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Light hadrons with improved staggered quarks: Approaching the continuum limit
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We have extended our program of QCD simulations with an improved Kogut-Susskind quark action
to a smaller lattice spacing, approximately 0.09 fm. Also, the simulations with a � 0:12 fm have been
extended to smaller quark masses. In this paper we describe the new simulations and computations of
the static quark potential and light hadron spectrum. These results give information about the
remaining dependences on the lattice spacing. We examine the dependence of computed quantities on
the spatial size of the lattice, on the numerical precision in the computations, and on the step size used
in the numerical integrations. We examine the effects of autocorrelations in ‘‘simulation time’’ on the
potential and spectrum. We see possible effects of decays, or coupling to two-meson states in the 0��

and 1� meson propagators. A state consistent with �� K is seen as a ‘‘parity partner’’ in the Goldstone
kaon propagator, and we make a preliminary mass computation for a radially excited 0� meson.
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I. INTRODUCTION

We have extended our ongoing program of lattice QCD
simulations with three flavors of dynamical quarks. In
this paper we describe the new simulations we have done,
and present spectrum results for the light hadrons and the
static quark potential. In a previous work [1] we presented
results for these quantities from a set of runs with a lattice
spacing of approximately 0.12 fm and light quark masses
ranging down to 0.2 times the estimated strange quark
mass. Since that time we have extended the a � 0:12 fm
runs to smaller quark masses, and increased the statistics
on themu;d � 0:2ms run. More importantly, we have done
simulations at a smaller lattice spacing of approximately
0.09 fm in quenched QCD and with three dynamical
flavors at three values of the light quark mass: mu;d �
ms, mu;d � 0:4ms, and mu;d � 0:2ms where ms is the
strange quark mass estimated before doing the simula-
tions [2]. This enables us to address the question of lattice
spacing effects, i.e., extrapolation to the continuum, to
greater accuracy than we could before. Two short runs
04=70(9)=094505(18)$22.50 70 0945
were made at larger integration step size than used in the
main simulation as an additional check on the systematic
errors in the simulation algorithm. At our smallest quark
mass, we have computed the hadron propagators in double
precision on a subset of the lattices as a check on the
numerical accuracy of the computations. Finally, we have
done an explicit test of the effects of the finite spatial size
of the simulated system by adding a run with a larger
spatial size than in the main run.

In addition to the light hadron spectrum, the gluon
configurations generated in this program are being used
for computations of the static quark potential [3], heavy
quark and heavy-light meson spectroscopy [4,5], heavy-
light meson decay constants [5,6], f�, fK, and chiral
O�p4� parameters [2,7,8], �s [9], exotic meson masses
[10], the topological susceptibility in QCD [11], semi-
leptonic form factors [12], quark masses [7,13,14], and
parton distributions [15]. For those quantities where ac-
curate lattice results are available and systematic errors
are relatively well understood, there is good agreement
with experimental values among a large set of quantities
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[16]. While this work focuses on describing the simula-
tions, the static potential, and the light hadron spectrum,
results from these other quantities are important in our
analysis. In particular, the � mass splittings give the most
accurate estimates of the lattice spacing, and several of
these quantities enter into our estimates of the correct
strange quark mass. In turn, some of the results presented
here, such as the dependence of the static potential on the
lattice spacing, and the tests of the effects of molecular
dynamics step size and spatial size of the lattices, are
important in evaluating these other works.

In Sec. III we update our results for the static quark
potential, which plays an essential role in determining the
lattice spacing, and hence all dimensional quantities.
Section IV contains hadron mass results for our recent
simulations. In Sec. V these results are checked for sensi-
tivity to numerical precision, integration step size, spatial
size of the lattice, and autocorrelations in simulation
time. Section VI discusses ‘‘decays,’’ or the appearance
of two-meson states as intermediate states in the propa-
gators. It also contains a preliminary computation of a
radially excited 0�� meson mass.
TABLE I. Parameters of the improved action
the line indicates a run which is new or has been
column gives the light and strange quark masses
gauge coupling. L is the spatial size of the lattice.
96 for the fine lattices. u0 is obtained from th
residual tabulated here is the residual used in gen
used in computing hadron propagators. � is the ti
second to the last column is the number of store
spacing in units of r1 determined from the static
spacing, discussed later, will be used to convert
with a � 0:09 fm, will be referred to as fine lat

amu;d=ams 10=g2 L u0

quenched 8.00 20 0.8879

0:02=na 7.20 20 0.8755 1

0:40=0:40 7.35 20 0.8822 2
0:20=0:20 7.15 20 0.8787 5
0:10=0:10 6.96 20 0.8739 5
0:05=0:05 6.85 20 0.8707 1
0:04=0:05 6.83 20 0.8702 5
0:03=0:05 6.81 20 0.8696 5
0:02=0:05 6.79 20 0.8688 1
�0:01=0:05 6.76 20 0.8677 1
�0:01=0:05 6.76 28 0.8677 1
�0:007=0:05 6.76 20 0.8678 1
�0.005 /0.05 6.76 24 0.8678 5

� quenched 8.40 28 0.8974
�0:031=0:031 7.18 28 0.8808 2
�0:0124=0:031 7.11 28 0.8788 5
�0:0062=0:031 7.09 28 0.8782 5

094505
II. SIMULATIONS

The simulations used here are a continuation of those
described in Ref. [1], which contains a more detailed
description of the simulation program. We use an im-
proved Kogut-Susskind quark action, the ‘‘a2tad’’ or
‘‘Asqtad’’ action, which removes lattice artifacts up to
order a2g2. Configurations were generated using the
hybrid-molecular dynamics ‘‘R algorithm’’[17], with
separate pseudofermion fields for the light and strange
quarks, except where all three quarks are degenerate. The
momenta conjugate to the gauge fields were refreshed at
the end of every trajectory, with the trajectory length
being one simulation time unit. Lattices were archived
every six time units, and the hadron spectrum and static
quark potential were calculated on these stored lattices.

Table I summarizes the parameters of the runs. For
completeness, it includes runs reported in Ref. [1],
although we will not repeat tabulation of masses from
runs that have not been extended since that time. In
identifying runs, we will quote the light (degenerate u
and d) and strange quark masses as aml=s � 0:01=0:05,
for example.
simulations. An asterisk at the beginning of
extended since the report in Ref. [1]. The first
in lattice units, and the second column, the

The time size is 64 for the coarse lattices and
e average plaquette. The conjugate gradient
erating configurations; a smaller residual was
me step size in configuration generation. The
d lattices, and the last column is the lattice
potential in this run. A ‘‘smoothed’’ lattice

results to physical units. The last four lines,
tices.

res. � lats. a=r1

na na 408 0.3762(8)

� 10�4 0.013 370 0.3745(14)

� 10�5 0.03 332 0.3766(10)
� 10�5 0.03 341 0.3707(10)
� 10�5 0.03 339 0.3730(14)
� 10�4 0.02 425 0.3742(15)
� 10�5 0.02 351 0.3765(14)
� 10�5 0.02 564 0.3775(12)
� 10�4 0.0133 484 0.3775(12)
� 10�4 0.006 67 658 0.3852(14)
� 10�4 0.006 67 241 0.3814(14)
� 10�4 0.005 493 0.3783(13)
� 10�5 0.003 298 0.3782(16)

na na 396 0.2681(5)
� 10�5 0.02 496 0.2613(9)
� 10�5 0.008 527 0.2698(9)
� 10�5 0.004 592 0.2714(9)
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TABLE II. Smoothed r1=a compared with r1=a determined
from each run. The top block is from lattices with a � 0:18 fm
from tuning runs for our high temperature simulations, while
the second and third blocks are the coarse and fine lattices,
respectively. Five short ‘‘tuning runs’’ are omitted from this
table. Several of the runs have been extended since fitting of the
smoothed r1 was done.

amu;d=ams 10=g2 r1=a (run) r1=a (smoothed)

0:0492=0:082 6.503 1.774(10) 1.778
0:0328=0:082 6.485 1.786(10) 1.788
0:0164=0:082 6.467 1.783(12) 1.797
0:0082=0:082 6.458 1.807(10) 1.802
0:082=0:082 6.561 1.816(10) 1.805
0:0492=0:0492 6.475 1.807(28) 1.766
0:0328=0:0328 6.470 1.768(30) 1.828
0:0164=0:0164 6.430 1.796(22) 1.813
0:0492=0:0492 6.500 1.818(23) 1.821
0:0492=0:0492 6.450 1.735(30) 1.713
0:0328=0:0328 6.450 1.757(30) 1.784
0:0164=0:0164 6.450 1.857(25) 1.858
0:0082=0:0082 6.420 1.843(20) 1.827

0:005=0:050 6.76 2.645(10) 2.632
0:007=0:050 6.76 2.644(09) 2.623
0:010=0:050 6.76 2.598(08) 2.610
0:010=0:050 6.76 2.621(09) 2.610
0:020=0:050 6.79 2.649(08) 2.650
0:030=0:050 6.81 2.656(10) 2.662
0:040=0:050 6.83 2.666(11) 2.673
0:050=0:050 6.85 2.679(11) 2.683
0:030=0:030 6.79 2.678(14) 2.650

0:031=0:031 7.18 3.827(12) 3.822
0:0124=0:031 7.11 3.707(13) 3.711
0:0062=0:031 7.09 3.687(12) 3.684
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III. STATIC POTENTIAL AND LENGTH SCALE

We use the static quark potential to relate the lattice
spacings in our different runs. In particular, we use the
quantity r1 defined by r21F�r1� � 1:00. We choose r1 be-
cause of its ease and accuracy of computation and lack of
dependence on the valence quark mass. Computation of
this quantity and the effects of dynamical quarks on the
potential have been discussed in Refs. [1,3]. Here we add
points at smaller quark mass and, more importantly,
points at a finer lattice spacing which allow a preliminary
continuum extrapolation. As before, we fit to the form in
Ref. [18],

V� ~r� � C� �r� �=r� �	Vfree�~r� � 1=r
: (1)

where Vfree� ~r� is the potential calculated in free field
theory, using the improved gauge action. This lattice
correction term is used at distances less than 3a.

While we expect r1=a to be a smooth function of the
quark masses and gauge couplings, r1=a determined from
fitting the potential in a particular run will have a statis-
tical error, and fluctuate from its ideal (infinite statistics)
value. To minimize the effects of these run-to-run fluc-
tuations, we have fit a smoothed r1=a for our three-flavor
lattices with quark masses less than or equal to the
strange quark mass. Over the range of masses and gauge
couplings we have used, a simple fitting form

log�r1=a� � C00 � C10

�
10

g2
� 7:0

�
� C01�2mu;d �ms�

� C20

�
10

g2
� 7:0

�
2

(2)

gives an acceptable fit with a �2 of 30.3 with 26 degrees of
freedom, with

C00 � 1:2578�27� C10 � 0:9371�93�

C01 � �0:828�29� C20 � �0:271�22�:
(3)

Table II shows values of r1=a used in the fit together with
the smoothed r1=a for each run. We have used this
smoothed r1=a in converting results from units of the
lattice spacing into units of r1.

The shape of the static quark potential is affected by
dynamical quarks. One of many possible ratios parame-
trizing this shape is the ratio r0=r1. We use the results in
Fig. 1 to extrapolate r0=r1 to the physical quark mass and
continuum limit. Simultaneously fitting coarse and fine
lattice results to a constant plus linear terms in the quark
mass and a2�s gives

r0=r1 � 1:476�7� � 0:049�10��M�=M��
2 � 0:12�4�

� �a=r1�2�s�a�=�s�0:12 fm�; (4)

with �2 � 3:6 for 8 degrees of freedom, using �s from
Ref. [9]. In fitting the potential the same distance range,���
2

p
� 6, was used for all the coarse lattices, and range
094505
���
5

p
� 7 for all the fine lattices. Therefore, the statistical

error bars in Table II and Fig. 1 appropriately represent the
fluctuations in r1=a or r0=r1 within each of these two sets
of runs. However, there is a systematic effect from the
choice of fit range which is common to all coarse runs and
all fine runs, but may differ between the two sets.Varying
the fitting range over reasonable ranges suggests that this
systematic error can be conservatively estimated as an
uncertainty of 0.01 in the difference between the coarse
and fine lattice r0=r1. This leads to a systematic uncer-
tainty of about 0.018 in the continuum extrapolation,
leading to an estimate

r0=r1 � 1:474�7��18� (5)

at the physical M�=M� in the continuum limit.
To compute r1 in physical units, we need to set the

lattice scale using a directly measurable physical quantity.
A convenient choice is the � spectrum, in particular, the
2S-1S and 1P-1S splittings. This gives a scale a�1 �
1:588�19� GeV on the coarse 0:01=0:05 lattices, and
-3



FIG. 2. Pseudoscalar masses as a function of minimum dis-
tance included in the fit from the run with 10=g2 � 7:09 and
aml=s � 0:0062=0:031. The size of the symbols is proportional
to the confidence level of the fit, with the size of the symbols in
the labels corresponding to 50%. These fits included only a
single exponential. Fits selected to quote in the mass tables are
marked with arrows.

FIG. 1. A ‘‘shape parameter’’ for the static potential, r0=r1.
The octagons are from coarse (a � 0:12 fm) lattices with three
degenerate quark flavors, and the squares from coarse lattices
with two light and one strange quark. At �M�=M��

2 � 0:15 the
upper square is from the L � 28 run and the lower from the
L � 20 run. The crosses are from the fine (a � 0:09 fm) runs.
The single diamond is from a two-flavor simulation. The burst
is the continuum and chiral extrapolation discussed in the text,
with the smaller error bar the statistical error and the larger the
systematic error. In this figure we have chosen to use �M�=M��

2

for the abscissa instead of the �M�r1�
2 used in other figures

because this lets us put the entire range of quark masses up to
the quenched limit (M� ! 1) in the graph.
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a�1 � 2:271�28� GeV on the fine 0:0062=0:031 lattices
[19]. For light quark masses & ms=2, the mass depen-
dence of these quantities and of r1 appears to be slight,
and we neglect it. With our smoothed values of r1=a, we
then get r1 � 0:324�4� fm on the coarse lattices and r1 �
0:320�4� fm on the fine lattices.

To extrapolate r1 to the continuum, we first assume that
the dominant discretization errors go like �Sa2. Using
�V�q�� [9,20] (with scale q� � 3:33=a) for �S gives a
ratio ��Sa2�fine=��Sa2�coarse � 0:428. Extrapolating away
the discretization errors linearly then results in r1 �
0:317�7� fm in the continuum. However, taste-violating
effects, while formally O��2

Sa
2� and hence sub-

leading, are known to be at least as important as the
leading errors in some cases. Therefore, one should check
if the result changes when the errors are assumed to
go like �2

Sa
2. Taking �S � �V�3:33=a� gives a ratio

��2
Sa

2�fine=��
2
Sa

2�coarse � 0:375; while a direct lattice
measurement of the taste splittings to be presented in
the next section gives a ratio of 0.35. Extrapolating line-
arly to the continuum then implies r1 � 0:318�7� fm or
r1 � 0:319�6� fm respectively, in agreement with the
094505
previous result. For our final result, we use an ‘‘average’’
ratio of 0.4 and add the effect of varying this ratio
in quadrature with the statistical error. We obtain r1 �
0:317�7��3� fm. The second error is a crude estimate of
the systematic error from the choice of fit ranges for the
static potential.

A similar calculation to estimate r0 yields 0:471�6� fm
on the coarse run and 0:466�6� fm on the fine run, with a
continuum extrapolated value of 0:462�11��4� fm, where
the second error is an estimate of the systematic error
from choice of fit ranges in the potential. If we take the
above estimate of r0=r1 and multiply by r1 � 0:317 fm,
we obtain instead r0 � 0:467 fm, and the difference in
these two calculations of r0 is another measure of system-
atic error.
IV. LIGHT HADRON MASSES

Our procedures for calculating and fitting hadron
propagators are described in Ref. [1]. With the exception
of the non-Goldstone pions at amu;d � 0:0124, we used
Coulomb gauge wall sources, with eight source time slices
evenly spread through the lattice. Propagators were fit
with varying minimum distances, and with the maxi-
mum distance either at the midpoint of the lattice or
where the fractional statistical errors exceeded 30% for
two successive time slices. In most cases, to reduce the
-4
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effect of autocorrelations, propagators from four succes-
sive lattices (24 simulation time units) were blocked
together before computing the covariance matrix.
Masses were selected by looking for a combination of a
‘‘plateau’’ in the mass as a function of minimum distance
and a good confidence level (�2) for the fit. We also made
an effort to choose minimum distances that are smooth
functions of the couplings, recognizing that statistically
we should have some fits with low and high confidence
levels.

A. Pseudoscalar mesons

We calculated masses for the exact Goldstone (�5 � �5)
pseudoscalar mesons in all of the runs. For the aml=s �

0:0124=0:031 run we calculated the masses of all of the
different taste pions, allowing us to see how the taste
symmetry breaking decreases with lattice size. Figure 2
shows the fitted masses for the pion, the kaon, and the
‘‘unmixed s�s’’ from the fine lattice run with mu;d �
TABLE III. Pseudoscalar meson masses. Here
extended since Ref. [1]; results at larger quark m
the valence quark mass(es), and the second colum
name is in the first column. Here � indicate
dynamical quarks, or degenerate in the quenche
to the light dynamical quarks and one at about m
two valence quarks with mass about ms, in a fla
are the hadron mass, the time range for the chos
for the fit, and the confidence level of the fit. T
10=g2 � 8:4, the second block from the coarse t
fine three-flavor runs. The two lines with amsea

and 28.

amvalence amsea a

0.015 (�) 1 0.216
0.03 (�) 1 0.302
0.01 (�) 0:01=0:05 0.224
0.01 (�) 0:01=0:05 0.224
0.007 (�) 0:007=0:05 0.188
0.005 (�) 0:005=0:05 0.159
0:01=0:05 (K) 0:01=0:05 0.383
0:01=0:05 (K) 0:01=0:05 0.383
0:007=0:05 (K) 0:007=0:05 0.372
0:005=0:05 (K) 0:005=0:05 0.365
0.05 (s �s) 0:01=0:05 0.494
0.05 (s �s) 0:01=0:05 0.494
0.05 (s �s) 0:007=0:05 0.493
0.05 (s �s) 0:005=0:05 0.492
0.031 (�) 0:031=0:031 0.320
0.0124 (�) 0:0124=0:031 0.206
0.0062 (�) 0:0062=0:031 0.147
0:0124=0:031 (K) 0:0124=0:031 0.272
0:0062=0:031 (K) 0:0062=0:031 0.253
0.031 (s�s) 0:0124=0:031 0.325
0.031 (s�s) 0:0062=0:031 0.327
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0:2ms. Table III shows the selected fits for the pseudosca-
lar meson masses.

With Kogut-Susskind quarks there are four ‘‘tastes’’ of
valence quark, and hence 16 different tastes of pseudo-
scalar mesons, grouped in eight multiplets. In the con-
tinuum limit these are degenerate, and the improved
action reduces these splittings relative to the one-link
fermion action. In our previous work on the coarse lattices
we verified that these pion masses show the partial taste
symmetry restoration predicted by Lee and Sharpe [21].
In particular, we expect near degeneracy between pairs of
pions between which �0 is replaced by �i, e.g. taste �0�5
with taste �i�5. Also, the squared masses are approxi-
mately linear in the quark mass, with all tastes having the
same slope. This means that a dimensionless measure of
taste symmetry breaking, �M2

� �M2
G�r

2
1, is almost inde-

pendent of the quark mass. Having verified these proper-
ties on the coarse lattice, we computed non-pointlike pion
propagators on only one of the fine lattice runs, with
10=g2 � 7:11 and aml=s � 0:0124=0:031, which has a
we include runs that are new or have been
asses can be found there. The first column is
n the sea quark mass or masses. The particle

s valence quark mass equal to the lighter
d case. K indicates one valence quark equal
s, while s�s indicates a fictitious meson with

vor nonsinglet state. The remaining columns
en fit, �2 and number of degrees of freedom
he first block is from the quenched run at

hree-flavor runs, and the last block from the
� 0:01=0:05 are from the runs with L � 20

MPS range �2=D conf.

43(14) 18– 47 25=28 0.62
59(14) 24– 47 21=22 0.53
39(20) 19–31 9:1=11 0.61
21(12) 19–31 4:7=11 0.94
81(19) 20–31 14=10 0.18
38(16) 20–31 7:5=10 0.68
27(22) 17–32 23=14 0.067
04(20) 17–32 14=13 0.38
68(25) 20–31 8:6=10 0.57
23(27) 20–31 3=10 0.98
27(18) 17–32 19=14 0.18
43(18) 17–31 17=13 0.20
17(19) 20–31 12=10 0.31
67(18) 20–31 14=10 0.18
03(18) 25–47 20=21 0.52
38(18) 30– 47 22=16 0.15
94(19) 35–47 7=11 0.8
09(18) 30– 47 23=16 0.11
19(19) 30– 47 14=16 0.61
85(17) 27–47 29=19 0.07
27(14) 32– 47 5:6=14 0.97
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TABLE IV. Taste symmetry violations on coarse and fine lattices. The second and fourth columns contain the masses for the
different pions in units of r1 for a coarse and fine lattice run. The coarse lattice run (from Ref. [1]) was at 10=g2 � 6:79 and
aml=s � 0:02=0:05, and had a lattice spacing a=r1 � 0:377. The fine lattice run was at 10=g2 � 7:11 and aml=s � 0:0124=0:031, and
had a lattice spacing a=r1 � 0:269. The physical quark masses are similar, as evidenced by the similar Goldstone pion masses. The
third and fifth columns are a measure of taste symmetry breaking, �M2

� �M2
G�r

2
1, on the coarse and fine lattices, and the final

column is the ratio of this measure between the fine and coarse lattice runs.

pion taste M�r1 (coarse) �M2
� �M2

G�r
2
1 (coarse) M�r1 (fine) �M2

� �M2
G�r

2
1 (fine) ratio

�5 0.8251(45) � � � 0.7659(7) � � � � � �

�0�5 0.9386(19) 0.2003(35) 0.8127(11) 0.0739(18) 0.369(11)
�i�5 0.9426(16) 0.2078(30) 0.8116(26) 0.0721(42) 0.347(21)
�i�j 1.0033(34) 0.3259(69) 0.8372(41) 0.1143(68) 0.351(22)
�i�0 1.0044(29) 0.3280(59) 0.8383(26) 0.1162(44) 0.354(15)
�i 1.0555(53) 0.4334(12) 0.8576(56) 0.1489(95) 0.344(22)
�0 1.0558(32) 0.4339(67) 0.8602(37) 0.1534(64) 0.354(16)
1 1.1029(80) 0.5358(75) 0.8899(93) 0.2054(165) 0.383(31)

FIG. 3. Vector meson masses as a function of minimum
distance included in the fit from the run with 10=g2 � 7:09
and aml=s � 0:0062=0:031.
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lattice spacing of a=r1 � 0:269. In Table IV we give these
pion masses, together with those from the coarse lattice
run with comparable quark masses. To facilitate compari-
son, these masses are given in units of r1. We also give the
measure of taste symmetry breaking, �M2

� �M2
G�r

2
1, for

these masses. It can be seen that �M2
� �M2

G�r
2
1 for each

taste on the fine lattices is consistently about 0.35 times
the value on the coarse lattices. This is consistent with the
expected scaling as a2�2

S described above, which, using
�s � �V�q�� and q� � 3:33=a [9], suggests a ratio of
0.375.

In a separate analysis we calculate ‘‘partially
quenched’’ pseudoscalar masses and decay constants,
where the valence quark and sea quarks have different
masses [7,8]. These results have been analyzed using
chiral perturbation theory including terms parametrizing
the taste symmetry breaking [22]. From this analysis we
find f� and fK at the physical quark masses, and values
for several of the low energy constants in chiral pertur-
bation theory. Another product of the computations of
MPS and fPS is a determination of the lattice quark masses
corresponding to the real world.We define the strange and
light quark masses at fixed lattice spacing, amlat

s and
amlat

u;d, to be the lattice masses that give the experimental
values for MK and M�. To determine amlat

s and amlat
u;d, we

fit the mass and decay constant data to chiral log forms
that take into account staggered taste violations [22]. We
find amlat

s � 0:0390�1���18
�20�, am

lat
u;d � 0:00148�1���6

�8� on
the coarse lattices, and amlat

s � 0:0272�1���12
�10�, am

lat
u;d �

0:00103�0��4� on the fine lattices, where the errors are
statistical and systematic. The systematic error is domi-
nated by that coming from the chiral extrapolation/inter-
polation and the �2% scale uncertainty.

We have also calculated masses of excited pseudoscalar
mesons. Because this requires consideration of two-
meson states, discussion of this is deferred to a later
section on hadronic decays and excited states.
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B. Vector mesons

Figure 3 shows vector meson masses versus minimum
distance fit for the fine lattice run with the lightest quark
mass. Mass estimates for all of the runs are in Table V.
Note that despite our relatively small quark masses, none
of these vector mesons are below the threshold for decay
into two pseudoscalars, since the angular momentum of
the vector mesons requires that the vector meson at rest
decay into pseudoscalars with momentum 2�=L. In
addition, we require a combination of tastes in the pseu-
doscalars that overlaps with the taste of the vector me-
son—the vector mesons tabulated here have
-6



TABLE V. Vector meson masses. Runs tabulated and the format are the same as in Table III.
Here � indicates valence quark mass equal to the lighter dynamical quarks, or degenerate in
the quenched case. K� indicates one valence quark equal to the light dynamical quarks and one
at about ms, while # indicates two valence quarks with mass about ms, although in a flavor
nonsinglet state.

amvalence amsea aMV range �2=D conf.

0.015 (�) 1 0.4660(30) 11–25 4=11 0.97
0.03 (�) 1 0.4992(15) 5–25 18=15 0.28

0.01 (�) 0:01=0:05 0.5690(50) 6–22 15=13 0.32
0.01 (�) 0:01=0:05 0.5680(30) 6–19 10=10 0.42
0.007 (�) 0:007=0:05 0.5510(40) 6–18 11=9 0.26
0.005 (�) 0:005=0:05 0.5260(110) 8–16 1:3=5 0.93
0:01=0:05 (K�) 0:01=0:05 0.6492(25) 8–23 5:2=12 0.95
0:01=0:05 (K�) 0:01=0:05 0.6462(18) 8–27 29=16 0.023
0:007=0:05 (K�) 0:007=0:05 0.6330(30) 9–23 10=11 0.54
0:005=0:05 (K�) 0:005=0:05 0.6160(30) 10–24 9:6=11 0.57
0.05 (#) 0:01=0:05 0.7193(14) 9–30 11=18 0.90
0.05 (#) 0:01=0:05 0.7194(11) 9–31 15=19 0.74
0.05 (#) 0:007=0:05 0.7114(16) 12–30 12=15 0.69
0.05 (#) 0:005=0:05 0.7127(26) 14–30 6:2=13 0.94

0.031 (�) 0:031=0:031 0.4781(14) 16–42 36=23 0.043
0.0124 (�) 0:0124=0:031 0.4173(13) 10–33 31=20 0.059
0.0062 (�) 0:0062=0:031 0.3895(28) 10–27 11=14 0.65
0:0124=0:031 (K�) 0:0124=0:031 0.4483(18) 15– 42 42=24 0.013
0:0062=0:031 (K�) 0:0062=0:031 0.4350(11) 10–34 13=21 0.91
0.031 (#) 0:0124=0:031 0.4831(8) 14–47 55=30 0.0032
0.031 (#) 0:0062=0:031 0.4810(40) 25– 45 18=17 0.39
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spin � taste � �i � �i. The vector meson masses are dis-
played in Fig. 4, where we have adjusted the valence
strange quark mass to its correct value by linearly inter-
polating between the K� and # masses in Table Vand the
corresponding � masses.

Table VI shows masses for 1� mesons. These mesons
can decay into a vector and a pseudoscalar meson, and
these simulations reach into the quark mass region where
this threshold is crossed.We defer discussion of this effect
to the next section.

C. Baryons

Table VII contains masses for the octet nucleon and #.
We do not tabulate the $ and % since our code does not
cleanly separate the light quark isospins. In principle, the
nucleon mass could be fit by methods similar to those
used for the pion mass and decay constant, incorporating
effects of continuum chiral corrections, lattice artifacts
like taste symmetry breaking, finite size effects, and
partial quenching. Such an analysis is not yet available.
However, statistical errors on the nucleon mass are much
larger than for the pseudoscalars, so this full machinery
may be less important here. An alternative strategy for
dealing with lattice artifacts is to perform a continuum
extrapolation at the quark masses used in simulations,
and then fit these extrapolated masses to continuum chiral
perturbation theory. Figure 5 shows the nucleon masses in
094505
units of r1. This graph also contains a very rough sketch
of how such a continuum and chiral extrapolation might
begin. The rightmost fancy plus is a linear extrapolation
in a2�s of the coarse and fine results at mu;d � 0:4ms to
a � 0, as indicated by the line. The middle fancy plus is a
similar continuum extrapolation at mu;d � 0:2ms. The
solid straight line is a linear extrapolation to the physical
pion mass. As a rough estimate of the effects of chiral
logarithms, the two curved lines are chiral perturbation
theory forms constrained to match the two continuum
extrapolated points. These forms have two free parame-
ters, so we emphasize that this is not a fit and there is no
test of consistency of these forms with our data. The upper
curved line is an expansion in powers of M� up to order
M2
� log�M�� from Ref. [23] and the lower curve is a form

where the nucleon-delta mass splitting is also treated as
small [24]. It is clear that fine lattice results at a smaller
quark mass will be needed, since the slopes of the chiral
perturbation theory forms are clearly different from the
lattice results for quark masses as small as 0:4ms.
V. TESTS OF SYSTEMATIC AND
STATISTICAL ERRORS

The results in the previous two sections allow us to
make several algorithm tests as well as more physical
tests.
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FIG. 4. Vector meson masses. The octagons and bursts are �
masses on coarse and fine lattices, respectively. The squares and
pluses are K� masses on coarse and fine lattices, and the
diamonds and fancy squares are # masses. The K� and #
masses have been adjusted to the correct strange quark masses
of ams � 0:039 and ams � 0:0272 obtained from the pseudo-
scalar meson analysis by linearly interpolating the meson mass
between the mass obtained with the valence strange quark mass
equal to the sea quark mass and the � meson mass. The three
bursts at the left of the graph are the experimental values, with
error bars corresponding to the uncertainty in r1.

TABLE VI. Pseudovector meson masses. Runs
Table III.

amvalence amsea aMPV

0.015 (a1) 1 0.720(4
0.03 (a1) 1 0.730(6
0.015 (b1) 1 0.741(2
0.03 (b1) 1 0.748(1

0.01 (a1) 0:01=0:05 0.820(4
0.01 (a1) 0:01=0:05 0.848(2
0.007 (a1) 0:007=0:05 0.767(2
0.005 (a1) 0:005=0:05 0.750(5
0.01 (b1) 0:01=0:05 1.020(9
0.01 (b1) 0:01=0:05 0.980(6
0.007 (b1) 0:007=0:05 0.810(4
0.005 (b1) 0:005=0:05 0.750(8

0.031 (a1) 0:031=0:031 0.667(4
0.0124 (a1) 0:0124=0:031 0.600(8
0.0062 (a1) 0:0062=0:031 0.532(1
0.031 (b1) 0:031=0:031 0.681(5
0.0124 (b1) 0:0124=0:031 0.632(9
0.0062 (b1) 0:0062=0:031 0.650(5
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A. Single versus double precision

As the valence quark masses are made smaller, the
condition number of the fermion matrix increases and
one might worry that double precision is necessary for
computing the hadron propagators. In general, we have
used single precision for the computations at each lattice
site, with global sums in double precision. At our smallest
quark mass, amu;d � 0:005, we have tested the accuracy
of our hadron spectrum and static potential computations
by repeating the computation in double precision on a
subset of the lattices. TableVIII shows results for a number
of quantities evaluated on a set of 137 lattices with
aml=s � 0:005=0:050. Note that since these are fit on
exactly the same sets of lattices with exactly the same
programs, any discrepancies are the result of the different
precision. However, we provide statistical errors to show
how the effects of roundoff compare with the statistical
errors. For all of these quantities the effects of using
single precision are small compared with the statistical
errors, and with the statistical errors we would get from
any reasonable lengthening of this run.

B. Integration step size

Our simulation algorithm is expected to introduce
errors proportional to �2 where � is the simulation time
step size. Based on previous experience and our expecta-
tions about the scaling of the fermion force with the
quark mass, we have used a step size of about 2=3 of
the light quark mass in these runs. As a check on these
effects, we have made short runs with larger step sizes at
one of our small quark masses (the same parameters at
tabulated and the format are the same as in

range �2=D conf.

0) 9–25 11=11 0.48
) 7–25 10=13 0.67
2) 6–25 7:3=14 0.92
0) 7–25 15=13 0.33

0) 6–15 5:3=6 0.50
4) 6–17 6:4=8 0.60
1) 5–15 10=7 0.16
0) 6–16 13=7 0.067
0) 6–22 15=13 0.32
0) 6–19 10=10 0.42
0) 5–18 11=10 0.34
0) 6–16 2:5=7 0.92

) 8–25 11=12 0.56
) 8–30 22=19 0.30
9) 10–26 14=13 0.36
) 7–25 21=13 0.08
) 7–33 34=23 0.07
0) 10–27 11=14 0.65
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TABLE VII. Octet baryon masses. Runs tabulated and the format are the same as in
Table III.

amvalence amsea aMB range �2=D conf.

0.015 (N) 1 0.6267(18) 8–23 14=12 0.30
0.03 (N) 1 0.7134(18) 12–30 11=15 0.78

0.01 (N) 0:01=0:05 0.7710(40) 6–16 4:4=7 0.74
0.01 (N) 0:01=0:05 0.7670(30) 6–17 3:8=8 0.88
0.007 (N) 0:007=0:05 0.7480(30) 5–14 5=6 0.54
0.005 (N) 0:005=0:05 0.7120(120) 7–15 4:3=5 0.51
0:01=0:05 (#) 0:01=0:05 0.9810(30) 8–20 5:3=9 0.81
0:01=0:05 (#) 0:01=0:05 0.9737(20) 8–21 16=10 0.09
0:007=0:05 (#) 0:007=0:05 0.9670(50) 10–20 9:2=7 0.24
0.005/0.05 (#) 0:005=0:05 0.9560(110) 11–21 6:7=7 0.46

0.031 (N) 0:031=0:031 0.6996(11) 7–37 50=25 0.0023
0.0124 (N) 0:0124=0:031 0.5815(19) 10–29 17=16 0.41
0.0062 (N) 0:0062=0:031 0.5190(40) 11–23 4:6=9 0.87
0:0124=0:031 (#) 0:0124=0:031 0.6696(17) 13–33 12=17 0.80
0:0062=0:031 (#) 0:0062=0:031 0.6519(18) 12–30 19=15 0.21
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which we checked effects of the spatial size of the lattice.)
The production runs here were done at a step size of � �
0:0067 (658 lattices), and the short tests at step sizes of
0.01 (49 lattices) and 0.013 33 (53 lattices) with lattice
size 203 � 64. Table IX shows results for the static quark
potential and some hadron masses at these different step
sizes, using the same fitting ranges in each case. Since the
FIG. 5. Nucleon masses. The octagons and diamonds are
quenched coarse and fine runs, respectively. The squares are
three-flavor coarse lattice results, and the bursts the three-flavor
fine lattices. The fancy pluses connected by the straight line and
the two curved lines are continuum and chiral extrapolations
discussed in the text. The fancy diamond is the experimental
value, with an error bar from the uncertainty in r1.
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short runs were too short for a good error analysis,
statistical errors on these quantities are estimated by
scaling the errors on the L � 20, � � 0:0067 run by the
square root of the ratio of the numbers of configurations
used.

C. Spatial size of the lattice

In one of our coarse lattice runs, 10=g2 � 6:76,
aml=s � 0:01=0:05, we have made a second run at a larger
spatial lattice size, 283 � 64. (We have also lengthened
the run with L � 20, so this is the run where we have the
best statistics.) This allows us to explicitly check the
effects of the spatial lattice size. Table X shows the results
of this test for the static quark potential and simple
hadron propagators. Note that these values of r1=a fall
on opposite sides of the interpolated (‘‘smoothed r1’’)
value of 2.610, and the values of r0=r1 fall on opposite
sides of a straight line fit to the coarse lattice points in
Fig. 1, leading us to believe that we do not see any
statistically significant finite size effects in either the
potential or the hadron masses. The sizes of these two
lattices in physical units are 2.43 and 3.40 fm, using r1 �
0:317 fm to set the scale, and M�L is 4.48 and 6.27,
respectively. Using the (staggered) chiral fits [7,8] to light
pseudoscalar masses and decay constants, it is possible to
estimate the leading finite volume correction on M�. We
expect a difference & � 0:000 26 between L � 20 and
L � 28 results, consistent with the observed value in
the simulations, & � 0:000 18�23�, shown in Table X.

D. Autocorrelations

Because of the high cost of generating sample configu-
rations with dynamical quarks, successive samples were
taken at simulation time intervals such that they are not
-9



TABLE VIII. Comparison of results with single and double precision computations. The first
three lines are the static quark potential at three different spatial separations. These separa-
tions are in the spatial region used in fitting the potential. The next two lines are parameters
extracted from fitting the potential, the inverse lattice spacing in units of r1 and a shape
parameter r0=r1. The second part of the table contains hadron propagator comparisons. The
��20� and ��6� show the pion and rho propagators summed over a time slice at time
separations 20 and 6. These distances are near the minimum of the range used in fitting
the masses, and so are among the most important distances in our fits. Finally, the last four
lines are hadron masses computed from the double and single precision propagators.

Quantity Double Single Comment

V�2; 0; 0� 0.829 883(852) 0.829 888(853) potential at r � �2; 0; 0�
V�2; 2; 2� 1.054 26(503) 1.054 51(502)
V�3; 3; 3� 1.2511(194) 1.2511(194)
r1=a 2.639 33(1679) 2.63915(1678) t � 4–5, block � 5
r0=r1 1.4566(64) 1.4566(64) t � 4–5, block � 5

��20� 411.53(1.55) 411.44(1.55) prop. at d � 20
��6� 143.76(1.78) 143.73(1.78)
aM� 0.159 65(22) 0.159 66(21) d � 20–31, �2=D � 0:60
aMK 0.365 19(34) 0.365 19(34) d � 20–32, �2=D � 0:82
aM� 0.5330(83) 0.5330(83) d � 6–14, �2=D � 0:85
aMN 0.7311(84) 0.7312(84) d � 6–14, �2=D � 0:50
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completely statistically independent. The resulting auto-
correlations (in simulation time) affect the statistical
errors on all of the computed quantities. The ‘‘exponential
autocorrelation time,’’ which is determined by the eigen-
value of the Markov process matrix which is closest to 1,
is expected to be the same for all calculated quantities.
However, the contribution of this slowest mode to various
quantities varies, and to parametrize the effect of auto-
correlations on individual quantities we use the ‘‘inte-
grated autocorrelation time,’’ &int �

P
sCQ�s�, where s

runs over the simulation time separations and CQ�s� is
the normalized autocorrelation for quantity Q,

CQ�s� �
hQ�t� s�Q�t�i � hQi2

hQ�t�Q�t�i � hQi2
: (6)

Because we need a covariance matrix to calculate masses
TABLE IX. Effect of integration step size. These are from
runs with 10=g2 � 6:76 and aml=s � 0:01=0:05. Columns two
and three are our long runs with L � 20 and 28 using a step
size of 0.0067. (Our usual practice is to use a step size about
2=3 of the lightest quark mass.) Columns four and five are from
short runs with step sizes 0.01 and 0.013 33.

L � 20 L � 28 L � 20 L � 20
Q. � � 0:0067 � � 0:0067 � � 0:0100 � � 0:013

� 1.700 92(2) 1.700 94(3) 1.700 96(7) 1.700 66(7)
�  0.074 21(10) 0.074 20(13) 0.073 74(37) 0.074 88(35)
r1=a 2.598(8) 2.621(9) 2.649(29) 2.619(28)
aM� 0.224 39(20) 0.224 21(12) 0.225 00(73) 0.225 54(70)
aM� 0.569(5) 0.568(3) 0.557(18) 0.558(18)
aMN 0.771(4) 0.767(3) 0.785(15) 0.753(14)
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from the average propagators, and getting a nonsingular
covariance matrix requires more samples than there are
points in the fit range, we cannot get a hadron mass from
one sample. So, to study autocorrelations of hadron mass
estimates we use the ‘‘mirror image’’ of this procedure —
we do single elimination jackknife fits with one sample
omitted from the data set and compute the autocorrela-
tions of these jackknife fits. Figure 6 shows the jackknife
pion masses as a function of the simulation time of the
omitted sample for the run with 10=g2 � 6:76 and
aml=s � 0:01=0:05. For example, Table XI shows CQ�6�
where Q is the �, � or nucleon mass or the amplitude in
the pion propagator, and the simulation time separation is
six units, corresponding to successive stored lattices.
From this table we can see that the normalized autocor-
TABLE X. Comparison of results with different spatial sizes.
These are from the runs with 10=g2 � 6:76 and aml=s �

0:01=0:05. The spatial sizes were L � 20 and 28, correspond-
ing to physical sizes of 2.4 and 3.4 fm, using r1 � 0:317 fm to
set the physical scale. The first two lines are parameters
extracted from fitting the potential, the inverse lattice spacing
in units of r1, and a shape parameter r0=r1. The second part of
the table contains hadron mass comparisons. & is the L � 20
value minus the L � 28 value in each row.

Quantity L � 20 L � 28 &

r1=a 2.598(8) 2.621(9) �0:023�12�
r0=r1 1.4461(36) 1.4533(34) �0:0072�50�

M� 0.224 39(20) 0.224 21(12) 0.00018(23)
M� 0.569(5) 0.568(3) 0.001(6)
MN 0.771(4) 0.767(3) 0.004(5)
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FIG. 6. Single elimination jackknife masses for the pion,
from the run with 10=g2 � 6:76 and aml=s � 0:01=0:05, using
fits with Dmin � 19.

FIG. 7. Normalized autocorrelations for the �, �, and nu-
cleon masses and the amplitude of the pion propagator as
functions of the separation in simulation time. Results for all
the coarse lattice runs are averaged together, as are all the fine
lattice runs. For each quantity, the first symbol in the legend
corresponds to the fine lattices and the second symbol to the
coarse lattices. Some symbols have been shifted horizontally to
improve readability; all time separations are integral multiples
of six.
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relation is largest for the pion mass, and has no obvious
systematic dependence on the light quark mass.
Therefore, we average the autocorrelations over the quark
masses, separately for the coarse and fine runs. The
resulting autocorrelations as a function of simulation
time separation are plotted in Fig. 7.

Not surprisingly, the autocorrelation times are larger
on the fine lattices than on the coarse lattices. In Ref. [11]
autocorrelations of the topological charge were computed
on these lattices. The topological charge evolves more
slowly than the hadron masses, with estimated autocor-
relation times as large as 35 time units for the 10=g2 �
7:18, aml=s � 0:031=0:031 run. We refer the reader to [11]
for more discussion.

VI. HADRONIC DECAYS AND EXCITED STATES

When the quark mass is small enough, most of the
hadrons we study are unstable, decaying strongly into two
or more lighter hadrons. In principle, although not always
TABLE XI. Normalized autocorrelations CQ�6� for hadron
masses and the pion amplitude in the light quark runs. The
third column is the number of samples in each run. We also
show the results averaged over all the coarse runs, and over all
the fine runs, where the third column is the total number of
coarse or fine lattices.

10=g2 amu;d N M� A� M� MN

6.85 0.05 425 0.196 0.079 0.047 0.077
6.83 0:04=0:05 351 0.383 0.127 �0:031 0.119
6.91 0:03=0:05 564 0.274 0.161 0.082 0.070
6.79 0:02=0:05 486 0.173 0.169 0.025 0.143
6.76 0:01=0:05 658 0.229 0.056 0.046 0.014
6.76 0:007=0:05 487 0.150 0.056 �0:055 �0:020

average 2971 0.229 0.106 0.024 0.062

7.18 0.031 496 0.426 0.223 0.074 0.203
7.11 0:0124=0:031 534 0.311 0.142 �0:002 0.034
7.09 0:0062=0:031 586 0.283 0.152 0.055 0.011

average 1616 0.336 0.170 0.042 0.078
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in practice, fitting to the ground state mass in our propa-
gators will give the mass of the lightest state with the
right quantum numbers in the periodic box, which in
many cases will be a two-particle state. Lattice simula-
tions are beginning to explore quark masses that are light
enough that these effects are important, and understand-
ing how to deal with them will be important for complete
studies of the hadronic spectrum. In Ref. [1] we found
effects in the 0�� (a0) channel which we attributed to
coupling to two-meson states. Figure 8 updates this plot
with more results on coarse lattices at light quark mass,
and the new results on the fine lattices. For the three-
flavor runs, the fine lattice points agree well with the
coarse lattice results. The figure also shows the mass of
the lowest energy two-meson state expected to couple to
this particle, �� +. Surprisingly, the new points at the
lighest quark masses increasingly deviate from this two-
meson mass, which is not understood. The light mass
quenched propagators remain difficult to fit, which may
not be surprising for unstable particles in an unphysical
theory.We have also tried fitting to the particle-plus-ghost
form suggested by Bardeen et al. [25], which gives fits of
comparable quality to the standard exponential form. For
quark masses where the two-meson state has lower en-
ergy, it would be satisfying to find a one-meson (a0) state
-11



FIG. 8. 0�� energies. The squares are three-flavor coarse
runs, and the fancy pluses, three-flavor fine runs. The octagons
are a quenched coarse run and the burst a quenched fine run.
The decorated square is an excited 0�� mass from one of the
runs. The diamonds and crosses are sums of � and + masses on
coarse and fine runs, respectively, where the + mass is esti-
mated from M2

+ � 1
3M

2
� � 2

3M
2
s �s, with Ms �s the unmixed s �s

pseudoscalar mass. The straight line is an extrapolation of a0
masses from heavier quark runs (not shown in this graph).

FIG. 9. 1�� energies. The squares are three-flavor coarse runs
and the bursts three-flavor fine runs. The octagons and crosses
are quenched coarse and fine runs, respectively. The diamonds
and fancy pluses are sums of rho and pion masses on coarse and
fine three-flavor runs, respectively. The fancy diamond on the
left is the experimental value, with an error bar corresponding
to the uncertainty in r1.
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as an excited state in the propagator. Our attempts to do
this have been unsuccessful so far. In the fine lattice run at
aml=s � 0:0062=0:031 we were able to extract an excited
state mass, shown as the decorated square in Fig. 8.
However, the mass of this state is still much smaller
than the extrapolations from large quark mass, and it is
likely also a two-meson state, perhaps K �K. Further work
is obviously needed to clarify the analysis of the 0��

channel.
We also expect to see the pseudovector (1�) mesons

couple to two zero-momentum mesons, although for
these mesons we are not as far below the threshold as in
the 0�� case. Figure 9 shows 1�� (b1) masses as a
function of quark mass along with the decay channel
mass M� �M�. We tentatively attribute the downturn at
the lightest quark masses to this decay, although better
statistics at the lightest coarse lattice and a lighter mass
fine lattice run would clarify the situation. Again, we are
unable to get good fits for the lightest mass quenched
propagators.

Kogut-Susskind meson propagators generally include
normal exponential contributions from one JPC value and
an oscillating exponential component from a parity part-
ner state. In the case of the Goldstone pseudoscalar with
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degenerate quark and antiquark, the parity partner has the
exotic JPC � 0�� and thus with a q �q source operator it
does not contribute to the propagator. In combination with
a relatively high signal-to-noise ratio at all time separa-
tions, this enhances our ability to determine the 0��

contributions. Specifically, in addition to the one-state
fits, which we presented in Fig. 2 and Table III, when
we performed a two-state fit of the pseudoscalar propa-
gator data, we were able to determine the mass of a
second, excited 0�� state. We have presented preliminary
results of this analysis in [26]. We fit 0�� propagators to
the form:

C�t� � A0�e�M0t � e�M0�T�t�� � A1�e�M1t � e�M1�T�t��;

(7)

where A0 and M0 are the amplitude and mass of the
ground state, and A1 and M1 are the same for the lowest
excited state. Figure 10 is a sample pion fit plot showing
the fitted values of aM0 and aM1 as a function of the
minimum time separation, Dmin, included in the fits. By
comparing to one-state fits shown in Fig. 2, note the
inclusion of an excited state in the fitting function allows
high-confidence fits to extend down to a Dmin of 2 or 3, as
might be expected. The excited state’s contribution to the
propagator decays to unresolvable levels relatively
quickly, however, and consequently larger fit distances
-12



FIG. 10. Fit plot showing ground state and excited state
masses of Goldstone pion 0�� as a function of Dmin, the
minimum distance included in the fit. This is from the run
with 10=g2 � 7:09, aml=s � 0:0062=0:031, with fits using
Dmax � 28. The symbol size is proportional to confidence level.

FIG. 11. Ground state and excited state 0�� masses as a
function of �M�r1�2. In the legend, the symbol on the left
represents fine lattice results, and that on the right the coarse
lattice results. Darker error bars are statistical error, while the
lighter error bars are systematic error from fit choice as
discussed in the text. (The pion line is trivial, since for this
mass the abscissa is just the square of the ordinate.)
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are often not so useful. Figure 11 summarizes the two-
state fits for the 0�� masses as a function of �M�r1�2.
These excited state masses fit a linear function of �M�r1�2

to a 12% confidence level. As the statistical errors on the
excited pion mass fits are large compared with the dif-
ferences between the coarse and fine lattice fits, we con-
sidered all of the mass fits together in the linear fit.
Extrapolating the resulting linear function to the physical
value of �M�r1�2 � 0:050, we get a prediction of a physi-
cal 0�� excited state at 1362�41��205� MeV, which
agrees within the large errors with the mass of the
��1300� state. The first error is statistical. The second is
the systematic error predominantly due to contributions
to the propagator which are unaccounted for in the form
of the fitting function. We estimate this by examining the
fit plots and estimating the range of mass values one
might reasonably choose, that is, this error reflects the
stability of the fitted value under variation of the fit range,
e.g., the difference between the Dmin � 3 and Dmin � 4
points in Fig. 10 and is reflected in Figs. 11 and 15 as light
error bars on the excited states.We linearly extrapolate the
individual systematic errors to �M�r1�

2 � 0:05.
Systematic errors due to chiral extrapolation, finite lattice
size and lattice spacing, are small relative to the statistical
error and the systematic error from additional states.

Similarly, an excited state is evident in the 0�� ss
propagator. The analysis of states containing strange
quarks is complicated by the fact that our simulated
094505
strange quark masses, ams � 0:050; 0:031 differ from
the physical strange quark mass, am�

s � 0:039; 0:027
(for the coarse and fine lattices, respectively) as discussed
in Sec. IVA. To correct for this, after fitting to the form of
Eq. (7), we interpolated the meson masses to the correct
physical values of the strange quark mass, m�

s , using

MPS�m�
s� � MPS�ms� � �ms �m�

s�
MPS�ms� �MPS�mu;d�

ms �mu;d
;

(8)

where we use the mass of the excited 0�� state at the
simulation value of ms for MPS�ms�, and the pion excited
state on the same lattices for MPS�mu;d�. We cannot inter-
polate masses from lattices with three flavors of degener-
ate quarks in this manner, so we eliminate them from this
analysis.

The interpolated excited state masses fit a linear func-
tion of �M�r1�2 and we again extrapolated the resulting
form to the physical �M�r1�2. The result is Mss �
1646�41��145� for the excited ss psuedoscalar state.

We have no pure ss physical 0�� with which to com-
pare ground state fits. We can, however, compare the
extrapolation of the corrected excited state masses with
the experimental mass of the +�1440�, which one expects
to be dominated by the ss contribution. This is consistent
with our result with the large systematic error. We display
-13
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all of the pion and (corrected) 0�� ss fits in Fig. 11, with
physical states for comparison.

Even more interesting is the kaon propagator. Formed
of a light quark and a strange quark, the kaon, JP � 0�,
has no definite charge-conjugation quantum number
when mu;d � ms. Consequently, it has a nonexotic parity
partner with JP � 0�, and the propagator has a tiny, but
significant oscillating component. On these lattices the
amplitude of the oscillating state is significantly smaller
than that of the kaon ground state, and the mass is greater
than that of the kaon ground state, thus it does not
interfere with single-exponential fits of the propagator
at large time separations (Dmin > 14). Two-state fits to
the form of Eq. (7) fail at all time separations because the
0� mass falls below that of the first excited 0� state.
Figure 12 shows an attempt to fit the 10=g2 � 7:09,
amu;d � 0:0062, ams � 0:031 fine lattice propagator to
two nonoscillating exponentials, as in Eq. (7). All fits are
of extremely low confidence levels and there is no evident
plateau for the excited state. Figure 13 shows fits of the
same propagator to a three-state form,
FIG. 12. Two-state fits to three-flavor kaon pseudoscalar
propagators as a function of minimum distance included in
the fit from the run with 10=g2 � 7:09 and aml=s �

0:0062=0:031. The size of the symbols is proportional to the
confidence level of the fit. Octagons and squares represent the
two 0� states, although, as discussed in the text, all of the
confidence levels for this fit are so low that these symbols are
extremely small. Standard size crosses are used for points
where both the error bar and the confidence level are too small
to be visible otherwise. These fits used Dmax � 30.

FIG. 13. Three-state fits to three-flavor kaon pseudoscalar
propagators as a function of minimum distance included in
the fit from the run with 10=g2 � 7:09 and aml=s �

0:0062=0:031. The size of the symbols is proportional to the
confidence level of the fit. Octagons and squares represent the
two 0� states; diamonds represent the oscillating 0� state.
Dmax � 30.
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C�t� � A0�e
�M0t � e�M0�T�t�� � A1�e

�M1t � e�M1�T�t��

� A2��1�t�e�M2t � e�M2�T�t��; (9)

with high confidence levels and masses of consistent
value through a large variation in the lower limit of the
fit range, Dmin.

Propagators from both fine lattice sets with mu;d � ms

were inconsistent with double exponential forms,
[Eq. (7)], but fit to triple exponentials, [Eq. (9)] with
high confidence. The same was true of the coarse lattice
sets with amu;d � 0:02. In general, we find that as
mu;d ���! ms, the amplitude of the oscillating state be-
comes indistinguishable from zero, presumably because
charge-conjugation regains its status as a good quantum
number. In the fits to kaon propagators from the coarse
lattice set with 10=g2 � 6:79, amu;d � 0:030 we were no
longer able to distinguish the amplitude of any oscillating
state from noise. Confidence levels for both two-state and
three-state fits were a few tenths of a percent, yet we
could discern equivalent plateaus for the excited 0� state
mass as a function ofDmin in each case. Attempts to read a
plateau for the oscillating state were unconvincing. For
the coarse lattices with 10=g2 � 6:81, amu;d � 0:040, and
both coarse and fine lattices with three degenerate flavors
of quarks, two-state fits resolved the excited state with
high confidence (as we have mentioned before when we
-14



FIG. 15. Summary of fits of kaon propagators. Ground state
and excited state kaon masses are interpolated to the correct
strange quark mass. The 0� parity partner state and �� K
masses are uncorrected for comparison. For the K, �, and 0�

entries in the legend, the symbol on the left represents fine
lattice results, and that on the right the coarse lattice results.
Again, darker error bars are statistical error and lighter error
bars are systematic error from fit choice.
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considered these very same fits as limiting cases of both
pions and 0�� ss mesons.)

The oscillating scalar state is far lighter than the light-
est strange 0� meson, the K�

0�1430�. It does, however,
agree well with the sum of the masses of the dominant
K�
0�1430� decay mode products, K � �, on every lattice

set for which it was measured. Resolution of the
K�
0�1430� ! K � � decay channel is additional evidence

that our simulations with light dynamical quarks cor-
rectly reproduce the expected complexities of the physi-
cal world.When we perform similar fits to quenched kaon
propagators we can find no evidence of an oscillating 0�

state, even with widely separated valence quark masses,
such as aml=s � 0:0062=0:031. Furthermore, with the
quenched kaon propagators, it is simple to extract the
contribution of the first excited 0� state, see, for example,
Fig. 14.

We have also performed an extrapolation of the excited
kaon state masses to the physical value of �M�r1�

2 �
0:050. Again considering the fine and coarse lattice data
together the excited states fit, with 8% confidence level, to
a line which intercepts �M�r1�

2 � 0:050 at 1529�46��
�63� MeV. This is in decent agreement with the K(1460)
state and inconsistent with the K(1460)’s expected decay
products, ��K, which should be at about 775 MeV. This
lends credence to the belief that the K(1460) is a true
mesonic state.

Figure 15 summarizes the fits to the kaon propagators.
As with the ss states, we have corrected the ground state
and excited state mass fits for the difference between the
FIG. 14. Quenched kaon mass fit plot showing ground state
and first excited state, with 10=g � 8:40, aml=s �

0:0062; 0:031, and Dmax � 17. Fit to Eq. (7) without an oscil-
lating state.
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simulated strange quark mass and the physical strange
quark mass using the interpolation expression (8). Since
we have measured a 0� state at only one value of the
strange quark mass for each lattice spacing, interpolation
of the 0� state is not possible. We include the pion ground
state and the sum of the pion and (uncorrected) kaon
ground state masses for comparison. We include isospin-
averaged physical states for comparison. We display these
results numerically in Table XII.

It is worth pointing out that we fit these excited state
masses in wall source propagators that were designed
specifically to minimize the contribution of excited
states. It is likely that analysis with other quark sources
would further enhance our ability to resolve excited
states.

We note that the consistency of the excited K and �
states with experiment indicates that there is no unphys-
ical scale in these channels of length * 2 lattice spacings.
This is encouraging, since nonlocalities that might be
introduced by taking the fourth root of the staggered
determinant could show up here.
VII. CONCLUSIONS

In this project we have calculated hadron masses in-
cluding the effects of three flavors of dynamical quarks,
-15



TABLE XII. Results of two- and three-state fits to 0� kaon propagators.

10=g2 amu;d=ams Nstates aM0� A0� aM� � aMK aMKex
range conf.

6.85 0.05 2 � � � � � � 0.97 1.05(2)(10) 3–18 0.36
6.83 0:04=0:05 2 � � � � � � 0.90 1.02(3)(2) 4–32 0.36
6.81 0:03=0:05 2 � � � � � � 0.81 1.07(3)(5) 4–26 0.008
6.79 0:02=0:05 3 0.63(12)(10) �3�2� 0.72 0.96(3)(2) 3–16 0.39
6.76 0:01=0:05 3 0.76(15)(4) �13�9� 0.61 1.00(5)(6) 3–16 0.27
6.76 0:007=0:05 3 0.58(4)(3) �10�2� 0.56 0.97(3)(3) 3–16 0.28
6.76 0:005=0:05 3 0.59(5)(2) �23�5� 0.53 0.99(3)(3) 3–21 0.87

7.18 0.031 2 � � � � � � 0.64 0.71(1)(4) 5–25 0.83
7.11 0:0124=0:031 3 0.47(6) �7�3� 0.48 0.64(2)(3) 5–30 0.49
7.09 0:0062=0:031 3 0.43(2) �22�3� 0.40 0.69(2)(3) 4–30 0.64
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using light quark masses down to 0:1ms and lattice spac-
ings of about 0.12 and 0.09 fm. These quark masses are
light enough that we are beginning to ‘‘see hadronic
decays’’ in the sense that the lowest energy states for
some quantum numbers may be two-meson states instead
of a single particle. To the extent that we can reasonably
expect, our spectrum results are consistent with the ex-
perimental hadron spectrum. One quantity that is sensi-
tive to the effects of sea quarks is ‘‘J,’’ which is roughly
the derivative of the vector meson mass with respect to
the squared pseudoscalar mass [27]. In particular, we plot
FIG. 16. The ‘‘J’’ parameter. The squares and crosses are
three-flavor coarse and fine lattice results, respectively. The
octagons and plus signs are quenched coarse and fine results,
while the diamond is a two-flavor run. The decorated squares
are CP-PACS/JLQCD three-flavor Wilson quark results [28].
The cross at the left is the original UKQCD quenched estimate
[27], and the burst at the left is the experimental value.
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J �
MK� �M# �M��

2�M2
K �M2

��
: (10)

This quantity is plotted in Fig. 16, which updates results
from [1], and also includes recent points from the CP-
PACS/JLQCD Collaboration [28].

Comparison of lattice results with the physical spec-
trum still requires extrapolations to zero lattice spacing
and to the physical quark masses. In principle, the ex-
trapolation to zero lattice spacing is straightforward—we
FIG. 17. The ‘‘big picture.’’ Crude continuum and chiral
extrapolations of hadron masses and splittings compared
with experimental values. The upsilon and charmonium col-
umns are differences from the ground state masses, from work
of the HPQCD and Fermilab groups [16,19]. Here the � and K
masses fix the light and strange quark masses, and the � 1P-1S
mass splitting is used to fix the lattice spacing.
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expect errors proportional to a2g2. Extrapolation to the
physical light quark mass is more difficult. First, most of
the hadrons decay strongly, and as we have seen for the
0��, and the 0� for nondegenerate quarks, simulations
with light sea quark masses show the couplings to the
decay channels. For stable hadrons the extrapolation to
physical light quark mass involves chiral logarithms.
Because of the remaining breaking of taste symmetry,
fitting to the chiral logarithms requires that the contin-
uum extrapolation be done first, or simultaneously.

In the case of the pseudoscalar masses and decay con-
stants, taste violations have been included in the chiral
perturbation theory, which makes possible a simulta-
neous extrapolation in lattice spacing and quark masses
[7,8]. The small statistical errors on pseudoscalar masses
and decay constants make this rather involved analysis
necessary, but also make it possible. Work towards com-
parable extrapolations for some other quantities, such as
the nucleon mass, is in progress.

In the meantime, it is interesting to use a less sophis-
ticated extrapolation to see how these lattice results com-
pare with the real world. Figure 17 shows such a
comparison, using a linear or quadratic extrapolation in
the light quark mass and linear extrapolation in the
squared lattice spacing. Since the difference between
the strange quark mass used in our simulations and the
correct value is roughly twice as large in the coarse runs
as in the fine runs, the extrapolation in lattice spacing also
largely corrects for the too-large strange quark mass used
in the runs. (It is not entirely an accident that the con-
tinuum extrapolation largely takes care of adjusting the
strange quark mass, since one of the largest reasons for
094505
the error in adjusting the strange quark mass was the
neglect of order a2 corrections in tuning the strange quark
mass.) Note that the lattice nucleon mass plotted here is
the linear extrapolation shown in Fig. 5; a proper chiral
extrapolation is expected to lower this value.

The spectrum results from these simulations with three
dynamical light flavors are encouraging. Clearly, how-
ever, considerably more work is needed, in particular, on
chiral extrapolations and on the handling of unstable
particles, before we can be confident that the calculations
can produce accurate and precise results in all the chan-
nels that we have examined. Runs are continuing for
mu;d � 0:1ms on both coarse and fine lattices.
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