebra. The traceless symmetric combination Z�ij�� can be
reduced to a complex number and vectors specifying the
orientation of a codimension one source. We see that these
are the direct reduction of the (0,1) and (1,0) wall charges
in D � 4.

B. N � 2 in D � 2

Lorentz invariance now provides a much weaker con-
straint, and one can in principle consider different �p; q�
superalgebras with p � q. We will focus here only on the
nonchiral N � �2; 2� case corresponding to dimensional
reduction of the N � 1D � 4 algebra. The tensorial
decomposition is as in (A5), but with the decomposition
of D � 3 spacetime vectors into D � 2 vectors and a
singlet,
fQi
$;Q

j
6g � 2����0�$6
�P� � Z���

ij � Z�ij�� �

�2i��5�0�$6��
ijZ� Z�ij�� � 2��0�$6Z


ij�;

(A6)
We discard all vectorial charges Zij� in this case for the
same reasons as noted above in the N � 1 case, namely,
they would imply SUSY breaking in the vacuum. This
leaves two singlets Z�ij�, which are the reduction of the
domain wall charges in D � 4 and correspond to topo-
logical kink charges, and two further singlets Z and Z
ij�,
arising via reduction from P2 and the vortex charge in
D � 3. The latter charges also arise for kinks in the
presence of twisted mass terms [54].
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