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We extend the construction of lattice chiral gauge theories based on non-perturbative gauge fixing to
the non-Abelian case. A key ingredient is that fermion doublers can be avoided at a novel type of
critical point which is only accessible through gauge fixing, as we have shown before in the Abelian
case. The new ingredient allowing us to deal with the non-Abelian case as well is the use of equivariant
gauge fixing, which handles Gribov copies correctly, and avoids Neuberger’s no-go theorem. We use this
method in order to gauge fix the non-Abelian group (which we will take to be SU(N)) down to its
maximal Abelian subgroup. Obtaining an undoubled, chiral fermion content requires us to gauge-fix
also the remaining Abelian gauge symmetry. This modifies the equivariant Becchi-Rouet-Stora-Tyutin
(BRST) identities, but their use in proving unitarity remains intact, as we show in perturbation theory.
On the lattice, equivariant BRST symmetry as well as the Abelian gauge invariance are broken, and a
judiciously chosen irrelevant term must be added to the lattice gauge-fixing action in order to have
access to the desired critical point in the phase diagram. We argue that gauge invariance is restored in
the continuum limit by adjusting a finite number of counter terms. We emphasize that weak-coupling
perturbation theory applies at the critical point which defines the continuum limit of our lattice chiral

gauge theory.
DOI: 10.1103/PhysRevD.70.094506

L. INTRODUCTION

Attempts to develop a non-perturbative, lattice defini-
tion of chiral gauge theories have a long history. To date,
no lattice definition of a non-Abelian chiral gauge theory
which maintains exact gauge invariance is known. (For
Abelian chiral gauge theories, see Ref. [1].) The funda-
mental difficulty is that, even if the whole collection of
fermion fields is anomaly free, each lattice fermion field
needs to contribute its ‘‘share” of the anomaly [2], and the
regulated theory therefore tends to break the gauge in-
variance by irrelevant terms.

Because of those—classically, but not quantum-
mechanically—irrelevant couplings, the longitudinal
gauge degrees of freedom are not decoupled from the
fermions. Extensive studies that go back to the eighties
and early nineties have taught an important lesson: The
uncontrolled non-perturbative dynamics of these unphysi-
cal degrees of freedom tend to spoil the desired contin-
uum limit through the re-generation of doublers. For
reviews, see Refs. [3,4].

A remedy is to regain control over the longitudinal
dynamics by non-perturbative gauge fixing. This idea was
first proposed in Ref. [5]. While the insight of Ref. [5]
is an important one, the proposal itself was incomplete.
In order that, indeed, a critical point will exist which
describes the gauge-fixed target continuum theory non-
perturbatively, non-trivial additional elements are
needed, as first introduced in Refs. [6,7]. In subsequent
work, convincing evidence was provided that fermion
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doublers are avoided, and that this program can be car-
ried out successfully in Abelian lattice chiral gauge theo-
ries [8-14]."

In this paper, we describe in detail a proposal for the
construction of SU(N) chiral gauge theories on the lattice.
To make it clear at the outset what our proposal does and
does not accomplish, we begin with a summary of the
main features and open questions of our construction.

Given an asymptotically free SU(N) chiral gauge the-
ory,” our method gives a prescription for how to discretize
this theory in a way that satisfies the following properties:

(i) The lattice theory is local.

(i) A straightforward, systematic weak-coupling ex-
pansion is valid near the critical point at which
the target continuum theory is defined [6,7]. Near
this critical point the lattice theory is manifestly
renormalizable by power counting.

(ii1) The fermions of the lattice theory are undoubled.
In other words, the chiral fermions of the formal
target continuum theory remain chiral on the
lattice [8—10].

(iv) The fermion content has to be anomaly free in the
usual sense. The theory accounts correctly for
fermion-number violating processes [11].

(v) In order to construct the lattice theory, the target
continuum theory is gauge-fixed first, before it is
transcribed to the lattice, in such a way as to have

'This statement ignores triviality, the latter being a property
of Abelian gauge theories which is unrelated to the chirality of
the fermion spectrum.

*We believe that the extension to other groups is a purely
technical matter.
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access to a complete set of Slavnov-Taylor identi-
ties. This is a central element of our construction,
since our theory is not gauge invariant on the
lattice, and both Slavnov-Taylor identities as
well as power counting are needed in order to
obtain a gauge-invariant continuum limit with
the adjustment of a finite number of counter terms.
In this sense, our proposal follows the philosophy
of Ref. [5].

(vi) In order to gauge fix the non-Abelian “part” of
the gauge symmetry, we employ a gauge-fixing
method which may be regarded as a variant of the
maximal-Abelian gauge, and is known as equi-
variant gauge fixing [15]. This allows us, as ex-
plained in detail in Sec. IV, to circumvent the
Gribov problem in a rigorous manner. In particu-
lar, it allows us to put the well-known ‘‘Faddeev-
Popov trick™ on a rigorous footing, without run-
ning into the impasse of Neuberger’s theorem [16].

In a non-Abelian theory without chiral fermions, equi-
variant gauge fixing can be implemented non-
perturbatively, while maintaining an exact BRST-type
invariance. With chiral fermions, gauge invariance is
lost, since in order to avoid species doubling we add a
Wilson term [17], which is not invariant under chiral
symmetry. The gauge fixing is a key ingredient of our
method: it maintains power-counting renormalizability
in the absence of gauge invariance; it makes it possible to
avoid doublers being generated dynamically; and it al-
lows us to systematize the counter terms which need to be
added to obtain a gauge-invariant continuum limit where
the unphysical degrees of freedom decouple.

Of course, it is well known that for an arbitrary chiral
gauge theory obstructions exist to this program. In the
context of global (classical) chiral symmetry, the triangle
anomaly appears to be a fundamental reason for the
species-doubling phenomenon [2]. In the context of local
chiral invariance, if the fermion spectrum is not gauge-
anomaly free, it will be impossible to recover gauge
invariance (and, hence, unitarity) in the continuum limit
by tuning counter terms. Conversely, if the fermion spec-
trum does satisfy the usual anomaly-cancellation condi-
tion, one can recover gauge invariance and unitarity to
all orders in perturbation theory in the continuum
limit [18,19].

Other obstructions may exist which prevent us from
constructing the desired continuum limit. A known ex-
ample is the Witten anomaly [20,21]. Our construction
does not answer the question of whether additional, as yet
unknown, non-perturbative obstructions exist, and if so,
how these depend on the gauge group and the fermion
content.® If a certain non-Abelian chiral gauge theory
does exist, our construction provides a lattice formulation

3 .. . . .
We return to this issue in the conclusion section.
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of this theory in which there is strong evidence supporting
the existence of a novel type of critical point yielding the
correct continuum limit. All the known pitfalls are
avoided in our construction.

At finite, non-zero lattice spacing our lattice definition
of a chiral gauge theory is not unitary, because of the
presence of unphysical states in the extended Hilbert
space of a gauge-fixed gauge theory and the lack of exact
BRST invariance on the lattice.* The existence of a sys-
tematic weak-coupling expansion in the gauge coupling
makes it possible to establish unitarity to all orders in
perturbation theory in the continuum limit. Non-pertur-
bative unitarity is an issue which will need to be inves-
tigated using non-perturbative techniques.

To summarize, our construction does not prove the
(non-perturbative) existence of any unitary chiral gauge
theories. However, if a certain chiral gauge theory does
exist, our discretization of it should be a valid discretiza-
tion. Therefore our construction makes it possible to
systematically investigate fundamental questions per-
taining to asymptotically-free chiral gauge theories, us-
ing non-perturbative techniques.

The underlying strategy is that, keeping in mind that
gauge invariance is broken explicitly on the lattice, one
constructs a lattice theory containing a suitable gauge-
fixing action that admits a systematic perturbative ex-
pansion in the coupling constant near the critical point
where the continuum limit is taken. The existence of a
systematic perturbative expansion has the following im-
plication: The elementary degrees of freedom of the
formal target (chiral) gauge theory, which may, by con-
struction, be identified from the classical continuum limit
of the lattice action, are indeed the elementary degrees of
freedom obtained in the continuum limit of the quantum
theory. In particular, no doublers are generated, and a
chiral fermion spectrum can be maintained non-
perturbatively. The renormalized interactions also agree
with those of the target continuum theory, and all un-
physical excitations decouple (at least) to all orders in
perturbation theory, after adding the appropriate counter
terms (as determined by the Slavnov-Taylor identities).
Standard power counting can be used in order to organize
the counter terms, which implies that there is a finite
number of them.

The construction of a theory with a critical point as
alluded to above is non-trivial. The desired critical point
exists thanks to the fact that the gauge-fixing action on
the lattice can be chosen such that 1) its unique absolute
minimum is the configuration with all link variables
equal to the identity matrix [7]; 2) the lattice theory is
manifestly renormalizable by power counting (despite the
fact that the regulated theory is not gauge invariant),

*For earlier work on unitarity in lattice chiral gauge theories,
see Ref. [22].
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because it contains kinetic terms for all four polariza-
tions [5]. As a result, the functional integral is dominated
by a single saddle point when the bare coupling g, is
sufficiently small. This saddle point is controlled by a
straightforward weak-coupling expansion. As usual, the
validity of lattice perturbation theory implies the exis-
tence of a scaling region. In the case of an asymptotically
free theory, moreover, a physical infra-red scale will be
dynamically generated in the continuum limit gy — O.
The critical point itself involves this limit together with
appropriate adjustment of the counter terms.

There are many ingredients to the construction of a
theory with the desired critical point, and most of these
have already been formulated and investigated in the past
in the context of Abelian chiral gauge theory. The absence
of doublers has been established in rather much detail [8—
10,12]. The global structure of the phase diagram was
studied in Refs. [13,14],5 which also contain further tests
of the validity of perturbation theory near the critical
point, and of the agreement between the light degrees of
freedom of the lattice theory and of the target continuum
theory. In this paper we will therefore only give a brief
account of this program (see Sec. VI), referring to earlier
work for details. In fact, for Abelian chiral gauge theo-
ries, no ghosts are needed if a linear gauge is used, and,
using an appropriate lattice transcription of the Lorenz
gauge, the construction of Abelian lattice chiral gauge
theories was essentially completed before.

The remaining hurdle for non-Abelian theories has
little to do with the fermions, and can first be addressed
in the setting of pure Yang-Mills theories. The issue is the
existence of Gribov copies [24], and the problems which
arise if one tries to construct a path integral which sums
over copies with a correct weight. There have been vary-
ing suggestions on how to tackle this problem. One idea is
to sum over copies with a measure that includes the
Faddeev-Popov determinant [25]. Unfortunately, it was
shown in a rigorous setting that this does not work:
Neuberger’s theorem [16] asserts that the partition func-
tion of such a theory vanishes identically. Another pro-
posal with a manifestly positive measure averages over
gauge orbits through a ““quenched” scalar field [26], but in
this case we lack a symmetry principle such as BRST in
order to recover the target continuum theory from the
lattice [27].

Here, we develop the idea of Ref. [15], which can be
used to fix the gauge symmetry down to the maximal
Abelian subgroup, evading Neuberger’s theorem while
maintaining an “equivariant” BRST symmetry. The re-
maining Abelian gauge symmetry can then be fixed with-
out the need to introduce ghosts, much in the same way as
in our earlier work on Abelian gauge fixing. (This again
avoids Neuberger’s theorem.) The main content of this

5See also Ref. [23].
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paper then consists of two parts: first we explain how to
construct the equivariantly gauge-fixed lattice Yang-
Mills theory; and second, we explain how this construc-
tion may be adapted to accommodate chiral fermions on
the lattice. The main goal in the first part (Secs. I, III, TV,
and V) is to show that the equivariantly gauge-fixed
lattice theory is the same as the non-gauge-fixed theory.
The central issue in the second part (Sec. VI) is how to
gauge fix the remaining Abelian gauge symmetry on the
lattice, and how to obtain the target continuum theory
after adding chiral fermions, when the BRST symmetries
of the target theory are broken in the regulated theory.

This paper is organized as follows. In Sec. II, we
discuss the construction of an equivariantly gauge-fixed
Yang-Mills theory in the continuum, extending the re-
sults of Ref. [15], and establishing an extended BRST—
anti-BRST (equivariant) algebra following Ref. [28]; we
do the same on the lattice in Sec. IIl. We concentrate on
the case of interest for G = SU(N) lattice chiral gauge
theories, namely, when the equivariant gauge fixing
leaves behind the local invariance under the maximal
Abelian subgroup H = U(1)"~1. We construct a complete
path integral with a local Boltzmann weight which de-
fines the equivariantly gauge-fixed lattice theory. In addi-
tion to the gauge field, it contains ghost fields taking
values in the coset space G/H. In Sec. IV, we review
Neuberger’s theorem, and prove rigorously that the equiv-
ariantly gauge-fixed lattice theory is the same as the
lattice theory without any gauge fixing, thus evading
the theorem. By “‘the same” we mean that, at finite lattice
spacing, correlation functions of gauge-invariant opera-
tors are the same in both theories.

Of course, in order to develop (continuum or lattice)
perturbation theory for an equivariantly gauge-fixed
Yang-Mills theory with gauge group G, a ‘““second-stage”
gauge fixing of the remaining subgroup H C G will be
required. Since a complete gauge fixing in a renormaliz-
able gauge is needed for our goal, our fully gauge-fixed
lattice theory also contains a Lorenz gauge-fixing term
for the remaining Abelian subgroup. Here several new
issues arise. In Sec. V, as a preparatory step, we address
them in the context of continuum perturbation theory,
again restricting ourselves to the case G = SU(N), H =
U(1)¥~'. We introduce a yet larger BRST-type algebra
involving a new, Abelian H-ghost sector. Since we are
now (linearly) gauge fixing an Abelian symmetry, the
new ghosts are free fields. The equivariant BRST identi-
ties of the ‘““first-stage’ gauge fixing are modified, but we
show that the complete algebraic setup remains suffi-
ciently potent to guarantee unitarity (at least to all orders
in perturbation theory). We develop the relevant general-
ized BRST identities, and, employing these, we work out
a detailed example of how unitarity is maintained in
perturbation theory.

In Sec. VI we finally turn to the construction of non-
Abelian lattice chiral gauge theories. The complete set of
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Slavnov-Taylor identities needed to establish gauge in-
variance and unitarity of renormalized perturbation the-
ory can evidently be re-derived while omitting the (free!)
Abelian ghost terms from the continuum action. The
target chiral gauge theory that we latticize is the fully
gauge-fixed continuum theory without the free Abelian-
ghost terms. The definition of the lattice theory includes a
lattice version of the pure gauge action (for instance the
plaquette action), a chiral-fermion action (for instance
that of Sec. VI), the equivariant gauge-fixing action of
Sec. III, a Lorenz gauge-fixing term for the remaining
Abelian subgroup, an irrelevant term needed for the
uniqueness of the classical vacuum, and a counter-term
action. We review the mechanism that guarantees the
existence of the appropriate critical point, which remains
essentially the same as in our previous work on Abelian
lattice chiral gauge theories. Since the lattice theory is not
gauge invariant, we construct a complete set of counter
terms.

We use the concluding section for additional remarks
and comments. In particular, we compare our results with
those of Refs. [29,30] (which describe an attempt at an
exactly gauge-invariant lattice formulation of non-
Abelian chiral gauge theories), and discuss future pros-
pects. A number of technical points are relegated to the
four Appendices.

IL. EQUIVARIANTLY GAUGE-FIXED YANG-
MILLS THEORIES—CONTINUUM

In this section we will describe the equivariant gauge
fixing of a Yang-Mills theory.® Equivariant gauge fixing
fixes only part of the gauge group G, leaving a subgroup
H C G unfixed. The main result of this section is a con-
tinuum action invariant under a set of BRST-type trans-
formations satisfying an equivariant, extended BRST—
anti-BRST algebra. (This action is also invariant under a
few related symmetries.) Unless otherwise stated, the
results of this section are valid for any simple, compact
G and any (in general, not simple) subgroup H C G. We
work in euclidean space. The Yang-Mills Lagrangian with
gauge coupling g is

1
Lyy = ngtf(Ffw),
D,(V)=2d,+iV,, vV, =V,T,
with 7¢ the hermitian generators of G normalized such
that tr(T°T") = 16,,,, and structure constants f,,. de-
fined by [T% T*] = if,,.T¢. The structure constants are
fully anti-symmetric in all three indices.

We will now divide the generators into a subalgebra T¢
generating the subgroup H, and the rest, T, spanning the
coset space G/H. Correspondingly, we write the vector
field V as

iF,, =[D,(V),D,(V)]
@2.1)

SFor the case G = SU(2), H = U(1), see Ref. [15].
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V, = VeT® = ALT + WeTe, (2.2)

We will use indices i, j, , . . . to indicate H generators, and
a, B, 7, ... for generators in G/H. We note that

fiaj = —faij = ~fija =0,

because the product of two elements of H should again be
in H. We choose a gauge-fixing condition which is cova-
riant under H,

FV) =D, (AW, =0d,W, +iA, W,]

(2.3)

(2.4)

where D, (A) is a covariant derivative with respect to H.
Denoting the algebras of the groups G and H by G and
H, we introduce G/ -valued ghost fields

C=cCeT", C = C°T¢, (2.5)

along with a coset-valued auxiliary field b = b*T¢, and
demand invariance of the gauge-fixed theory under equi-
variant BRST (eBRST) transformations

sA, = i[W,, Cly,

(i 2.6
SC = (_lcz)g/g_[ = _ZC2 + X, SC = _lb, ( )
sb=1[X,C],
in which
X = (iC?) 4r = 2iT/ue(C?T). 2.7)

The transformation rule for C is similar to the standard
BRST case, but for the extra term X which projects sC
back onto the coset space. This modification affects the
nilpotency of eBRST transformations. In fact, using that
sX =0,

s2C = —i[X, C] = 8xC. (2.8)

This does not vanish, but equals a gauge transformation
(denoted by &8,) in H with parameter w = X € H.
Requiring s>C = 8xC determines the eBRST transfor-
mation rule for b, after which one verifies that s*b =
O6xb as well. The second eBRST variation of any physical
field follows from the fact that the standard BRST trans-
formation is nilpotent, so that only the X part in sC leads
to a non-vanishing result,’

SZAM =D, (A)X = 6xA,, (2.9)
SZWM = —iX,W,] = 6xW,. ’
These are again precisely gauge transformations in H,
proving that s2 = 8y is equivariantly nilpotent.®

Following the standard approach, we would choose as a
gauge-fixing Lagrangian

’For Abelian H, s’A, = 9,X.
81t is easy to see that, for the product of any two fields ®, and
q)z, SZ(CI)ICD2) = (SZ(I)I)CDZ + (I)ISZCDQ.
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Li=s trQCF + iég*Ch), (2.10)

in which ¢ is a parameter. This Lagrangian is invariant
under eBRST transformations, as follows from the fact
that it is invariant under H transformations and from
equivariant nilpotency of s. However, as we will see
next, this is not the most general possible gauge-fixing
Lagrangian.

It is useful to introduce the concept of anti-eBRST
transformations, following Ref. [28]. Denoting anti-
eBRST by &, we have for the gauge fields

5A, = i[W,, Cly,

_ — 2.11

Using this and a partial integration, the first term in
Eq. (2.10) can be written as

s trfQCF) = —s5 tr(W?). (2.12)

It is clear that the ““pre-potential” tr(W?) can be general-
ized to any H-invariant, rotationally invariant dimension-
2 operator with ghost number zero. This allows us to add a
term proportional to tr(CC) and we will choose

L= —s5su(W?+ £g2CO). (2.13)

Obviously, in order to complete the definition of L of» WE
have to specify 5C and 5 C. We will turn to this next.

The pre-potential in Eq. (2.13) is invariant under a
discrete flip symmetry’ on the ghost fields, FC = C,
FC = —C. (We define F® = ® for all physical fields.)
This symmetry will be useful later on, and we will define
5 in the ghost sector so as to have L, be invariant under
this symmetry as well. We thus define 5 in the ghost sector
by applying a flip transformation to Eq. (2.6), ie., by
demanding that sF(field) = Fs(field). In addition to
Eq. (2.11) this gives

5b=—[X, C]

5C = ib,
(2.14)

where we (temporarily) introduced a new field b = Fb,
and in which

X = FX = (iC?) 4y = 2iT'u(C?T)). (2.15)
The field b is not independent if we require that the s, §
algebra closes on H. While this can be worked out on the
gauge fields, it is easier to do it on a matter field ® in the
fundamental representation of G, for which

s® = —iCD, 5P = —iCP. (2.16)
One finds that
{5,5}® = (b + b + {C, C)H)D. 2.17)

This symmetry is related to “ghost hermiticity” of Ref. [28].
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Now setting

Eq. (2.17) becomes an H transformation d3® with pa-
rameter

X = i{C, C}4r = 2iT'u({C, C}T/). (2.19)

We thus end up with the extended eBRST algebra
§2 = 8y, 52 = o5, {s,5} = 63 (2.20)
Note that F{C, C}= —{C C}, so that Fb=b.

Equation (2.18) can also be used to work out §b, using
Eq. (2.14). Finally, we have for all fields that

Fs =5F,  Fs= —sF. 2.21)

The most general eBRST-invariant gauge-fixing
Lagrangian would be any linear combination of L},
and L,,. However, if we insist on flip symmetry, the
only possible choice is L,;, which, in addition to flip
symmetry, eBRST symmetry, and H gauge invariance,
also has anti-eBRST symmetry. We note that if the coset
structure constants f, g, are all equal to zero, there is no
difference between the two cases, because in that case
5tr(CC) = —itr(Ch)."° Our gauge-fixing Lagrangian is
thus

L= —s5 tr(W? + £g%CC) = 55 tr(W? + £g2CC),
(2.22)

where

55 tr(W?) = —2tr(CD,,(A)D,, (4)C)
+2t((W,, Cly[W,,, Clyy)
~2i (CD, (AW, Clg/37)
—=2i e(bD,(AW,),

55 tr(CC) = tr(b?) — tr(b{C, C})

(€ gy 5(C?) g 30)

+t({C, Clg/sr)* — r(X?). (2.23)

This Lagrangian is invariant under flip symmetry. This
can be verified directly from Eq. (2.23), but can also be
seen as follows. From Egs. (2.20) and (2.21), it follows
that F's§ = 5Fs = —5sF = (55 — 83)F, and thus s5 com-
mutes with F on any H-invariant expression. Since the
pre-potential in Eq. (2.22) is H invariant, it follows that
L, is invariant under flip symmetry.

We may integrate out the auxiliary field b to arrive at
the form

In general the second term in Eq. (2.10) cannot be written as
S(anything). An example with f,z, =0 is G = SU(2), H =
U(1) [15].
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1
ég?

+2 tr([W,,, ClyelW,., Clyg) + i tr<(DM(A)E)

Lo (D, (A)W,,)? — 2 u(CD,,(4)D,,(A)C)

X[W,, C]+[W,. f](D#(A)C)>

+ §g2<tr((62)g/}[(C2)G/}[)

+ %tr({a Chg o) — tr(X2)>. 2.24)

Note that the ghosts’ differential operator M, 4, defined
by the part bilinear in C,, and Cp, is self-adjoint and real,
and therefore symmetric. The on-shell eBRST and anti-
eBRST transformation rules for C and C can be derived as
usual from the equation of motion for b. The quartic
ghost interactions are a novel feature, and will play an
important role in Sec. IV below.

In this paper we are mainly interested in the applica-
tion to chiral lattice gauge theories, where we will take
G = SU(N) and H = U(1)""!, the maximal Abelian
subgroup of SU(N). In this special case, even though
the gauge-fixing terms break the original SU(N) gauge
symmetry (even the global group), there is a discrete
subgroup which, in addition to the maximal Abelian
subgroup H, remains a symmetry of the full gauge-fixed
action. We first define this group in the fundamental,
N-dimensional representation. Since now H is Abelian,
we can choose all generators T% of H to be diagonal,'!
while the remaining generators 7% are off-diagonal. They
may be written as

T > TE, k=12 1=A<B=N, (225

where T’g g» k= 1,2, 3, is defined by the requirement that
if we keep only the A-th and B-th row and column, this
matrix reduces to § o with all other entries of T%, being
zero. The “skewed” permutation group Sy is defined as
the subgroup of SU(N) generated by the elements

PfAB) = exp(inTky), k=12 (2.26)
Acting on a vector of length N, this permutes the A-th and
B-th entries, and multiplies them by a factor =1 or *i,
while leaving the other entries unchanged. The discrete
group Sy contains, in particular, the elements 15? AB) which

also belong to H. On gauge fields and ghost-sector fields,

the action of Pf, is defined by
Bk Bk Bk Bk
Vi— P(AB)VM(P(AB))T’ C— P(AB)C(P(AB))T’

(2.27)

"For instance, for SU(2), T' € {o3/2} with o} the Pauli
matrices, and for SUQ3), T' € {A3/2, Ag/2}, with A, the Gell-
Mann matrices.
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and likewise for C and b. It is straightforward to check
thatV, = A, + W, does not transform in an irreducible

representation of Sy, but that A » and W, each transform
separately (and irreducibly). On the generators of H we
have that

. O
(P(AB))leP(AB) =RY T

U (2.28)

with Ri4p) an (N — 1) X (N — 1) orthogonal matrix. Note
that on the T", the group Sy just permutes the A-th and
B-th diagonal elements of each T". R4p) is thus indepen-
dent of k being 1 or 2. The pre-potential in Eq. (2.22)
clearly is invariant under Sy, and thus our equivariantly
gauge-fixed Yang-Mills theory is invariant.

Finally, it turns out that the gauge-fixing action (2.22)
is invariant under an SU(2) group that acts on the ghost
fields C and C. We will refer to this symmetry as
ghost-SU(2)."? The three generators are

o - 6
H = C = H_ = Ca , 229
+ aaca 5CO( ( )
o - 6
;=C,—-C,—. 2.30
3 a5Ca aaca ( )

I15 is the ghost-number charge. These generators satisfy
the same commutation relations as o = %(0'1 *ioy)
and o3. Under ghost-SU(2), the ghost fields transform
as a doublet (C, C).

The action is evidently invariant under the ghost-
number symmetry. Let us establish its invariance under
the extended, ghost-SU(2) symmetry. The invariance of
the terms bilinear in the ghost fields follows, as in the
case of flip symmetry, from the fact that the operator
M, p is symmetric. Turning to the on-shell four-ghost
action, we may rewrite it as

_ 1 1,
(&)1 LY = tr<—C2C2 -;C CP + XX — sz)
= —ltr C*c? —1{6 cP
3 4

+tr<Yx - %)?2) 2.31)
Each trace on the last row is invariant under ghost-SU(2).
We used (anti)cyclicity of the trace of the product of
four ghost fields, from which it follows that tr(C*C?) =
—31u({C,C}?). In the off-shell
auxiliary field transforms under
8b, =18(fupyCpC,).

formalism, the
ghost-SU(2) as

'>This symmetry exists for any G and H. In Ref. [15] it is
referred to as SL(2, R) symmetry.
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III. EQUIVARIANTLY GAUGE-FIXED YANG-
MILLS THEORIES—LATTICE

In this section we show how the continuum theory
constructed in the previous section can be transcribed
to the lattice without any loss of symmetries (except
rotational symmetry). We limit the discussion to G =
SU(N), H= U(1) ! from now on.!* First, the eBRST
and anti-eBRST transformations of the gauge field V,, =
A, + W, can be summarized as

sV, =D,(V)C, sV,=D,V)C, (3.1

where the derivative is covariant with respect to the full
gauge group G, D ,(V)C = 9,C + i[V,, C] (cf. Eq. (2.1)).
The lattice version of these transformation rules is, with
Uy, = expliV, ()],
sU,, = i(Uy,
sU,, =iU,,C,

Cx+,u - Cxe,y,)’

_ 5xe,M)- 3.2)

+u

For the Yang-Mills Lagrangian, Eq. (2.1), we will assume
the usual plaquette action. For the gauge-fixing action, we
choose the lattice version

Ll =—s5) Z(—ztr(Tf U, T'ULL) + éu(C,C,)
mooi

1 _
= —sﬁ(zg g We We, + £g*r(C,C,) + 0(V4)),

(3.3)

which is H invariant (recall that we take H to be Abelian).

In the second line, we used that
Zfi'yafiyﬂ = 6(13' (34)
iy

For the lattice construction of chiral gauge theories, or

in order to develop weak-coupling perturbation theory,

the remaining Abelian gauge symmetry (H) will also

need to be fixed. We will return to this in the sections to

follow.

We will now work out the lattice equivalent of
Eq. (2.24). First define

W, = —iZ[Ux,,LTfUI,,L, T = W,, + O(V?), (3.5)

and lattice covariant derivatives D;f by

D,Z(I)x = Ux,p.q)x%»,uUI,,U« - (I)x:

D/:(I)x = (I)x - U;—M,p«q)xf/,LUX*,u,,u‘

(3.6)

Before continuing, we note that both nyﬂ and

- — 1
D/Lwﬁw - wx,u o UX—M,MW U

x—ppUs—p,pu live in the

BThere exist straightforward generalizations of the lattice
action(s) to other subgroups. For N = 2, see Ref. [15].
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coset space G/H . For W, u this follows from

(U, ,T'UL ., T11Y) = (U, , T'UL [T, T7]) = 0.

For the second term in D, ‘W, ,, this follows from

A
te(T'UL (U, T'UL,, TTIU, ) =
(U, ,T'UL ., U, , T'UL T = 0.

The off-shell gauge-fixing lattice action can now be ex-
pressed as

Lt =2u(T1, D;CJU,,.T,Ul . DjC)
=2i w(b,D, W, ,)—2i u({D};C,CIW,,)
+fg2§S tI‘(EXCX), (3.7)

where 55 tr(C,C,) is still given by Eq. (2.23).

Integrating out the auxiliary field we then find that on
the lattice trF?/(£g%) (cf. Egs. (2.4) and (2.24)) is re-
placed by

Loy = iztr(D; W, )2 (3.8)
&g

It is simple to check that D*WX, n transforms cova-
riantly under H. It follows that in the classical continuum
limit D, W, , — D,(V)W,(x) = D, (AW, (x).

The ghost part of the Lagrangian derived from
Eq. (3.3) is

Lyos = 2 ([T", DS, C, U, ,T'UL ., DEC,])
—iw({D)C,C}W,, +{C.CID, W, ,)

+§gz<tr(@2)g/5{(cz)g/}[)

3 .
+=-u({C,C 2 —w(X?)). 3.9

Jr0C Clg 0 — w() (39)
It is straightforward to verify that the ghost part of
Eq. (2.24) is recovered in the classical continuum limit,
by replacing first U, ,T'UL, — T', and then using the
relation

which follows from relation (3.4).
An alternative lattice gauge-fixing action is given by

L(’g’} = —s5 tr(W? + £¢2C0). (3.11)
This action has the same classical continuum limit, and
both lattice actions are invariant under flip symmetry (as
can be seen most easily from their definition as the
eBRST and anti-eBRST variations of a flip-invariant
pre-potential).

There are several further remarks we wish to make
before concluding this section. First, it is straightforward
to check that, in both cases, the free kinetic term for the
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ghost fields contains a nearest-neighbor discretization of
the laplacian. This implies that no species doubling occurs
in the ghost sector on the lattice.

Second, both lattice actions are still invariant under the
discrete SU(N) subgroup Sy introduced in the previous
section. Under Sy, the lattice gauge field transforms as

Uy — Pl U (PEg)t, (3.12)
consistent with Eq. (2.27). The invariance of Eq. (3.3)
follows from Eq. (2.28). Finally, the lattice actions are
invariant under ghost-SU(2).

IV. EVADING NEUBERGER’S THEOREM

It has been shown that a gauge-fixed Yang-Mills theory
with conventional BRST symmetry is not well-defined
non-perturbatively [16]. With “‘non-perturbative” we re-
fer to a lattice definition of the theory which maintains
exact BRST symmetry. The theorem states that the parti-
tion function of such a theory, as well as the (un-
normalized) expectation value of any gauge-invariant
operator, vanish identically. What we wish to demonstrate
in this section is that equivariant gauge fixing as de-
scribed in the previous sections circumvents this problem
[15].

It is instructive to review the proof of the theorem first,
in order to see exactly what changes the conclusion in the
equivariant case; the key ingredient is the presence of
four-ghost terms in the gauge-fixing Lagrangian (2.22).

In the standard case, the lattice partition function can
be written as Zgrgy(1) where

Zusr(t) = [[AUTdb]dedeleSon)-Sule 00,

.1

Here S;,, is gauge invariant and depends only on the
physical fields. dU is the Haar measure on G, and with
the notation [ ] we indicate products over all sites and
links (for the gauge fields) or group indices (for ghost and
auxiliary fields). S;,, may include source terms for gauge-
invariant operators. The gauge-fixing term

Ser(1) = (15 w2e F(U)) + £g*ur(h?)) 4.2)
X
is a function of the standard ghost fields ¢ and ¢“, with
one pair for each generator of G, and an auxiliary field b¢
for each generator as well. Following Ref. [16], we intro-
duced a parameter ¢ in front of the first term in S,;.
Standard BRST transformations are
- Cxe,,u,)r
§b =0,
and invariance of the action follows immediately from
the fact that tr(b%) = § tr(ich) and nilpotency of §, §2 = 0.
The proof of Neuberger’s theorem now follows very
easily. First one observes that

$U,, = iU, yCrip Sc = —ic?,

43
§c=—ib, )

PHYSICAL REVIEW D 70 094506
dZBRST/dt = _<§ tr(26.7:‘(U))>un-normalized =0, (44)

because of BRST invariance. For t = 0 the integral is well
defined on the (finite-volume) lattice because of the com-
pactness of the gauge-fields, and it follows that Z(1) =
Z(0) = 0. The latter equality follows immediately from
the Grassmann integration rules because the integrand
for Z(0) does not contain any ghosts.

Turning to the equivariant case, the path integral can
be written as Z.grg7(1) Where

Zeprst(f) = ] [dUN[db][dC][dC)eSim V)~ SeBU-CED),
4.5)

Now there are only ghost, anti-ghost, and auxiliary fields
C?, C* and b® for the coset generators T in G/JH . The
gauge-fixing part now corresponds to Eq. (3.3), and can
be written as

Sti(1) = (1s wRCF(U)) — £g°s5 u(CO)).  (4.6)

Again, we have that dZ.gger/dt = 0, because of eBRST
invariance. But now Z.grsr(0) # 0, due to the presence of
ghost fields in the term proportional to ¢ in ng. Note that

we cannot take & — 0, because the b integrals do not
converge in that limit. For ¢t = 0, we find that

ZeBRST(l) = ZeBRST(O)
- f [dUTe—Sm®) f [db][dC][dC]

X exp|: §g22sf tr(CC) :|

For t = 0 the ghosts are decoupled from the lattice gauge
field and, moreover, the ghosts’ partition function factor-
izes as the product of independent single-site integrals.
The single-site ghost integral in this expression can be
simplified further. Going back to Eq. (2.23), this integral
may be written as Zgnoy(£g7, 1) where

Zahost(£8%, 1) = /db dC dC expliég®s tr(bC
- 1CCY)], (4.8)

where we have introduced another parameter ¢. Using
anti-eBRST invariance, we see that 0Zgoy /0t =
0Zghost/ 9€ = 0, and thus that

Zghost(fgzr 1) = Zghost(lx 0)

= ]db dC dC explis tr(bC)]

4.7

= f db dC dC exp[—tr(b> — X?)]. (4.9)

Using this result, the rest of the proof that Zy,,(1,0) >0
is technical, and is relegated to Appendix A.

We see that in the equivariant case, the ghost-field
integral does not vanish, and thus the full path integral
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does not vanish. The underlying reason for the difference
with the standard case is that tr(5?) itself cannot be
written as the eBRST variation of anything, because
s tr(b?) # 0. In order to build an eBRST invariant action,
four-ghost terms are needed, and these render the ghost
integral non-zero. It follows that the equivariantly gauge-
fixed partition function, Z.grsr(1), is equal—up to a non-
zero multiplicative constant (Zgos(1,0))” where V is the
volume in lattice units—to the partition function without
gauge fixing, which gives the standard lattice definition of
a Yang-Mills theory. We recall that S;,, may contain
source terms for any gauge-invariant operator con-
structed out of the link variables U, ,. Therefore, we
see that the equivariantly gauge-fixed partition function
generates gauge-invariant correlation functions which
are rigorously equal to those generated by the non-
gauge-fixed theory, for any finite volume and any finite
lattice spacing.

It is instructive to restate this result in a somewhat
different way. Performing a gauge transformation on
U

X, 0
Uy = .Ul (4.10)

and multiplying the partition function by
1= f [d¢] @.11)

(again d¢ is the normalized Haar measure) the partition
function may be written as

Zegrst(t) = j[dU]Zorbit(t; U)e Sinv,
_ (4.12)
Zowit(t; U) = f[dd,][db][dc][d@]efs;-f(z;w,c,c,b).

Séf is now invariant under the “‘orbit”’ eBRST transfor-
mations

s = —iCo, sU =0,
sC = —ib,

sC = (_lcz)g/g.[,

sb=[X, C]. 4.13)

Note that s is the same eBRST transformation as before,
but the transformation of the gauge fields is now ‘“‘car-
ried” by the G-valued field ¢. (The anti-eBRST rules
may again be obtained by applying a flip transformation.)
Equation (4.7) can now be restated by observing that Z
is independent of the gauge field. This can again be seen
by varying the parameter ¢ (cf. Eq. (4.6)). It follows that
dZ i/ dt = 0, and thus Zgu,; (; U) = Z g4, (0; U), the lat-
ter being independent of U. In other words, Z ;. (#; U) is a
topological field theory.

One of the consequences is that the equivariantly
gauge-fixed theory is unitary if the non-gauge-fixed the-
ory is. This is a rigorous result, as all manipulations in
this section are valid for the lattice path integral in a finite
volume.

PHYSICAL REVIEW D 70 094506
V. PERTURBATIVE UNITARITY

While the results obtained in the previous two sections
are interesting in their own right, our aim is to apply them
to the construction of lattice chiral gauge theories. For
this goal, the gauge group G = SU(N) will need to be
fixed completely and non-perturbatively: a complete
gauge-fixing action will have to be included in the defi-
nition of the lattice theory.

Gauge fixing of the remaining subgroup H is, of course,
also needed if one wishes to develop perturbation theory
for any (continuum or lattice) equivariantly gauge-fixed
theory. In the case at hand, the subgroup H = U(1)V ! is
Abelian, and significant simplification occurs. In order to
fix an Abelian invariance, only a simple gauge-fixing
term like £, = (1/2a)¥ (3 ,A%)* is necessary. There is
no need to introduce any new ghost fields. The addition of
L; does break eBRST invariance, and this raises the issue
of unitarity. Slavnov-Taylor identities, derived from
(e)BRST invariance, are a key ingredient in the study of
unitarity. Therefore one has to re-establish unitarity in the
presence of L.

Here we will address this question in (continuum)
perturbation theory. The conclusion is that, as expected,
H gauge fixing does not spoil the unitarity of the theory.
Heuristically, this is easy to understand. The eBRST
version of Yang-Mills theory is rigorously the same as
the non-gauge-fixed version, if one restricts oneself to the
physical sector, i.e., to gauge-invariant correlation func-
tions of operators built only from the physical fields.
Gauge-fixing either theory completely in order to develop
perturbation theory (which for the eBRST version im-
plies only fixing H) should not change this result.

In the context of perturbation theory, it is convenient to
introduce an JH -ghost sector. As we will see, in the
continuum the new ghosts are free fields that merely serve
as a device to generate the relevant Slavnov-Taylor iden-
tities. Since they should decouple anyway in the contin-
uum limit, no JH -ghosts will be introduced in the actual
lattice construction of chiral gauge theories. (The eBRST
and H-BRST identities of the target continuum theory are
sufficient to determine the lattice counter terms to all
orders; see also Ref. [31].) As for the exactly eBRST-
invariant (and H un-gauge fixed) lattice theory defined
in Sec. III, the H-gauge-fixing sector is an extraneous
analytic device used to set up perturbation theory, in the
same way as gauge fixing is needed to set up perturbation
theory for the standard, fully gauge invariant lattice
Yang-Mills theory.

Emphasizing again that this is only done for perturba-
tive investigations, we introduce JH ghost fields x’, Y’
and auxiliary field 8/, and define {-BRST transforma-
tion rules

sV =08V,
sux' =0,

sHAiL = G#Xi,

sux' = —if', suB’ =0, (.1
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where W stands for any of the fields V,(rU,),C, C and
b. Under eBRST transformations, the new fields y/, ¥’ and
B! are invariant by definition. With

X = fd4x<7i(6#AiL) + éangiﬁ’), (5.2)

the additional (off-shell) gauge-fixing action can now be
written as

. . ag2
SL = SH:]( = [d4x<—lﬁ’6’uAfu - YDX + TB2>,
5.3)

where « is a gauge-fixing parameter not necessarily equal
to & (cf. Egs. (2.10) and (2.13)). A consequence of having
s vanish when acting on any # -ghost-sector field is that
[15]

{s,sy}=0.

This makes it possible to “port” eBRST identities to the
fully gauge-fixed theory. In the equivariantly but not H-
gauge-fixed theory, the eBRST identities of interest are of
the form

5.4

(sO) =0, (5.5)

with O any operator invariant under H gauge symmetry,
i.e., operators for which 55O = 0. In the fully gauge-fixed
theory, in which §; is added, we have that

(s0) = —(Ossy K) =(Osys K) = 0. (5.6)

The last step follows because O is invariant under st

This proves that the same eBRST identities hold in the
fully gauge-fixed theory as well. In what follows below
we will also have use for the case that @ is not invariant
under H, in which case we obtain

(50) = (s O)(s K))
- —<(sH@) f d4xf,.aﬂ(aﬂxi)wgcﬁ>. .7)

Of course, in the fully gauge-fixed theory one also has
Slavnov-Taylor identities derived from sy, and they play a
role in proving unitarity as well.

A comment on the appearance of Y’ in the latter
identity is in order. First, if s5;O does not contain the
field x!, (sO) vanishes identically. Otherwise, we may
carry out the contractions and replace (y'y’) by its
(tree-level) propagator, because x’ and ' are free fields.
Indeed, we need not have introduced the H ghosts into the
theory; they are just a convenient vehicle for deriving the
desired Slavnov-Taylor identities. In the remainder of this
section we will keep y' and ¥’ as a “book-keeping

'“We assumed that the operator O is anti-commuting; if it is
commuting, s© is anti-commuting, and thus (s©Q) = 0 trivially.
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device.” They will not be part of our definition of lattice
chiral gauge theories in the next section.

As a first application we will prove that all scattering
amplitudes are independent of the gauge-fixing parame-
ters £ and « to all orders in perturbation theory. To do
this, it is convenient to use the formalism in which the
auxiliary fields b (cf. Eq. (2.22)) and S (cf. Eq. (5.3)) are
kept. We show in Appendix B that Feynman rules can be
consistently formulated in this framework. Consider the &
dependence of the expectation value of a (commuting)
operator O,

1 d

2 0= <(9[d4x sE(EC)>

—<(s(9) f d4x§(6c)>

+<@(ssﬂg<) / d4x§(6c)>

- —<(s(9) f d4x§(6@>

+<(sH@)(s5<) / d4x§(6C)>, (5.8)

where the last equality follows from Eq. (5.4) and the fact
that CC is H-invariant. Now if we take O to be the product
of matter fields, such as quark and anti-quark fields ¢ and
g, we have that both sq and sy ¢, as well as sq and s q, are
non-linear in these fields. Therefore, the right-hand side
of Eq. (5.8) vanishes if we analytically continue to
Minkowski space, amputate the fermion legs and put
them on shell. In Appendix C we generalize the argument
to scattering amplitudes containing gauge bosons on the
external legs. We conclude that all scattering amplitudes
are independent of £, as should be the case. A similar,
even simpler, argument shows « independence as well.
We comment in passing that invariance under a con-
tinuous change of parameters in the gauge-fixing action
has played an important role in the preceding section too
(seee.g. Eq. (4.7)). The conclusions of the previous section
are stronger because the non-perturbative setup allows us
to set to zero many terms in the gauge-fixing action, while

FIG. 1. Cut diagram with two fermions in the intermediate
state. Solid lines denote fermions, curly lines denote gluons.
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FIG. 2.

Cut diagrams with two gauge bosons in the inter-
mediate state.

maintaining the extended eBRST invariance of the
theory.

In order to make the discussion less abstract, we will
now work out an example that shows in more detail how
eBRST and H-BRST identities play a role in proving
unitarity in continuum perturbation theory.'” With the
above result in hand, we choose to work in the Feynman
gauge, i.e., we now set ¢ = a = 1, thus simplifying our
calculations. Our aim is to demonstrate how unitarity
works vis-a-vis the unconventional gauge-fixing proce-
dure introduced in this paper. Thus, we will limit our-
selves to the difference between the eBRST case and the
standard case.

We will consider a two-flavor vector gauge theory
with G = SU(2), H=U(l) C G. The gauge-sector
Lagrangian will be the sum of Egs. (2.1), (2.22), and
(5.3). We add to this an SU(2) doublet of massless quarks,
g = (u,d). For SU(Q2)/U(1) one has f,z, =0, and
Eq. (2.22) simplifies to

L, =-2u(CD,A)D,A)C) +2u(W,, Cl[W,,C)
—2i r(bD,(AW,,) + £g2(tr(b?) — tr(X?)).
(5.9

As usual, we will replace A — gA and W — gW in order
to develop the perturbation expansion in g.

The main example we wish to discuss is that of du —
du scattering at one loop, in order to demonstrate that this
amplitude satisfies the optical theorem.'® There are three
types of contribution at one loop, shown in Figs. 1-3.
Figure 1 contains diagrams with two-quark intermediate
states, Fig. 2 contains diagrams with two-gauge-boson
intermediate states, and Fig. 3 contains diagrams with
one-loop vacuum polarization corrections to the one-
gauge-boson intermediate state.

I5We defer the discussion of the lattice and of chiral fermions
to the next section.

'®For a textbook discussion in standard Feynman gauge, see
for instance Ref. [32].
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(a) 5O0000 5O0000

(b)

FIG. 3.

Cut diagrams containing a vacuum polarization
subdiagram. Dashed lines denote ghosts.

We will only be interested in contributions of the type
of Figs. 2, 3(b), and 3(c), with only gauge boson and ghost
contributions to the vacuum polarization. The diagrams
of Fig. 1 and fermionic contributions to the vacuum
polarization [Fig. 3(a)] satisfy unitarity constraints sepa-
rately, and work just like in the standard case. In the case
of ud scattering, the two-gauge-boson intermediate state
isan A-W~ intermediate state, with A, = Vz and Wlf =
(VL £iV2)/y/2 in terms of the original SU(2) gauge
fields. Note that A is neutral under H = U(1), while W*
are charged. Since there are no (interacting) neutral
ghosts, it follows immediately that there is no ghost-
loop contribution to the vacuum polarization of W=,
which means that Fig. 3(c) is absent for du — du.
Therefore, when we cut the diagrams (as indicated in
the figures), contributions from unphysical polarizations
of the gauge bosons will have to cancel by themselves,
without “help” from any ghost-loop diagrams. This is
where our example differs from the standard case of a
linear covariant gauge, in which of course ghosts corre-
sponding to every component of the gauge field are
present. In our case, the gauge fixing takes place in two
stages, of which the latter is an Abelian linear gauge
fixing, for which no ghosts are needed."’

The optical theorem relates the cut diagrams of Figs. 2
and 3(b) to the process ud — AW~ (with both A and W~
transversely polarized). If we consider only the contri-
butions from physical polarizations of intermediate A—
W™ states to the cut diagrams, the optical theorem is
evidently satisfied. Thus, our aim here is to show how

0r, equivalently in perturbation theory, the corresponding
ghosts are free, as manifest in Eq. (5.3).
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the eBRST identities of Eq. (5.6) plus the BRST identities
derived from sy guarantee that the contributions from all
unphysical polarizations to the cut diagram vanish.

The relevant eBRST identity is Eq. (5.7) with O =
C (x)A,(y)u(v)d(w). Since we are interested in the‘

PHYSICAL REVIEW D 70 094506

LSZ-amputated correlation function, the only terms
which contribute in Eq. (5.7) are those from the linear
terms in the eBRST and H-BRST transformation rules.
Analytically continuing to Minkowski space, we thus
obtain the identity (in Feynman gauge)

(W, (A, uv)dw)) s = f d*z(C™ ()0, x(»)u(w)d(w)a* x(2)W,, (2)C*(2))oy

- j 249, X ()T NT (Du@)dw)W; ()C (2o

(5.10)

where the subscript os means that all external lines have been put on shell. In the last step we made use of the fact that y
and y are free. Fourier transforming on x and y, this can be rewritten as

k(W (A, (Ou(w)d(w)o = €, f d*zZ(x(0)9* Y (IXC™ (Bu(w)d(w)W,; (2)C* (2))oy-

We will also need an sy identity for the longitudinal part
of A. For this we take O' = W, (x)x(y)u(v)d(w). From
(s @y = 0 we obtain

oW, (k)A,(O)u(v)d(w)) = 0. (5.12)

Cutting the internal W line replaces the pole 1/(k> +
ie) — 8(k?) and leaves a tensor g,, which may be ex-
pressed as a polarization sum

Sup = — Z E(lf)ei,") + e:;e; + e;e;
n=1,2

(5.13)

(similar statements apply to the cut A line). For a physical
momentum k, = (k, |k]),"™ the forward (or longitudinal)
and backward polarization vectors are defined as

(0 :L A :L —(k :L —f
€ (k) \/E(k 1) \/Ellglkﬂ €, (k) \/E( k1),

(5.14)

where £ is the unit vector in the direction of k. The
normalized transverse polarization vectors €™ have

ei") = 0, and are orthogonal to €*.

We are now ready to prove unitarity of our example.
Cutting the W and A lines leaves us with a sum over
products of amplitudes for du — W™ A scattering (in this
case we will refer to the W™ and A as ““out-going”’) and
W~A — du scattering (“in-going” W~ and A). First,
Eq. (5.12) implies that any contribution involving a for-
ward polarized A vanishes. According to the polarization
sum (5.13), this leaves us only with contributions for
which the A is transverse. In this case, the W~ can still
be unphysical. Again from Eq. (5.13), either the in-going
or the out-going W™ has to be forward polarized, and we
may apply Eq. (5.11). This equation tells us that the only
non-vanishing contribution with a forward-polarized W~
has a backward polarized A on the same side of the cut
(because €”€, = 0 for the other three A polarizations).

®n Minkowski  space we use the  metric

guy = diag(—1, =1, —1,1).

(5.11)

\
But this means that the A on the other side of the cut has a
forward polarization, and we already showed that all
contributions involving a forward polarized A vanish.
We conclude that none of the unphysical polarizations
contribute to the imaginary part of the one-loop du — du
amplitude. We verified this by explicit calculation. In an
explicit calculation, one makes of course use of the fact
that the d and u external legs, as well as the cut lines, are
on shell.

A similar example can be worked out for the case that
the in-going quark and anti-quark have the same flavor. In
this case, the two-gauge-boson intermediate state of in-
terest is a W~ W™ state. One finds that now there is a
G/ H -ghost contribution to the vacuum polarization,
which is needed to cancel all contributions to the cut
diagram from unphysical W polarizations. The relevant
identities ensuring this cancellation are (again, in
Feynman gauge)

(Wi W u()i(w)),s = (C*(x)9,C7 (y)

Xu@)u(w))ys. (5.15)

This is as one would expect, since the W’s belong to the
“non-Abelian part” of G. We see that the way unitarity is
enforced through the (¢)BRST identities is a “combina-
tion” of how it works in the standard Abelian and non-
Abelian cases. Again, we verified this example by explicit
calculation.

We close this section with a few comments on the
differences of our gauge-fixing and that of the standard
(non-Abelian) Lorenz gauge. The fact that our G/H
gauge-fixing condition F(V) (cf. Eq. (2.4)) had to be
H-covariant leads to extra vertices in our gauge-fixed
theory. And, one finds indeed that these additional verti-
ces play a role in the explicit calculations verifying
unitarity in the examples discussed above.

The four-ghost vertices are another new type of verti-
ces that appear in our theory (cf. Egs. (2.24) and (5.9)).
They do not play a role in our examples of one-loop
unitarity—one would have to go to higher loops to en-
counter them. However, there is a simple one-loop calcu-
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lation in which these new ghost vertices do play a role.
First note that the ghosts have to be massless for (pertur-
bative) unitarity to work out. In standard Lorenz gauge it
is very easy to see that indeed the ghosts have to be
massless, because there is a shift symmetry on the anti-
ghost field in that case. Clearly, there is no shift symmetry
in our case. Still, the algebraic structure does not allow
for a ghost mass term, since it cannot be obtained from
the eBRST transformation of any operator. But eBRST
does imply the occurrence of the four-ghost vertices, and
one may indeed verify that these vertices are needed so
that no mass term is generated from the one-loop ghost
self-energy. This can be explicitly checked in the lattice
version of our theory.19

VL LATTICE CHIRAL GAUGE THEORIES

We now come to the construction of chiral gauge
theories on the lattice in the framework of a fully
gauge-fixed Yang-Mills theory as developed in the pre-
ceding sections. There are three steps to this task. First,
we will specify the fermionic part of the lattice action.
Then, after adding the chiral fermions to the theory, we
choose a lattice gauge-fixing action for the H gauge
fixing, and we revisit the G/H gauge fixing on the lattice,
for reasons to be discussed below. The resulting action for
a chiral gauge theory is not exactly invariant under
(e)BRST on the lattice, and we will need to add counter
terms; this constitutes the final step.

As already explained in the introduction, the existence
of a systematic perturbative expansion in the coupling
constant is crucial in order to recover the target chiral
gauge theory in the continuum limit. We explain below
how this is achieved.

We take our fermions to be left-handed and in some
anomaly-free (in general, reducible) representation of the
group SU(N).? In order to avoid doublers, we introduce
right-handed spectators [17] and add a Wilson term,
leading to

1 — _
‘Et‘ermion = EZ(IIILX’)/,(L Ux,,u.dleJr,u, - l//Lx+MyM UI,MJILX)
o
l « — _
+ E%(’wbRx’y“waﬁ»,u - 'wlfo+,u,’)/,u,lr//Rx)

- %Z(Ex(r//x+,u, + Jx+,u,¢x - 2Exlr//x) (61)
M

The right-handed fermions do not transform under the
gauge group, and for r = 0 the fermion sector of the

In dimensional regularization, the massless one-loop tad-
pole is zero by definition.

20For N = 2 the fermion representation should be free of the
Witten anomaly as well. Simple examples are a theory with two
Weyl doublets (which is not really chiral), or a theory with one
Weyl fermion in the 3/2 representation.
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theory has a G, X Gp symmetry, where only G, is
local.?! For r > 0, the Wilson term breaks this symmetry
to the diagonal subgroup, and thus breaks gauge, or
(e)BRST, invariance explicitly. The theory is also invari-
ant under a shift symmetry on the right-handed spectator,

Yr— g t+ ep,

which protects the theory against an induced fermion
mass term and any other relevant or marginal operator
involving the right-handed fermion [33]. Note that the
spectators become free fields in the classical continuum
limit.

The chiral Wilson action, Eq. (6.1), is not the only
acceptable one. In fact, within the present framework,
the familiar concept of universality applies. This means
that one can use any fermion action with the correct
classical continuum limit. For a chiral fermion action
based on domain-wall fermions (which does not work
without gauge fixing [34]), see Ref. [10].

For U, w= 1, obviously the fermions are not doubled,
due to the presence of the Wilson term. However, one may
worry that doublers are generated dynamically, for in-
stance, if degrees of freedom exist in the interacting
theory which can form bound states with the right-
handed spectator fermions.?* Indeed, without gauge fix-
ing, the gauge degrees of freedom are not controlled by
any small parameter, and all wavelengths of these modes
are equally important. In an exactly gauge invariant
lattice theory (such as QCD in the commonly used lattice
formulations) this does not matter, because the gauge
degrees of freedom decouple from the physical degrees
of freedom. In chiral gauge theories, however, each fer-
mion field needs to contribute its share of the anomaly
(even if the whole collection of fermion fields is anomaly
free) [2,12], and the regulated theory therefore tends to
break the gauge invariance by irrelevant terms. This is
certainly the case for the chiral Wilson action used here,
as well as for the chiral domain-wall fermion action of
Ref. [10]. It is therefore necessary to control the gauge
degrees of freedom in such a way as to decouple them in
the continuum limit.

In our proposal, the lattice action contains kinetic
terms for all four polarizations of the gauge-field vector
bosons. Thus, all polarizations of the gauge field are
controlled by the gauge coupling g, including the longi-
tudinal modes, which are controlled by the gauge fixing.
Moreover, as we will describe below, the gauge fixing on
the lattice is done in such a way as to ensure the existence
of a unique classical vacuum. As a consequence, lattice

(6.2)

*!Obviously, for » = 0 doublers are present; as in the standard
QCD case [2], they are absent for any fixed r> 0. Similar
statements apply to the chiral domain-wall fermion action of
Ref. [10].

Z0r alternatively the left-handed fermions may form
screened bound states, decoupling from the gauge fields [35].
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perturbation theory can be systematically developed.
Even though our theory is not gauge invariant (hence
not unitary) on the lattice, it is renormalizable. As in
ordinary lattice QCD with Wilson fermions, the Wilson
term remains a relevant operator for large momenta (of
order 7/a), and doublers do not re-appear dynamically.
This was investigated in more detail in perturbation
theory in Refs. [10,12]. The interactions between the
fermions and the longitudinal gauge fields were also
investigated numerically in the Abelian case, finding
again that no doublers appear, and in fact, that there is
good quantitative agreement between these non-
perturbative investigations and perturbation theory [8—
10,36].* Gauge fixing is essential for this conclusion, and
it has indeed been shown that without gauge fixing fer-
mion doublers are generated dynamically [3,4,37]. The
formulation of non-Abelian chiral gauge theories devel-
oped here makes it possible to extend these numerical
tests to the non-Abelian case as well.

A finite number of counter terms is added in order to
adjust the theory such that (at least to any order in
perturbation theory) we recover the target continuum
theory, in which gauge degrees of freedom as well as
spectator fermions decouple, and unitarity is restored.
This is done by requiring the BRST identities of the target
theory to be satisfied in the continuum limit, as already
observed in Ref. [5]. Standard power counting is used in
order to organize the counter terms. In particular, there is
a finite number of them, and only three have mass di-
mension less than four.

In a gauge-fixed theory with exact BRST invariance,
the Gribov problem makes it non-trivial to define the
gauge-fixed theory non-perturbatively, as we have seen
in the preceding sections. However, in an exactly gauge-
(or BRST-) invariant lattice theory, it does not matter
around which of the copies of the classical vacuum one
develops perturbation theory. The same is not necessarily
true when the regularized theory is not exactly gauge
invariant. In that case, different Gribov copies may lead
to different perturbative expansions around them; the
counter terms needed to regain gauge invariance in per-
turbation theory around one copy may not be appropriate
for some other copy, and summing or averaging over all
copies may thus not yield the desired continuum limit.**
This problem is particularly acute because of the fact
that, for a simple lattice transcription of the continuum
Lorenz gauge, most Gribov copies will correspond to
“rough” configurations, i.e., most of them are lattice
artifacts.

We deal with this problem by choosing a discretization
of the gauge-fixing action such that the classical vacuum

2The numerical investigation was for G = U(1). However,
there is little doubt that similar results would be obtained for
G = SU(N).

24For a detailed investigation of this issue, see Ref. [14].
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configuration U, , = 1 is the unique minimum of the
action, which implies that lattice perturbation theory
around the classical vacuum is valid by construction
[6,7]. Thus, we will choose our gauge-fixing Lagrangian
not just equal to the sum of £§f in Eq. (3.3), and some
simple lattice discretization of 3 ;(d,A%)% In fact, our
gauge-fixing action on the lattice will break eBRST sym-
metry explicitly. However, this is not a “new price” to
pay, since the fermion sector of the theory already breaks
this symmetry explicitly, and counter terms are needed
anyway.

Before we review the construction of the gauge-fixing
action on the lattice, let us address a possibly confusing
point. We do choose to use a lattice gauge-fixing action
with a unique absolute minimum. This, however, does not
mean that “continuum” Gribov copies are removed from
the theory. In particular, for the classical vacuum U, ,, =
1, the lattice action of a continuum Gribov copy will be
O(a’p?), with p some physical scale. In the continuum
limit, such copies do contribute to the functional integral.
To the extent that this class of copies plays a role in the
physics of non-Abelian theories, they will do so in the
continuum limit of our lattice regularization.

We start from the equivariantly gauge-fixed lattice
Yang-Mills theory constructed in Sec. IIL In particular,
we will choose the equivariant gauge-fixing action to be
LG/n, defined in Eq. (3.8). Our H gauge-fixing term will
be constructed as follows. Defining

A= %ZTltr(Tl(Ux,# —ulL), (6.3)
]

our discretization of the continuum Lorenz gauge
tr(d,A,)*/(ag?) will be

1 _
L, = Z a—gztr(8M AL (6.4)
where 9, is the backward difference operator,
a; ¢x = ¢x - ¢x—,u,' (65)

Note that we do not introduce ghosts for H. As a conse-
quence, on the lattice there is no BRST symmetry corre-
sponding to this part of the gauge fixing. This is because,
contrary to the continuum, on the lattice the Faddeev-
Popov operator corresponding to L is not a free lattice
laplacian, but instead depends on U, , through irrelevant
terms. Therefore the identities (5.6) and (5.7), do not hold
on the lattice even in the lattice theory without fermions,
and certainly not in the theory with fermions (see also
Ref. [31]).

Next, we wish to add an irrelevant term L;,. such that
the total gauge-fixing action Y (Ly + L5y + L;,,) has
an absolute minimum at the perturbative vacuum con-
figuration U, , = 1. Lattice perturbation theory will then
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correspond to a systematic saddle-point approximation
around the perturbative vacuum.
Following Ref. [7], first define

1
‘VX,/.L = 2_Z-(UX,;L - U)Jcr,,u.);

Ce= 0@~ Uy — Uy, (6.6)
"

1
Bx = ZZ(VXM + VX—M,M)Z'
7
Then L,,, is defined as

tre Ct+c)+ 3x><% Ct+c,) - Bx>,
(6.7)

where 7 > 0 is a new parameter. Like the Wilson parame-
ter r, its precise value is not important, and we will take it
to be of order one. It was proved in Ref. [7] that L, is
non-negative for all U, , and that it vanishes only for
Upp = 1.% Since both £ and L/ are manifestly non-
negative, and also vanish for U, ,, = 1, our claim follows.

Putting everything together, on the lattice we take

-ng,lattice = -EH + -EG/H + -Eirr + -Eghost (68)

as our gauge-fixing Lagrangian. Here L, refers to the
ghost part of Eéf, defined in Eq. (3.9), and contains only
the G/JH coset ghosts.

To gain insight into the role of £;,,, it is instructive to
consider the classical potential V. for constant, com-
muting gauge fields, following Refs. [6,7]. Because of the
lack of gauge invariance, mass counter terms will be
needed for all gauge bosons, as we will discuss below in
more detail. Including mass (counter) terms, one has

Velass = 2;2[tr<%vﬁ)<gvﬁ> + ]

+xl(VE) +...], (6.9)

where at the classical level, we may choose Ky = k4 = k
(cf. Eq. (6.11)). This potential exhibits a continuous phase
transition between two phases. For k > 0 we have a ferro-
magnetic (FM) phase with (V,) = 0. For (small) x <0
we have a directional ferro-magnetic phase (FMD) in
which the gauge field picks up an expectation value

|| g\1/4
(V) = i( = ) , all u.

The continuum limit will be defined by approaching the
critical line from the FM ((V,,) = 0) side. Note that the
lattice expectation value (6.10) only breaks a discrete

(6.10)

BWe proved it for G = SU(N) or SO(N), but expect it to be
true for any simple G.

PHYSICAL REVIEW D 70 094506

symmetry (hyper-cubic rotations), and thus no
Goldstone bosons occur inside the FMD phase. This
phase transition defines a novel universality class, with
a greatly enlarged symmetry at the critical point, at
which both gauge invariance and rotational invariance
are recovered.”® Because of the existence of a unique
classical vacuum and the fact that we have a consistent
power counting, lattice perturbation theory applies near
this critical point.?” The existence of this novel critical
point is therefore the key ingredient making it possible to
formulate a lattice gauge theory with undoubled chiral
fermions. The presence of the gauge-fixing sector intro-
duces a new direction to the phase diagram of the theory
(through the coupling 7/g?), thus giving access to this
critical point. (Previous attempts with Wilson fermions
without gauge fixing failed because of the impossibility
of reaching this novel universality class.)

The irrelevant term, L,,,, represented by the V® term
in Eq. (6.9), stabilizes the classical potential. The critical
line separating the two phases with (V,) = 0 and with
(V) # 0 corresponds to a vanishing curvature at the
origin, ie., to a vanishing gauge-field mass-squared.*®
Classically, the transition is at k = k. = 0. In the full
quantum theory, the transition is expected to be continu-
ous up to, possibly, effects which are non-perturbatively
small in the renormalized coupling constant. Without £;,.,
the transition would be strongly first order (ie., with a
discontinuity in (V) of order 1/a). U,, = 1 would not be
the unique classical vacuum, and perturbation theory
around this vacuum would most likely not correspond
to a systematic expansion of the lattice theory.”

Once the existence of the critical point is secured by
the irrelevant term, L;,, is indeed “irrelevant” in that it
does not affect the long-distance physics near this critical
point.®° In summary, the fact that stability of the potential
at the critical point is obtained through the help of an
irrelevant operator implies that that irrelevant operator
does not occur in the renormalized (continuum)

2%The names “FM” and “FMD” reflect the phase diagram
obtained in the so-called “‘reduced model limit,”” which con-
strains the gauge field to pure-gauge configurations U, , =
(ﬁxqﬁLﬂ. The FM phase is analytically connected to the
Higgs phase in an Abelian theory, or to the Higgs-confinement
phase in a non-Abelian theory. The FM-FMD phase transition
is very different from the usual Higgs transition, and separated
from it by a multi-critical point [13,14,23].

270n the FMD side, the classical vacua exhibit the (discrete)
degeneracy dictated by the spontaneous breaking of hyper-
cubic rotations. As usual, perturbation theory around one of
these vacua is valid in the infinite-volume limit.

ZFor more details on the nature of this critical point, see
Ref. [7].

*For some non-perturbative investigations of this issue in an
Abelian theory, see Ref. [14].

30The Wilson term is irrelevant in precisely the same sense:
once the doublers have been removed, it does not affect the
long-distance physics of the one remaining relativistic fermion.
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Lagrangian that governs the critical point, which is the
gauge-fixed Yang-Mills theory described in Secs. [Tand V,
coupled to left-handed chiral fermions.

We now come to the final step of our construction, the
addition of counter terms. As mentioned already, since
(e)BRST is explicitly broken on the lattice, counter terms
will need to be added in order to be able to recover the
target chiral gauge theory in the continuum limit. Since
our theory admits an expansion in the lattice coupling
constant, and satisfies the usual power counting rules,
only counter terms of engineering dimension less than
or equal to four need to be included. While earlier work on
counter terms in this context was carried out [5,14], we
will need to redo the job, because of the different gauge
condition, and the lack of shift symmetry on the anti-
ghost field. The symmetries restricting the number of
counter terms are hyper-cubic symmetry, CP invariance,
global H invariance, the discrete subgroup Sy of SU(N)
introduced in Sec. II, flip symmetry, ghost-SU(2) (which
includes ghost-number) symmetry, and the shift symme-
try (6.2) on the right-handed spectator fermions.

We begin with counter terms of dimension two. There
are three of these: mass terms for the A and W fields as
well as the ghost field. We can take

Lopamr = katr( A, ,)? = 26y > (T'U,, T'UT )

+ ktr(C,C,). (6.11)

There are no dimension-three counter terms, since they
are all forbidden by the lattice symmetries. In particular,
a fermion mass is excluded by shift symmetry, Eq. (6.2).
(When using the chiral domain-wall fermion action [10]
a similar conclusion applies in the limit of an infinite fifth
dimension where (global) chiral symmetry is recovered.)
In contrast, there are many marginal (dimension-four)
counter terms. Below, we will use continuum notation
for all dimension-four counter terms; they can easily be
transcribed to the lattice, for instance by using Eqgs. (6.3)
and (3.5). (It does not matter how exactly the latticization
is carried out, and more economical lattice versions may
exist.) In the fermion sector, there are only two:

‘Ect,fermion = agAJL’yM(iA,u)'wa + agWJL’)/p,(iW,u)dlL-
(6.12)

Note that our fermionic counter terms only involve the
left-handed fermion, since the right-handed spectator is
again protected by shift symmetry. As was shown in
Ref. [33], the right-handed spectators decouple automati-
cally if the theory has a continuum limit. Because there is
no global SU(N) symmetry, the bare couplings g, and gy
will have to be adjusted separately in order to maintain
universality of the renormalized gauge coupling.

There is a large number of dimension-four counter
terms involving only the gauge fields or ghost fields,
totaling 75, including wave-function renormalizations
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for A, W and the ghosts. For N =2 these are not all
independent, but for generic N they are. We list them in
Appendix D.

It would be prohibitively expensive to simultaneously
tune all these counter terms numerically in order to
satisfy the desired Slavnov-Taylor identities of the target
theory in the continuum limit. However, for small enough
gauge coupling, this is not needed. The three relevant,
mass counter terms will have to be tuned non-
perturbatively in order to move the lattice theory to the
critical point described by the target continuum theory. In
other words, the three mass terms of Eq. (6.11) need to be
adjusted non-perturbatively toward infinite correlation
lengths for the degrees of freedom associated with the
fields A, W and the ghosts. While the ghost fields are not
physical, they will have to remain (perturbatively) mass-
less if the continuum theory is to be unitary.

In contrast, all dimension-four counter terms can be
estimated with the help of lattice perturbation theory,
because our lattice theory has been constructed such
that perturbation theory is a systematic approximation.
If tree-level precision is sufficient, this implies that they
can all be omitted. If not, a one-loop calculation of these
counter terms should improve the situation. While this is
not a simple calculation, it can be done analytically, and
parametrically as a function of the free parameters g, &
and a. Alternatively, one may imagine a numerical deter-
mination, where first k4 y ¢ are determined without any
other counter terms present. After that, one may deter-
mine each of the dimension-four counter terms by con-
sidering the appropriate correlations functions, i.e., the
ones to which they would contribute to lowest non-trivial
order. Obviously, this still relies on the validity of pertur-
bation theory, but may help in side-stepping questions as
to which value of the coupling constant should be used in
the one-loop expressions for these counter terms in a
particular numerical computation.

VIL. CONCLUSION

We believe that this work represents major progress in
the non-perturbative construction of non-Abelian chiral
gauge theories. While we already described in some detail
what our construction does and does not accomplish in
the Introduction, let us summarize what has been gained.

The key ingredients of the lattice chiral gauge theories
constructed in this paper are the use of a renormalizable
gauge, as well as the existence of a unique classical
vacuum. This leads to the existence of a novel type of
critical point, with a systematic weak-coupling expan-
sion, and the target continuum chiral gauge theory is
recovered to all orders in this expansion at this critical
point.

It is instructive to compare our lattice construction
with the standard perturbative treatment of chiral gauge
theories in the continuum, for instance through the use of
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dimensional regularization. The continuum-regularized
chiral gauge theory shares with our lattice theory the
following crucial features: 1) Both regularized theories
do not preserve the chiral gauge invariance. 2) As a result,
counter terms have to be added to recover gauge invari-
ance of the renormalized theory. 3) The regularized the-
ory is in fact renormalizable without relying on gauge
invariance, thanks to the existence of kinetic terms for all
four polarization, where the longitudinal kinetic term is
provided by the gauge-fixing action.

The main difference is that, in the continuum, it is
simply assumed that some non-perturbative theory exists
for which the perturbative expansion is valid. The ques-
tion as to whether a non-perturbative formulation actually
exists with a critical point which is indeed described by
renormalized perturbation theory is not even asked. On
the lattice, a theory with the appropriate critical point
will have to be constructed explicitly, and this is what we
did in the present paper. In the lattice construction, the
use of a renormalizable gauge and the uniqueness of the
classical vacuum are equally important, and independent,
ingredients.

The existence of a valid perturbative expansion, or, in
other words, the fact that the universality class is known,
is a feature common to standard Lattice QCD and to our
construction. The difference is that standard Lattice QCD
is exactly gauge invariant, and gauge fixing is an extra-
neous device needed only to set up weak-coupling per-
turbation theory; in contrast, in our construction the
regularized theory is not gauge invariant, and renorma-
lizability is maintained because the gauge-fixed lattice
action explicitly contains longitudinal kinetic terms for
all gauge bosons. The specific gauge fixing we adopted is
thus part of the very definition of the theory.

Of course, this does not mean that we now know that
unitary, Lorentz-invariant chiral gauge theories with
gauge group G = SU(N) exist for anomaly-free fermion
representations. For example, the SU(2) theory with one
fundamental-representation Weyl fermion does not exist
because of a non-perturbative obstruction [20,21]. How-
ever, whether any other non-perturbative obstruction ex-
ists for a certain gauge group and fermion content is a
dynamical question in the context of our construction,
and can in principle be studied by non-perturbative ana-
lytical or numerical techniques.

As we explained in more detail in Sec. VI (see, in
particular, the discussion around Eq. (6.9)), the single
most important dynamical feature of the critical point
is that the chiral nature of the fermion spectrum is
maintained non-perturbatively [8].>! Since the familiar
notion of universality applies, this should be true not only
for the chiral Wilson action used by us, but in fact for any

*'For an explanation on how the construction by-passes the
Nielsen-Ninomiya theorem [38] see Ref. [9].

PHYSICAL REVIEW D 70 094506

lattice fermion action with the correct classical contin-
uum limit. For the chiral domain-wall fermion action,
this was demonstrated in Ref. [10]. Thus, fermion dou-
blers are not generated dynamically, and no fermion
masses can occur without a dynamical breaking of the
gauge group. Scenarios for the dynamical symmetry
breaking of a chiral gauge theory, or for light composite
fermions [39], can in principle be studied within our
construction.

It is interesting to contrast this state of affairs with the
approach of Ref. [29]. In that approach, the goal is to
construct non-Abelian lattice chiral gauge theories with
exact gauge invariance. Like in Lattice QCD with exact
gauge invariance, if this goal would be reached, there
would be no need to worry about the back reaction of the
gauge degrees of freedom on the fermion spectrum (or on
any other physical degree of freedom); the unphysical
degrees of freedom would decouple in the regulated the-
ory, due to the exact gauge invariance. Obviously, this
approach necessitates a complete classification of all pos-
sible non-perturbative obstructions. This problem was
formulated in terms of suitable integrability conditions
in Ref. [29], and was solved perturbatively in Ref. [30]. A
non-perturbative solution of the integrability conditions
constitutes a much harder problem, and indeed, to date no
solution is known.>?> In other words, it has not been
established that the necessary critical point exists within
this approach for the non-Abelian case.

In our construction, we do not insist on exact gauge
invariance on the lattice. Instead, because of the gauge
fixing, all degrees of freedom are under dynamical con-
trol. The continuum limit of an asymptotically-free the-
ory corresponds to a vanishing bare coupling constant,
and the validity of the weak-coupling expansion means
that the elementary degrees of freedom are those, and
only those, that occur at tree level in perturbation theory.
In other words, the target (chiral) gauge theory, whose
particle content and interactions may be read off from the
classical continuum limit of the lattice action, is indeed
realized in the guantum continuum limit of the lattice
theory. The lattice dynamics does not generate any new
light degrees of freedom not already contained in this
target continuum theory [8,9,14]. Also, the unphysical
degrees of freedom of the target gauge-fixed theory de-
couple in the continuum limit after the adjustment of a
finite number of counter terms (at least) to all orders in
perturbation theory. Because perturbation theory is reli-
able at the lattice scale, any non-perturbative obstruction
to this conclusion can only originate in some infra-red
mechanism contained in the theory. This is precisely what
makes it interesting to apply the construction proposed in

321n the Abelian case a complete classification exists, and
exact gauge invariance can be established provided the fermion
spectrum satisfies one new condition apart from the usual
anomaly-cancellation condition [1]. See also Ref. [4].
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this paper to the study of non-Abelian chiral gauge
theories.

The approach of Ref. [29] has yielded a *“by-product”
which is a gauge-invariant lattice weak-coupling expan-
sion for anomaly-free chiral gauge theories [30] (see also
Refs. [18,19]). It is, as already mentioned above, an open
question whether a critical point exists which is con-
trolled by this expansion, simply because the underlying
non-perturbative lattice theory is not (yet) known. The
perturbative solution of Ref. [30] involves the adjustment
of an infinite number of irrelevant operators, in order to
enforce exact gauge invariance on the lattice to any given
order. It is unlikely that universality holds in that case. In
the gauge-fixing approach, universality applies, and the
correct continuum limit is obtained to all orders after the
adjustment of a finite number of (relevant and marginal)
counter terms. The gauge-fixing approach also goes be-
yond this in providing a fully non-perturbative lattice
theory. The actual number of counter terms is undeniably
large. However, in Sec. VI, we have argued that this is
unlikely to be a very severe obstacle, because most can be
reliably calculated in low-order perturbation theory.

We believe that our results are interesting for the case
of pure Yang-Mills (or vector-like) theories as well. We
demonstrated in Sec. IV that the equivariantly gauge-
fixed lattice Yang-Mills theory is rigorously equivalent
to the non-gauge-fixed and thus gauge-invariant theory.
Among other things, it follows that the equivariantly
gauge-fixed theory is unitary, because the gauge-
invariant theory is. It would be interesting to see whether
this conclusion can be extended non-perturbatively to the
remaining maximal Abelian group H, as we did to all
orders in perturbation theory in Sec. V. It is possible that
the idea proposed in Ref. [40] can be extended to our case.
The reason that this is not trivial, however, is the “en-
tanglement” of the Abelian and non-Abelian degrees of
freedom.

The non-perturbative study of chiral gauge theories
following the approach outlined in this paper is not an
easy task. With an assortment of fermion and ghost deter-
minants, numerical investigations will certainly be very
demanding. The theory contains, apart from a complex
fermion determinant, also a ghost determinant (the four-
ghost interaction terms can be transformed into bilinear
terms with the help of bosonic auxiliary fields). We en-
visage to begin with a study of the non-perturbatively
gauge-fixed Yang-Mills theory, with no fermions. This
should be interesting by itself. Moreover, it is likely that
much can be learned about the phase diagram of lattice
theories as constructed here by a combination of weak-
and strong-coupling analytic methods; work in this di-
rection is in progress. Concerning the fermions, it should
prove useful to begin with a study of the phase of the
fermion determinant on an ensemble of quenched con-
figurations. To the extent that chiral gauge theories are
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qualitatively different from vector-like gauge theories,
this difference should originate in the phase of the deter-
minant. As argued in Ref. [8], it is also sensible to check
the absence of fermion doublers for non-Abelian gauge
groups numerically in the quenched theory, as was done
there for G = U(1).

We should emphasize however, that the construction
outlined here now makes such investigations at least in
principle possible. We have developed a first complete
non-perturbative formulation of non-Abelian chiral
gauge theories, and we have provided what we believe
to be compelling evidence that, if a certain
asymptotically-free chiral gauge theory exists, it can be
studied non-perturbatively using this formulation.
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APPENDIX A

Here we show that the single-site partition function
Zgnost(1, 0) defined by the last row of Eq. (4.9) is non-zero.
Introducing auxiliary fields p; we write

/ dC dC exp[tr(X?)] = [ dC dC dp exp[—ze p?

1

+pifia,36acﬁ>:|

1
= /dp eXp(—§ZP?>
Xdet(p;fiap)-

The matrix p,g = p,fiap is real, anti-symmetric, and
even dimensional. Hence its determinant never changes
sign. This implies that the single-site ghost determinant is
non—negative.33

It remains to prove that the ghost determinant is non-
zero for some choice of p;. This is where we will use that
H is the maximal Abelian subgroup of G = SU(N).** For
definiteness, we choose p; # 0 to be proportional to that

(AD)

We assume a suitable sign convention for the Grassmann
integration measure.

*The argument generalizes trivially to larger subgroups H’
such that H C H'. More generally, it was suggested that Zg,
will be non-zero provided that the Euler characteristic of the
coset manifold G/ is non-zero [15].
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linear combination which couples to the following linear
combination of diagonal generators (in arbitrary normal-
ization)

T' = diag(1,2,...,N — 1, =N(N — 1)/2). (A2)

It is easy to see that none of the off-diagonal SU(N)
generators commute with 77. Moreover the resulting ma-
trix pop is skew-diagonal in the basis of off-diagonal
generators introduced in Eq. (2.25). For each pair T%,,
k = 1,2, we obtain a non-zero anti-symmetric two-by-
two block, which implies that det(p,) is non-zero in this
case.

APPENDIX B

In this Appendix, we comment on the Feynman rules
in the formalism in which the auxiliary fields » and S are
kept. The only part which is not completely straightfor-
ward is that of the tree-level two-point functions for W,
and A ,. The quadratic part of the action for W, and b (the
argument for A, and B is similar) is, after rescaling
W/.L _)gW,lL’ b— b/g,

1
Sow =5 [ 33,0, = @, W,
—2iba, W, + £b?), (BI)

from Egs. (2.1) and (2.22). In momentum space, this can
be written as

4
Sun =3 [ 5B Wul=p) b=p)

(%W)4 (p)
P Ouy = PuPyr —Pu\ Wulp
X ., (B2
(" o ) @2
from which it follows that
1 v
W, (D)W, (q)) = ?(a,w + (-l )a<p +q)

WL (p)b(@)) = —(b(P))W,(q)) = 2L 8(p + ¢),
p

(b(p)b(q)) = 0.

As expected, the (W, W,) propagator is the same as in the
more familiar formulation where the auxiliary field is
integrated out.

(B3)

APPENDIX C

Here we generalize the proof that the scattering matrix
is independent of the gauge parameter(s) to include gauge
bosons on the external legs. This requires an additional
argument since the (e)BRST transformation of a gauge
boson contains a term linear in a ghost field. Explicitly,
s(gWg) = 0,C* + 0(g), sy(gAL) = 9, x'. For definite-
ness, consider O = W%(k)O, where k is the W’s momen-
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tum and O is a product of fermion fields (the argument
generalizes trivially to scattering amplitudes involving
several gauge bosons). The right-hand side of Eq. (5.8)
then contains a term linear in the C ghost:

k,,<C“(k)(Ol ] d4xss(6c)>. 1)
In order to go on-shell we first multiply both sides of
Eq. (5.8) by the W’s equation-of-motion operator, con-
tracted with a (normalized) transverse polarization vector

e (Rgh + (1/¢ — DkFk) = €72, (C2)

The transverse polarizations are defined by the condi-
tions ef{') =0 and " - k = 0. (The transverse polariza-
tions are well defined already before we take the
momentum on-shell. Also notice that the contraction in
Eq. (C2) is independent of £, and thus commutes with
d/dé€) Since eif)k" = 0, the product of expressions (C1)
and (C2) vanishes (even before we take the W’s momen-
tum on shell). A similar reasoning applies to scattering
amplitudes involving an H-subgroup gauge boson A;'L.
This completes the proof that all scattering amplitudes
are independent of the gauge parameters ¢ and «.

APPENDIX D

In this Appendix we list all four-dimensional counter
terms constructed from the fields A, W, C and C, which
we will generically label as ® p» With p a label running
over A, W, C and C (see Eq. (6.12) for the four-
dimensional counter terms involving fermions). As men-
tioned in the text, we may construct the counter terms in
the continuum, and then use a suitable discretization
which does not violate any of the symmetries present on
the lattice. These symmetries are global H invariance, the
discrete group Sy € SU(N), flip symmetry, ghost-SU(2)
(which includes ghost number), hyper-cubic symmetry
and CP invariance. One generates all possibilities by
taking traces over products over CD],, with or without
derivatives, up to dimension four. Since all ®,, are trace-
less, there are terms containing one or two traces only.
One then imposes other symmetries. For instance, for
each C there has to be a C, and some possibilities have
to be chosen in linear combinations which are invariant
under flip and/or ghost-SU(2) symmetry.

In addition, since projecting on the subalgebra H or
the coset G/ is invariant under Sy and H, each trace
over a product of fields can generate new terms through
replacements like

tr(q)lq)2(D3(I)4) - tr(q)lq)zq)3q)4) + tr((q)lq)z)j_[
X (@3(1)4)5.[) + tr((q)zq):;)g.[
X (P4 D) 51),

where each term of course comes with an arbitrary coef-

DD
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ficient. In general, the product of two fields can be written
as

DD, = (DDy); + (DDy) 57 + (P Dy)g 5, (D2)

where with the subscript “1”” we indicate the part pro-
portional to the identity matrix. We can thus pick any
three of these products as independent, and construct
counter terms out of them. Here we will choose ®;D,,
(P, P,), and (PP,) 4. The term of the form (P, P,),
can be written in terms of tr(®;®,), and thus leads to a
term with two traces.

The projection onto JH can be understood in a slightly
different way. Consider the H-invariant (which is also
invariant under Sy, as we showed in Sec. II)

Ztr(TiXTf Y), (D3)

for any N X N matrices X and Y. In the orthogonal basis

defined by tr(T°T7) = 18;;, it is possible to prove that

. . 1 1
Zi:(Tl)AB(Tl)CD = ) 8480acOap — N Sap0cp. (D4

Using this relation, one obtains
Ztr(TiXTi Y) = 12){ Yun — itr(XY). (D5)
i 22 antan =5y

For the H -projected matrices Xy = 2T'tr(T'X) and Y 5/
one has

1
tr(XggY3) = > Xaa¥an — Ntr(X)tr(Y), (D6)
A
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hence

tr(X 4 Y40) = 2Ztr(TiXTiY) + %tr(XY) - %tr(X)tr(Y).

D7)

Applying this, for example, to the pre-potential in
Eq. (3.3) gives

2> w(T'U,,, T'UT ) = t((Uy ) 30 (UL ) 30)

1
+ Ntr(Ux,M)tr(U:{ﬂ) — 1. (D8)

We list all counter terms below with no explicit cou-
plings, but arbitrary real coupling constants are implied
in front of each operator. If two operators are related by
flip (or ghost-SU(2)) symmetry, we will include them
together between parentheses.

Counter terms with two fields (and thus two deriva-
tives) are

L=t ,W,0,W,)+t(d,W,0,W,)
+tr(0,W,0,W,) +1tr(d,A,0,A,)
+tr(0,A,0,A,) + tr(d ,A,0,A,)
+tr(a,,Ca, C). (DY)

Summation over all repeated space-time indices is as-
sumed, so, e.g tr(aﬂWﬂ%Wﬂ) is a shorthand for
> ptr(d,W,0,W,). Counter terms with three fields

(and thus one derivative) are

L.3=t(d,A,A,A,)+tr(d,A,A,A,)+1tr(d,A,AA,)+ tr(d, W, WW,) + tr(d, W, W, W,})
+itr(a,W,[W,, W,]) + (@, W,W,W,) + (A, {0, W, W} +it(A,[0,W, W,]) + t(A,{0,W,, W}
+i (A [0,W,, W) + (A, {0,W, W} +iuA,lo,W, W,])+u@,fo,W, W, +iw@,o,W,W,]
+it(A,({0,C C}—{d,C C})) +u(A,(o,C C]-[4,CC)) +iuW,{s,C C}—{3,C C})

+tr(W,([0,,C, C] — [9,,C, C))).

(D10)

The last four terms are examples of linear combinations invariant under flip and ghost-SU(2) symmetry. For the terms

with four fields, we get terms with two traces,

Lo =tr(A,A(AA,) + tr(A,A (A ,A,) + tr(A, A (A LA ) + te(W, W Ote(W,W,) + (W, W,)tue(W,W,)
+(W, W, )w(W,W,) + t(A,A,)a(W,W,) + (A, A, ) (W, W,) + tr(A A, (W, W,) + tr(COr(A,A,,)

+tr(CO(W,W,) + trf(CW,,)t(CW,,),

and, finally, terms with only one trace,

(D11)
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Lo.4=1t(AAAA,)+ tr(A,A

pApAy

PHYSICAL REVIEW D 70 094506

)+ (A, WHAL WD) + u(A, WA, W, ] + (A, W, KA, W,})

+tr((A, W, A, W, ]) + i (A, W, KA, W,}) + t({A,, W, HA,, W, }) + (A, W, 1A, W,])
+u({A,, WHW,, WD + (A, WIIW,, W, + i u(A,, WKW, W,}) + (A, W, W,W,)
+Hr(W,W,W,W,) + t(W, W, W,W,) + te(W,W,W,W

T

) + (W, W) 30 (W, W,) 51)

Fr(W, W) (W, W) p) + (W, W5 W, W1 5p) + (W, W, AW, Wb ) + u({C W, HC, W}
+u((C, W, W, D + u({C AHKC ALY +u(CA,NCA,D+u({C W,HC AL+ {C AHC W, D

+i wr({C, W, }C A, ]+ [C A HC W, D +u(C W,ICA,]+[CAINCW,] +u(W,, CsiW,, Cls)
+tr([Wﬂ, 6]3_[[W,u, C]g_[) + tr({Wﬂ, 6}3_[[WM, C]j_[ + [W,u, E].’]-[{W,w C}g_[) + tr@zCz) + tr([é, C]g_[[é, C]g_[)

+tr((C?) 47 (C?) 4r — (1/9{C, C}4{C, C}47).

The operator tr(CCCC) is odd under flip symmetry, and
thus excluded. Note that

tr((X, Z\Y, Z}) = —uw({X, Z}[Y, Z]) = —u([X, Y]Z?),

(D13)

for any X, Y and Z (if both X and Y are anti-commuting,
[X, Y]in the last expression should be replaced by {X, Y}).

(1]
(2]
(3]

[4]
(5]

(D12)

In particular, if X = Y, this trace vanishes. We used this
relation to eliminate a number of terms in L, 4. The only
new constraint imposed by extending ghost-number sym-
metry to ghost-SU(2) arises from the fact that the latter
mixes the two terms inside the last trace on the last row of
Eq. (D12) (compare Eq. (2.31)). Note that there are no

counter terms involving the Levi-Civita tensor €

nrpo

because of CP invariance.
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