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Finite temperature transition for 2-flavor lattice QCD at finite isospin density
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We simulate 2-flavor lattice QCD at finite isospin chemical potential �I, for temperatures close to the
finite temperature transition from hadronic matter to a quark-gluon plasma. The �I dependence of the
transition coupling is observed and used to estimate the decrease in the transition temperature with
increasing �I . These simulations are performed on an 83 � 4 lattice at three different quark masses.
Our estimate of the magnitude of the fluctuations of the phase of the fermion determinant at small
quark-number chemical potential �, suggest that the position of the small � and small �I transitions
should be the same for �I � 2�, and we argue that the nature of these transitions should be the same.
For all �I < m� the smoothness of these transitions and the values of the Binder cumulant B4, indicate
that these transitions are mere crossovers, and show no sign of a critical endpoint corresponding to that
expected at finite �. This suggests that this finite � critical endpoint, if it exists, lies at �>m�=2 over
the considered range of quark masses. For�I > m� and a small isospin (I3) breaking term 	, we do find
evidence of a critical endpoint which would indicate that, for 	 � 0, there is a tricritical point on the
phase boundary where the pion condensate evaporates, where this phase transition changes from second
to first-order.
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I. INTRODUCTION

QCD at finite baryon-/quark-number density describes
nuclear matter. Beyond nuclei it describes the physics of
neutron stars and has the potential to predict such exotic
objects as quark stars. Hot hadronic matter at low baryon-
number density was present in the early universe.
Relativistic heavy-ion collisions at RHIC and CERN pro-
duce hot nuclear matter.

QCD at a finite chemical potential � for quark-
number, has a complex fermion determinant, which
makes the naive application of standard lattice simulation
methods, which are based on importance sampling, dif-
ficult if not impossible. To circumvent these problems
people have introduced various schemes which are appli-
cable to high temperatures and small �. These include
various reweighting techniques [1–3], and methods
which expand physical observables as power series in �
[4–10] or related parameters [11].

Another approach is to study theories which are ex-
pected to possess some of the properties of QCD at finite
�, but have real positive fermion determinants, making
them amenable to standard simulation methods. One such
theory is QCD at finite chemical potential �I for isospin
(I3). This theory has been studied both by effective (chi-
ral) Lagrangian techniques [12,13], as well as by direct
lattice simulations [14]. At zero temperature these studies
indicate that this theory undergoes a second-order phase
transition with mean-field critical exponents at �I � m�,
to a state characterized by a charged pion condensate
which breaks I3 spontaneously.

We report here a study of 2-flavor lattice QCD at finite
�I and finite temperature (T), in the neighborhood of the
finite temperature transition from hadronic matter to a
04=70(9)=094501(13)$22.50 70 0945
quark-gluon plasma. Figure 1(a) is a sketch of the phase
diagram in the ��I; T� plane, which is based on this and
previous work. Since we work at finite quark mass to
make the pion massive and thus to move pion condensa-
tion to finite �I, the finite temperature transitions form a
line of crossovers emanating from the �I � 0 transition,
for small �I. This is indicated by the dashed line in the
figure. The solid lines show the phase boundary of the
superfluid phase mentioned in the previous paragraph. We
calculate the position of this crossover as a function of �I

on an 83 � 4 lattice for three different quark masses
(m � 0:05; 0:1; 0:2), from the peaks of the susceptibilities
of the various observables, using Ferrenberg-Swendsen
reweighting to interpolate between the 
 values used in
our simulations. For �I < m�, we set the symmetry
breaking parameter 	 � 0. From estimations of the fluc-
tuations of the phase of the fermion determinant for small
quark-number chemical potential � we shall argue that
there is an appreciable range of � over which these
fluctuations are small enough that the position of the
crossover at finite � will be the same as that at finite �I
with �I � 2�. We therefore show a simplified version of
the corresponding phase diagram in the ��; T� plane in
Fig. 1(b). We find good agreement with the � dependence
of this transition observed by de Forcrand and Philipsen
[6]. This agreement between the � and �I dependence of
the transition 
 � 6=g2 and hence temperature was noted
by the Bielefeld-Swansea group [4]. We also find that the
transition for each of our three masses appears to remain
a crossover with no sign of a critical endpoint correspond-
ing to that expected at finite� (shown as an open circle in
Fig. 1(b), where the line of crossovers changes to a line of
first-order transitions) for all �I < m�. Preliminary re-
01-1  2004 The American Physical Society



FIG. 1 (color online). (a) The proposed phase diagram for 2-
flavor QCD in ��I; T� plane. (b) The proposed phase diagram
for 2-flavor QCD in ��; T� plane. In both cases dashed lines are
crossovers, solid lines are phase transitions
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sults from these simulations have been presented at con-
ferences [15–17].

We have also studied the finite temperature transition
for �I > m�. Here, for symmetry breaking parameter
	 � 0, the pion condensate evaporates at the finite tem-
perature transition, which is thus a true phase transition.
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However, since here the fermion propagator becomes
singular (at least in the infinite volume limit) for tem-
peratures below this transition, because of the Goldstone
boson associated with the spontaneous breaking of I3, we
are forced to work at finite (small) 	, where the transition
again becomes a crossover. Here we shall present evidence
for a critical endpoint beyond which the transition be-
comes first-order. Because 	 is small, we shall argue that
this first-order behavior persists to 	 � 0. At 	 � 0, the
finite temperature crossover is replaced by a second-order
transition, the first-order transition remains first-order
and the critical endpoint becomes a tricritical point.
Although most of our simulations were performed on
83 � 4 lattices, we performed some simulations on 163 �
4 lattices close to the critical endpoint. In Fig. 1(a) the
open circle on the phase boundary of the superfluid region
represents this tricritical point. To the left the phase
transition is second-order; to the right it is first-order.

We should contrast this high�I behavior, with the high
� behavior shown in Fig. 1(b). At finite �, the first
transition at T � 0 is expected to occur just below
mN=3, rather than at m�=2. Thus the phase diagram
does not collapse in the chiral limit. The line of finite
temperature transitions involves chiral symmetry resto-
ration in this limit, and should therefore cross the T � 0
axis beyond the domain of normal nuclear matter.
Whether this line should mark the boundary of the sug-
gested color-superconducting phase at small T is a matter
for conjecture.

In Section II, we introduce lattice QCD at finite �I. In
Section III we define the fourth-order Binder cumulants
which we use to study the nature of the transitions.
Section IV describes our simulations and results for small
�I (�I < m�). The large �I simulations and results are
presented in Section V. Section VI contains discussions
and conclusions.
II. LATTICE QCD AT FINITE �I

The staggered quark action for lattice QCD at finite
chemical potential �I for isospin (I3) is

Sf �
X
sites

�

�
�
D6
�
1

2
�3�I

�
�m

�
�� i	� 
��2�

�
; (1)

where D6 �12 �3�I� is the standard staggered quark tran-
scription of D6 with the links in the �t direction multi-
plied by exp�12 �3�I� and those in the �t direction
multiplied by exp�� 1

2 �3�I�. The term proportional to 	
is an explicit I3 �

1
2 �3 symmetry breaking term. This

term serves two purposes. Firstly, such a term is neces-
sary if one is to see evidence for spontaneous I3 breaking
on a finite lattice. Secondly, it prevents the Dirac operator
from becoming singular, as we see below. �1, �2 and �3 are
the isospin matrices so that this Dirac operator is a 2� 2
matrix in isospin space. The determinant
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det
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(2)

where

A � D6
�
1

2
�I

�
�m; (3)

is a 1� 1 matrix in isospin space, which means that we
only need use a single flavor-component fermion field in
our simulations. This determinant is real and positive
allowing us to use standard hybrid molecular-dynamics
simulations, with noisy fermions to allow us to tune the
number of flavors from eight down to 2.

We note that, for 	 � 0, the determinant of Eq. (2) is
just the magnitude of the determinant for 8-flavor lattice
QCD with quark-number chemical potential

� �
1

2
�I: (4)

Observables for this theory include the chiral conden-
sate,

h 
  i , h 
��i; (5)

the charged pion condensate

ih 
 �5�2 i , ih 
���2�i; (6)

and the isospin density

j30 �
1

V

�@Sf
@�I

�
: (7)

We will also be interested in the Wilson Line (Polyakov
Loop), and the plaquette observable

PLAQUETTE � S� � 1�
1

3
ReTrU�: (8)

III. FOURTH-ORDER BINDER CUMULANTS

If X is an observable, its 4-th order Binder cumulant is
defined by

B4 �
h�X� hXi�4i

h�X� hXi�2i2
; (9)

which approaches a universal value at a critical point [18].
It has been pointed out if one chooses X to be an eigen-
vector of the critical scaling Hamiltonian, B4 will be as
close as is possible to its infinite volume limit on finite
volumes [19]. If one plots B4 as a function of those
parameters which parametrize the departure from the
critical point, the curves obtained for different lattice
sizes will intersect at the critical point if X is indeed an
eigenvector. For other choices of X the intersections of
such curves will only tend to this unique value in the
infinite volume limit. The value of the cumulant at this
point of intersection will be that characteristic of the
094501
universality class of this critical point and the nature of
the observable.

For transitions other than critical points, the Binder
cumulant only attains its characteristic value in the infi-
nite volume limit. For a crossover, the infinite volume
value for the Binder cumulant for the order parameter is
B4 � 3. For a first-order transition, this Binder cumulant
is B4 � 1. The critical endpoint we are seeking is ex-
pected to be in the universality class of the 3-dimensional
Ising model for which B4 � 1:604�1�. For a mean field
critical point B4 � ��5=4���1=4�=��3=4�2 � 2:1884 . . .
for a 1-component order parameter [20], or B4 � �=2 �
1:570796 . . . for a two component order parameter. At a 3-
dimensional tricritical point for a 1-component order
parameter B4 � 2 [20], and B4 � ��1=3�=��2=3�2 �
1:460998 . . . for a 2-component order parameter.
IV. SIMULATIONS AND RESULTS FOR �I < m�

We have simulated 2-flavor QCD on 83 � 4 lattices in
the neighborhood of the finite temperature transition
from hadronic matter to a quark-gluon plasma, for small
values of the isospin (I3) chemical potential �I. Here,
small �I means �I < m� so that, even at zero tempera-
ture, the system is in the normal phase, i.e., in the phase
where there is no I3-breaking charged pion condensate.
We set 	 � 0, since a finite 	 is only needed when there
is a possibility of spontaneous I3 breaking. Simulations
were performed at three different quark masses
m � 0:05; 0:1; 0:2.

At the lowest quark mass m � 0:05 we performed
simulations over a range of �I values 0 � �I � 0:55,
where the highest �I value is only just below the critical
�I above which a pion condensate forms at low tempera-
ture. (At this quark mass, our measurement of the zero
temperature transition at 
 � 5:2 indicates that the phase
transition occurs at �I � �c � 0:57.) The larger quark
masses were chosen to allow an even larger range of �Is
for the normal phase. For m � 0:1 we simulated over the
range 0 � �I � 0:7 (�c � 0:81), while for m � 0:2 we
covered the range 0 � �I � 1 (�c � 1:14). At each of the
selected�I values we performed simulations over a range
of 
 � 6=g2 values spanning the finite temperature tran-
sition. We used a range of updating increments (in
molecular-dynamics ‘‘time’’) for these simulations.
These ranged from dt � 0:1 for m � 0:1; 0:2 and small
�I down to dt � 0:01 for m � 0:05 and �I � 0:55 close
to the transition. For each quark mass we performed
simulations as long as 20; 000 molecular-dynamics
time-units (trajectories) at individual values of �
;�I�
close to a transition.

At each value of m, �I and 
 we measured the average
plaquette, the Wilson Line (Polyakov Loop), the chiral
condensate and the isospin density for each trajectory. For
the fermionic quantities, where we calculate stochastic
estimates, we used five noise vectors for each trajectory,
-3



FIG. 3 (color online). h 
  i as a function of 
 for various
�I < m� and m � 0:05.

FIG. 4 (color online). j30 as a function of 
 for various �I <
m� and m � 0:05.

FIG. 2 (color online). Wilson Line as a function of 
 for
various �I < m� and m � 0:05.
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which enabled us to make unbiased estimates of the
susceptibilities and Binder cumulants. Figure 2 shows
the Wilson Line as a function of 
 for each �I at quark
massm � 0:05. Note that there is a rapid crossover mark-
ing the transition. In addition we see that the position of
the crossover moves towards smaller 
 and hence lower
temperature as �I is increased. However, we notice that
the crossover 
, 
c varies only slowly with �I. The
corresponding values of the chiral condensate, h 
  i are
given in Fig. 3. Again we see a rapid crossover close to the
position of that for the Wilson Line. Figure 4 shows the
behavior of the isospin density j30 for the same mass and
�Is. Here we see the finite temperature transition again.
We note that the value of the isospin density in the quark-
gluon plasma (high 
) increases with increasing �I. At
each �I it appears to level off at large 
. Note that this is
not the lattice artifact of saturation; j30 in this domain is
far below its saturation value of 3. The rise in j30 occurs
because increasing �I raises the Fermi surface. These
observables for m � 0:1 and m � 0:2 behave very simi-
larly to those for m � 0:05, except that the crossovers
occur at larger 
 values as mass is increased.

The transitions we have observed in each of these
masses and chemical potentials appear to be smooth
crossovers rather than actual phase transitions, as is ex-
pected to be the case for �I � 0 (we will present further
evidence for this later in this section). The position of the
transition is thus defined as the 
 value which maximizes
a chosen susceptibility. (Such definitions and Ferrenberg-
Swendsen reweighting are used by other groups, as are the
Binder cumulant methods used below [4–7,19].) This is a
094501
reasonable definition only if the positions of the maxima
of the susceptibilities for the various observables are
close, at least in the infinite volume limit. The suscepti-
bility for a chosen observable O is defined as

�O � VhO2 � hOi2i; (10)

where V is the space-time volume of the lattice. Note that
-4



FIG. 6 (color online). Wilson line susceptibilities as functions
of 
 for �I < m�, for m � 0:05.

FIG. 7 (color online). 
  susceptibilities as functions of 
 for
�I < m�, for m � 0:05.

FIG. 5 (color online). Plaquette susceptibilities as functions
of 
 for �I < m�, for m � 0:05.
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this is the correct definition only for a local observable O.
We have also used this definition for the Wilson Loop
which is only local in 3-space. Thus what we call �Wilson
is strictly Nt�Wilson � �Wilson=T.

Figure 5 shows the plaquette susceptibilities for m �
0:05 at those 
s at which we performed our simulations
for each �I. These susceptibilities are clearly strongly
peaked, and the peaks move to lower 
s as �I is in-
creased. Figure 6 gives the corresponding susceptibilities
for the Wilson/Polyakov Line. Again these susceptibili-
ties are strongly peaked and the peak moves to lower 
 as
�I is increased. The main difference is that the peaks in
these susceptibilities decrease slightly in height as �I is
increased, whereas those for the plaquette susceptibilities
increase with increasing �I. Figure 7 shows the suscepti-
bilities for the chiral condensate, also for m � 0:05. By
using all five stochastic estimators of h 
  i and removing
the noise-diagonal contribution we obtain an unbiased
estimate of this susceptibility These susceptibilities are
the most strongly peaked of all the susceptibilities and the
height of the peaks increases with increasing �I. Finally
we show the susceptibilities for the isospin densities at
m � 0:05 in Fig. 8. Again we used the five noise vectors to
obtain an unbiased estimator. The rapid increase in the
height of these peaks with increasing �I corresponds to
the increase in j30 seen in Fig. 4.

In order to pinpoint the susceptibility peaks more
precisely, we use the distribution of observables and pla-
quette actions measured during our runs and use
Ferrenberg-Swendsen reweighting [21] to estimate the
susceptibilities at 
 values close to those at which we
094501
have performed simulations. If O is an observable for
which Oi, i � 1; . . . n are the measured values (lattice
averaged), and S�i are the corresponding plaquette ac-
tions, at 
 � 
0, then
-5



FIG. 9 (color online). 
c as functions of �2
I together with

straight line fits for each mass. The bottom set of points and
line are for m � 0:05. The middle set of points and line are for
m � 0:1. The top set of points and line are for m � 0:2.

FIG. 8 (color online). Isospin density susceptibilities as func-
tions of 
 for �I < m�, for m � 0:05.
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hOi�
� �

P
i
exp��6V�
� 
0�S�i
Oi

P
i
exp��6V�
� 
0�S�i


(11)

for 
 close enough to 
0 that the distributions of S�

values at 
 and 
0 have significant overlap. Applying
this formula to estimate both hOi and hO2i yields the
desired susceptibility �O. Jackknife methods are used
to determine the errors in both the susceptibilities and
the positions of their peaks. It turns out that for our
simulations at each m and �I, we have 3� 5
 values
close enough to the peak 
c to be used to determine 
c.
After checking that the estimates of
c from each of these
points are consistent, we obtain our final estimate as a �2

weighted average of these.
In Fig. 9 we plot our 
c estimates from each of the four

susceptibilities as functions of �2
I for all three masses.

There is clearly good agreement between the 
c values
obtained from the different susceptibilities. Arguments
as to why this should be so have been presented in
references [22–25]. Since for a fixed mass


c��I� � 
c���I� (12)


c is a function of �2
I . For j�Ij is small enough it is also

an analytic function of �I. Thus for small �I,


c��I� � a� b�2
I � c�4

I � . . . (13)

We have therefore fit 
c to the form 
c��I� � a� b�2
I ,

for each mass. Choosing to fit the plaquette susceptibili-
ties, we get
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c � 5:3198�9� � 0:134�6��2
I for m � 0:05


c � 5:3731�11� � 0:126�5��2
I for m � 0:1


c � 5:4443�27� � 0:118�4��2
I for m � 0:2:

(14)

These lines are plotted in Fig. 9. Since �2=dof is 3:2 for
m � 0:05, 1:1 for m � 0:1 and 2:4 for m � 0:2, these are
not excellent fits. However, including the quartic term
does not improve the m � 0:05 fit, and adding even more
terms would be a meaningless exercise. If we use the 2-
loop expression for the running of the coupling constant,
we can convert Eq. (14) into equations for the �I depen-
dence of Tc. At small �I, these have the form

Tc���
Tc�0�

� 1� C
�
�
T

�
2
; (15)

where we have defined � � �I=2. We estimate that C �
0:043 for m � 0:05, C � 0:040 for m � 0:1, C � 0:038
for m � 0:2 and C � 0:049 in the chiral limit. The use of
‘‘�’’ is to indicate that at these large couplings, the
systematic error in using 2-loop running of the coupling
constant for staggered quarks is undoubtably sizeable.

It was observed by the Bielefeld-Swansea group that at
small� and�I, the dependence of
c on� and on�I was
identical within their errors [4]. In our notation this would
mean that


c��� � 
c��I � 2��: (16)

This means that one can determine the position of the
finite temperature transition for small � by simulating
-6



TABLE I. Fluctuations in the phase of the fermion determi-
nant.

m 
 h�Im�j0�

2i h)2i=�2

I

0.05 5.3000 2:1�8� � 10�5 5.5(2.1)
0.05 5.3075 2:6�8� � 10�5 6.7(1.7)
0.05 5.3125 1:0�5� � 10�5 2.6(1.2)
0.05 5.3190 2:1�5� � 10�5 5.5(1.2)
0.05 5.3250 1:5�4� � 10�5 4.0(1.2)
0.05 5.3300 1:0�5� � 10�5 2.7(1.2)
0.05 5.3375 1:0�3� � 10�5 2.7(0.9)
0.10 5.3500 1:6�4� � 10�5 4.1(1.2)
0.10 5.3625 1:8�3� � 10�5 4.7(0.8)
0.10 5.3750 1:3�3� � 10�5 3.3(0.7)
0.10 5.3875 0:6�2� � 10�5 1.5(0.6)
0.10 5.4000 0:2�7� � 10�5 0.6(1.8)
0.20 5.4250 1:7�2� � 10�5 4.4(0.6)
0.20 5.4375 1:2�2� � 10�5 3.2(0.5)
0.20 5.4500 1:0�2� � 10�5 2.5(0.4)
0.20 5.4625 0:7�1� � 10�5 1.9(0.4)
0.20 5.4750 0:7�2� � 10�5 1.9(0.5)
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with the magnitude of the fermion determinant and
ignoring the phase. Let us give an intuitive argument
why this might be the case. If ) is the phase of the fermion
determinant, and O is a gauge-field observable (such as
the plaquette or Wilson line) then

hOi� �
hexp�i)�Oi�I�2�

hexp�i)�i�I�2�
; (17)

where for O real we can replace exp�i)� with cos�)�. For
the lattice size used by the Bielefeld-Swansea group,
there was a range of � over which this denominator
was not too small and varied smoothly with� and slowly
with 
, as 
 swept across the 
c. Here the denominator
cannot be responsible for the transition. When the fluctu-
ations in ) are so well-behaved, it is reasonable to treat
exp�i)�O as another observable. Since the position of the
transition appears to be nearly independent of the chosen
observable, this would suggest that the position of the
transition would be the same for this new observable. If
so, the smooth behavior of the denominator would imply
that the position of the transition at finite � should be the
same as that for the transition at finite �I for �I � 2�. It
is also not unreasonable to assume that the nature of the
two transitions might be the same. Such observations are
not new (see, for example, [26]).

If the relation between 
c��� and 
c��I� holds with
the standard staggered action (the Bielefeld-Swansea
group used the p-4 action) we can compare our formulae
for 
c��I� (Eq. (14)) with that obtained by de Forcrand
and Philipsen [6]


c � 5:2865�18� � 0:149�10��2
I for m � 0:025; (18)

where we have made the substitution � � �I=2 in their
equation. This would appear to be consistent with our
equations, taking into account the difference in mass. To
examine whether this agreement is quantitative, we fit
Eqs. (14) and (18) to the expected scaling form


c�m;�I� � 
c�m; 0� � a�m��2
I


c�m; 0� � 
c�0; 0� � bm1=
m+

a�m� � a�0� � cm1=
m+:
(19)

Such scaling fits have been considered by [27,28] at zero
chemical potentials. For the expected continuum O�4�
scaling 1=
m+ � 0:55, while for the lattice O�2� scaling
1=
m+ � 0:59. [Note that such scaling is only derivable
for the case of finite �, where, in the chiral limit, the line
of crossovers becomes a line of second-order transitions
in the same universality class as the � � 0(�I � 0) tran-
sition. We are using the assumed relationship between
finite � and finite �I to extend it to finite �I.] The fit
of all four equations to O�4� scaling gives 
c�0; 0� �
5:210�3�, b � 0:57�1�, with a �2=dof � 1:6, and a�0� �
0:152�6�, c � 0:085�19� with a �2=dof � 0:5. The fit to
O�2� scaling gives 
c�0; 0� � 5:219�3�, b � 0:59�2� with
094501
a �2=dof � 2:4 and a�0� � 0:151�6�, c � 0:087�20� with
a �2=dof � 0:5. Considering the quality of the fits in
Eq. (14), we consider either of these scaling fits to be good
enough to support our claim that we are consistent with
de Forcrand and Philipsen, and that the combined mea-
surements are consistent with the expected scaling with
quark mass m. Note that our value of 
c�0; 0� is less than
that obtained in [27,28]. We should not expect good
agreement with the later paper, since it uses a larger
lattice and finite size effects are non-negligible on an
83 � 4 lattice. The fit in the earlier work was over the
mass range 0:02 � m � 0:075, while ours was over the
range 0:025 � m � 0:2. Considering the rapid variation
of the scaling form at smallm, the difference between our
result, 5:210�3� and their’s, 5:222�3� is perhaps not
surprising.

What remains to be checked is that the phase ()) of the
fermion determinant is well-behaved. Since calculating
the fermion determinant is very expensive, we use the
series expansion for ) given in [4]. In our normalization,

) �
1

4
�IVIm�j0� �O��3

I �; (20)

where j0 is the number density normalized to four flavors
(1 staggered fermion field). We use our five stochastic
estimators/configuration of j0 to obtain an unbiased esti-
mator of h)2i through order �2

I . (We also made an un-
biased estimator of hj40i which had a poor enough signal/
noise ratio that we did not even try to estimate h)4i or the
higher order contributions to h)2i.) Our results for a range
of 
 values which span the �I � 0 transition for each
quark mass are given in Table I. A reasonable measure of
how ‘‘well-behaved’’ this phase is, is hcos�)�i. When this
-7



FIG. 10 (color online). Histograms of distribution of Wilson
Line values for m � 0:05: (a) For �I � 0:3, 
 � 5:3075;
(b) For �I � 0:55, 
 � 5:2825.
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quantity is close to 1, the oscillations in phase are small,
and it is reasonable to produce ensembles with the mag-
nitude of the determinant and to include the phase in the
measurement. When this expectation value falls towards
zero, ) is almost uniformly distributed over the interval
���;��
, and the contributions of configurations gen-
erated using the magnitude of the determinant can easily
cancel, as they would in the denominator of Eq. (17) for
this case. How small hcos�)�i can get before generating
ensembles without the phase becomes invalid is a matter
of ‘‘experimentation’’, but one might expect that
hcos�)�i> 0:5 would be a reasonable range over which
we could use this method. To the order in �I to which we
work we must take cos�)� � 1� 1

2)
2. Applying our cri-

terion to the measurements of Table I, we see that, even in
the worst case, we should be able to trust the relationship
between measurements at finite �I and finite �, out to
�2
I � 0:15, i.e., out to �I � 0:4. Thus it is not unreason-

able to assume that this relation will be a reasonable
approximation for most of the region �I < m�.

Let us now examine the nature of these transitions
more closely.We have observed that the transitions appear
smooth in all measured observables. This suggests that
they are merely rapid crossovers. Histogramming those
observables which could show discontinuities if there
were a first-order transition, shows a single broad peak
for all masses considered for all�I < m�, which suggests
a crossover (or possibly a second-order transition) but not
a first-order transition.We note that on such small lattices,
one can observe a double peak structure, even where the
transition is a crossover or second-order transition.
However, it is rare that a first-order transition would not
show a double peak, unless it were very weak. In Fig. 10
we show histograms of the Wilson Line (Polyakov Loop)
for m � 0:05 at an intermediate value of �I (0.3) and one
close tom� (0.55). These both show a single broad peak as
advertised, and are typical. [We chose to show the Wilson
Line rather than the chiral condensate, since use of sto-
chastic estimators (even after averaging over all five
estimates for each configuration) could possibly obscure
a double peak.]

Finally, we have calculated the fourth-order Binder
cumulants B4 for the chiral condensate at the transition
for each m and �I. Having five noisy estimators per
configuration, we were able to generate an unbiased esti-
mator for B4. We again use Ferrenberg-Swendsen re-
weighting to interpolate between those 
 values at
which we ran our simulations.We determined the position
of the transition for each m and �I as that 
 which
minimized B4. This method of determining the position
of the transition gave 
c values in excellent agreement
with those obtained from the maxima of the correspond-
ing susceptibilities. We plot these B4 values in Fig. 11.

If there were a critical endpoint, which is expected to
be in the Ising universality class, we would expect B4 to
094501
pass through its Ising value, B4 � 1:604, at this endpoint.
For the crossover region, B4 should lie above the Ising
value, approaching 3 in the limit of large lattices. In the
first-order domain (if it existed) B4 should lie below the
Ising value, approaching 1 in the large lattice limit. We
have plotted the Ising value as a dashed line in Fig. 11.
Clearly B4 lies well above 1:604 and shows no sign of
approaching this value. Hence the evidence from Binder
-8



FIG. 12 (color online). Wilson Line (Polyakov Loop) for
large �I on an 83 � 4 lattice with m � 0:05 and 	 � 0:005

FIG. 11 (color online). Fourth-order Binder cumulants (B4)
for h 
  i as a function of �I . The dashed line is at B4 � 1:604,
the value for the 3-dimensional Ising model.
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cumulants supports our conclusion that the transition is a
crossover for all �I < m�, over a range of quark masses.

V. SIMULATIONS AND RESULTS FOR �I > m�

In the region where �I > m�, for 	 � 0, the charged
pion condensate evaporates at the finite temperature tran-
sition and I3 symmetry, which is broken spontaneously at
low temperature, is restored. Hence, this finite tempera-
ture transition is a true phase transition. However, since in
this case the low temperature phase has a true Goldstone
mode, this would render the Dirac operator singular (at
least in the large volume limit). Hence we must use a
nonzero 	, which we keep small so that we can infer
information about the 	! 0 limit. For 	 � 0, the phase
transition is no longer required, and our earlier work
indicates that for �I just above m�, the transition is
softened to a crossover. We can now search for a critical
endpoint in the high �I (�I > m�) regime. Again the
critical endpoint would be expected to lie in the universal-
ity class of the 3-dimensional Ising model. For �I above
this endpoint the transition would be first-order.
Unfortunately, in this domain, we cannot argue that the
finite �I and the finite � transitions are related.

We have performed simulations on an 83 � 4 lattice at
quark mass m � 0:05 and 	 � 0:005, at �I � 0:6, �I �
0:8 and �I � 1:0. The �I � 0:8 simulations were re-
peated on a 163 � 4 lattice. In Fig. 12, we show the
behavior of the Wilson Lines as functions of 
 for the
three �I values from our simulations on an 83 � 4 lattice.
At �I � 1:0 we have only performed simulations very
094501
close to the transition. We obtained the high statistics
needed to reveal the true nature of this transition at those

 values closest to the transition for each �I—for �I �
0:6 we obtained 40 000 time-units at 
 � 5:27, for �I �
0:8 we obtained 40 000 time-units at 
 � 5:265 using
dt � 0:02 and a further 40 000 time-units using dt �
0:01, while at �I � 1:0 we obtained 40 000 time-units
at 
 � 5:263. We show histograms of the Wilson Line at
these 
 and �I values in Fig. 13. At �I � 0:6, the histo-
gram shows no structure to suggest anything but a cross-
over, which would then become a second-order transition
as 	! 0. By �I � 0:8 we begin to see clear signs of
double peak suggestive of a 2-state signal. The signs of a
double peak and a 2-state signal persist at �I � 1:0.

Since lattices as small as 83 � 4 can show signs of a 2-
state signal at a second-order transition or even a cross-
over, we need to examine this transition more closely. For
this reason we have performed simulations on a 163 � 4
lattice at �I � 0:8. Figure 14 shows the Wilson Line and
the pion condensate from these simulations as functions
of 
. The reason dt was decreased from 0:02 to 0:01 close
to the transition was that finite dt effects at dt � 0:02,
both here and in our 83 � 4 runs at the same �I, can
artificially enhance the 2-state signal. dt � 0:01 appears
free from such enhancements. The reason for such behav-
ior is that one effect of using a finite dt is to shift the
effective 
, measured from the kinetic energies using the
equipartition theorem, to a value lower than the input 
.
This shift is larger below the transition than above. For
dt � 0:02 below the transition, this shift is large enough
that the distribution of effective 
s has only a small
-9



FIG. 14 (color online). (a) Wilson Line as a function of 
 at
�I � 0:8 on a 163 � 4 lattice. (b) Charged pion condensate as a
function of 
 at �I � 0:8 on a 163 � 4 lattice.

FIG. 13 (color online). Wilson Line histograms for large �I
on an 83 � 4 lattice with m � 0:05 and 	 � 0:005.
(a) �I � 0:6, 
 � 5:27; (b) �I � 0:8, 
 � 5:265, dt � 0:1;
(c) �I � 1:0, 
 � 5:263.
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overlap with the input 
. This impedes tunneling from
below the transition to above the transition where the
shift is much smaller. For dt � 0:01 the shift is smaller
and the distribution of effective 
s always has appre-
ciable overlap with the input 
. Hence we do not expect
a significant suppression of tunneling leading to false
first-order signals at this dt. For our dt � 0:01 runs at

 � 5:263, 
 � 5:264 and 
 � 5:265 we ran for 30 000
time-units per 
 to obtain adequate statistics (for 
 �
5:266 and 
 � 5:267 we ran for 20 000 time-units per 
).
-10



FIG. 16 (color online). Binder cumulants of the charged pion
condensate, ih 
 �5�2 i, as functions of �I
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Figure 15 shows a histogram of the Wilson Line values
from our 
 � 5:265 runs. Although there is some double
peak structure, the peaks are considerably closer together
than they were for the 83 � 4 lattice, a sign that the
double peak structure is a finite volume artifact and not
the sign of a true 2-state signal indicating a first-order
transition.

To clarify the situation we again turn to fourth-order
Binder cumulants. Here the obvious choice is to look at
the Binder cumulants of the pion condensate, since this is
the order parameter of this transition in the 	! 0 limit.
We plot B4 versus �I in Fig. 16 obtained using
Ferrenberg-Swendsen reweighting to obtain B4 at that 

which minimizes B4 for that particular value of �I. The
83 � 4 points suggest that the Binder cumulant crosses
the Ising value somewhere above �I � 0:8 and probably
close to �I � 1:0. If so, this would indicate that there is a
critical end point with Ising critical exponents at�I � �c
with �c � 1:0. For �I > �c the transition would become
first-order. The 163 � 4 Binder cumulant at �I � 0:8 is
large enough to indicate that �c is indeed greater than
0:8. We would expect that if the transition is first-order for
	 � 0:005 it will also be first-order for 	 � 0. Hence
there will be a tricritical point for �I � �t where �t <
�c. Since 	 � 0:005 is rather small, we expect that
�t � �c.

Finally, let us note that the position of the transition at
�I � 0:6 is consistent with Eq. (14). The position of the
transitions at �I � 0:8 and �I � 1:0 lie above this pre-
diction. 
c does, however, continue to decrease with
increasing �I for �I > m�, just not as fast. This suggests
FIG. 15 (color online). Histogram of Wilson line values close
to the transition on a 163 � 4 lattice at �I � 0:8 (
 � 5:265).
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the scenario in Fig. 1 where the line of finite temperature
crossovers for �I < m� continues as a line of finite tem-
perature phase transitions for �I > m� for 	 � 0. For
small 	 the second-order transitions will soften to cross-
overs since the pion condensate is no longer a true order
parameter, the tricritical point will become a critical
endpoint, and the first-order line will survive.
VI. CONCLUSIONS

We have simulated lattice QCD with two flavors of
staggered quarks (‘‘half ’’ a staggered quark field) with a
chemical potential �I for isospin (I3), in the neighbor-
hood of the finite temperature transition. For�I < m� we
have determined the �I dependence of 
c, the transition

 � 6=g2, for each of three quark masses. We have noted
that the fluctuations of the phase of the fermion determi-
nant on an 83 � 4 lattice are well enough behaved for
small �I that there should be a range of �I for which the
dependence of 
c, and hence temperature, on �I and on
the quark-number chemical potential � should be identi-
cal for �I � 2�, as was observed previously by the
Bielefeld-Swansea group for the p-4 action [4].

What we find is that 
c falls slowly with increasing�I.
This falloff is approximately linear in �2

I over the whole
�I < m� region. The value of
c at�I � 0 increases with
mass and the falloff with increasing �2

I becomes less
steep as the mass is increased. This dependence on mass
is small. We have taken the results of de Forcrand and
Philipsen [6] and converted them from a � dependence to
a �I dependence. Since these were calculated at a smaller
-11
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mass m � 0:025 than ours, we cannot compare them
directly. We fit the mass dependence of our ‘‘data’’ and
theirs (a total of four different masses) to that expected
from critical scaling with both the continuum O�4�, and
lattice O�2� universality classes, as was done at zero
chemical potential in [27,28]. Both these fits prove ac-
ceptable. This is a direct confirmation that the �I and �
dependence of the transition temperature are the same, at
low chemical potentials.

Since the phase of the fermion determinant is an ex-
tensive quantity, the fluctuations in this phase increase
with volume. This would suggest that the relation between
finite � and finite �I transitions would fail as the spatial
volume is increased (the temporal extent is fixed at 1=T),
which is disturbing since the infinite volume limit is of
the most physical importance. We suggest that the rele-
vant phase to consider in establishing this relationship is
not that on an arbitrarily large lattice, but is rather the
phase on a lattice whose spatial size is of the order of the
correlation length. Then we could limit our considera-
tions of phase fluctuations to a modest lattice size, unless
we were very close to a critical point.

It is worthwhile quantifying what we mean when we
say that the dependence on �I is slow, and what this
means for the physical quantity, temperature. If we as-
sume that the transition temperature at �I � � � 0 is
Tc � 173 MeV, then for our m � 0:05 simulations, 2-
loop running of the coupling would imply that by �I �
0:55 or in physical units�I � 362 MeV (� � 181 MeV),
the transition temperature will have fallen to Tc �
164 MeV. The relevance of this is even more clear
when one considers that this latter � value is an order
of magnitude larger than those chemical potentials be-
lieved accessible by RHIC.

The smoothness of the transitions for �I < m� for all
three masses, and the absence of any sign of a 2-state
signal strongly suggests that there is no critical endpoint,
beyond which the transition would become first-order, in
this domain. Analysis of the 4-th order Binder cumulant
for each of the transitions, yields values * 2. Since this
quantity should pass through the 3-d Ising value 1:604�1�
at a critical endpoint and lie below this value in the first-
order region, this validates our assumption that the finite
temperature transition from hadronic matter to a quark-
gluon plasma remains a crossover throughout this region,
and suggests that there is no critical endpoint for the
corresponding range of �.

We have also studied �I > m�, where the finite tem-
perature transition for symmetry breaking parameter
	 � 0 is a true phase transition from a pion condensed
superfluid to a quark-gluon plasma. Here we have per-
formed simulations with a small 	 (0:1m), where the
second-order transition for �I just above m�, softens to
094501
a crossover. We see evidence that for �I sufficiently large
( � 1), there is a critical endpoint, where the 4-th order
Binder cumulant passes through its 3-d Ising value, and
beyond which it is first-order. This observation needs to be
confirmed on larger lattices, where the passage through
the critical endpoint is expected be considerably more
rapid. Unfortunately, in this regime, we cannot argue that
a critical endpoint in �I is in any way related to a
corresponding critical endpoint in �.

We have recently begun to extend this work to the 3-
flavor case. Not only is this more physical, but one can
argue that it is possible to tune the critical endpoint to be
as close to �I � 0 as one desires, by careful choice of the
quark mass m. In particular we can choose the critical
value �I � �c to obey �c < m�, and lie in the domain
where the � and �I transitions are related. Studies of the
3 and 2� 1 flavor transitions by various methods have
located such a critical endpoint, but their predictions of
its location are not in agreement [3,5,7]. Hence we have a
chance to clarify the situation by a more direct approach.

It has been pointed out by de Forcrand, Kim and
Takaishi [29], that simulating with finite �I provides a
better ensemble for reweighting methods for finite �,
than simulations with zero chemical potential.
Combined with our observations, this suggests that such
reweighting would be optimal close to the finite tempera-
ture transition for small �, and could be expected to give
good predictions for observables in this domain. This
should enable us to determine the equation-of-state in
this low-� domain. Of course, such reweighting requires
calculating the phase of the fermion determinant. Doing
this precisely would be prohibitively expensive for all but
the smallest lattices. New methods for approximating the
fermion determinant show promise for making these
reweighting methods practical [30].
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