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Quark-gluon vertex model and lattice-QCD data
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A model for the dressed-quark-gluon vertex, at zero gluon momentum, is formed from a non-
perturbative extension of the two Feynman diagrams that contribute at one loop in perturbation theory.
The required input is an existing ladder-rainbow model Bethe-Salpeter kernel from an approach based
on the Dyson-Schwinger equations; no new parameters are introduced. The model includes an Ansatz
for the triple-gluon vertex. Two of the three vertex amplitudes from the model provide a pointwise
description of the recent quenched-lattice-QCD data. An estimate of the effects of quenching is made.
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1We employ Landau gauge and a Euclidean metric, with
f��; ��g � 2���, �y

� � ��, and a � b �
P4
i�1 aibi.
I. INTRODUCTION

A great deal of progress in the QCD modeling of
hadron physics has been achieved through the use of the
ladder-rainbow truncation of the Dyson-Schwinger equa-
tions (DSEs). For two recent reviews, see Refs. [1,2].
Apart from one-loop renormalization group improve-
ment, this truncation is built upon a bare quark-gluon
vertex. Recent investigations with simple dressed vertex
models have indicated that material contributions to a
number of observables are possible with a better under-
standing of the infrared structure of the vertex. These
diverse model indications include an enhancement in the
quark condensate [3,4], an increase of about 300 MeV in
the b1=h1 axial-vector meson mass [5], and about
200 MeVof attraction in the �=! vector meson mass.

In the absence of well-constrained nonperturbative
models for the vertex, it has often been assumed that a
reasonable beginning is the Ball-Chiu [6] or Curtis-
Pennington [7] Abelian Ansatz times the appropriate
color matrix. An example is provided by the recent results
from a truncation of the gluon-ghost-quark DSEs where
this vertex dressing contributes materially to a reasonable
quark condensate value [3]. However, there is no known
way to develop a Bethe-Salpeter (BSE) kernel that is
dynamically matched to a quark self-energy defined in
terms of such a phenomenological dressed vertex in the
sense that chiral symmetry is preserved through the
axial-vector Ward-Takahashi identity. The latter imple-
mentation of chiral symmetry guarantees the Goldstone
boson nature of the flavor nonsinglet pseudoscalars inde-
pendently of model details [8]. There is a known con-
structive scheme [9] that defines a diagrammatic
expansion of the BSE kernel corresponding to any dia-
grammatic expansion of the quark self-energy such that
the axial-vector Ward-Takahashi identity is preserved.
For this reason, recent nonperturbative vertex models
have employed simple diagrammatic representations
[4,5,10,11].

It is only recently that lattice QCD has begun to pro-
vide information on the infrared structure of the dressed-
quark-gluon vertex [12,13]. In this work we generate a
04=70(9)=094039(6)$22.50 70 0940
model dressed vertex, for zero gluon momentum, based
on an Ansatz for nonperturbative extensions of the only
two diagrams that contribute at one-loop order in pertur-
bation theory. An existing ladder-rainbow model kernel is
the only required input. We compare to the recent lattice-
QCD data without parameter adjustment.

In Sec. II we recall the vertex to one loop in perturba-
tion theory and point out the structure and properties that
are used to suggest the Ansatz for nonperturbative exten-
sion. The nonperturbative extension is described in
Sec. III and the results are presented and discussed in
Sec. IV.

II. ONE-LOOP PERTURBATIVE VERTEX

We denote the dressed-quark-gluon vertex for gluon
momentum k and quark momentum p by igtc���p�
k; p�, where tc � �c=2 and �c is an SU(3) color matrix.
Through O�g2�, i.e., to one loop, the amplitude �� is
given, in terms of Fig. 1, by1

���p� k; p� � Z1F�� � �A
��p� k; p�

� �NA
� �p� k; p� � � � � ; (1)

with

�A
��p� k; p� � �

�
CF �

CA

2

�Z �

q
g2D���p� q�

� ��S0�q� k���S0�q���; (2)

and

�NA
� �p�k;p���

CA

2

Z �

q
g2��S0�p�q�

���D��0 �q�k�i�3g
�0�0��q�k;q�D�0��q�;

(3)
where

R
�
q �

R
� d4q=�2��4 denotes a loop integral regu-

larized in a translationally invariant manner at mass scale
�. Here Z1F��2;�2� is the vertex renormalization con-
stant to ensure �� � �� at renormalization scale �. The
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FIG. 1. The quark-gluon vertex at one loop. The left diagram
labeled A is the Abelian-like term �A

�, and the right diagram
labeled NA is the non-Abelian term �NA

� .
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following quantities are bare: the three-gluon vertex
igfabc�3g

����q� k; q�, the quark propagator S0�p�, and
the gluon propagator D���q� � T���q�D0�q2�, where
T���q� is the transverse projector. The next order terms
in Eq. (1) are O�g3�: the contribution involving the four-
gluon vertex, and O�g4�; contributions from crossed-box
and two-rung gluon ladder diagrams, and one-loop dress-
ing of the triple-gluon vertex, etc.

The color factors in Eqs. (2) and (3), given by

tatbta �
�
CF �

CA

2

�
tb � �

1

2Nc
tb;

tafabctb �
CA

2
itc �

Nc
2
itc;

(4)

reveal two important considerations. The color factor of
the (Abelian-like) term �A

� would be given by tata �
CF � �N2

c � 1�=2Nc for the strong dressing of the
photon-quark vertex, i.e., in the color-singlet channel.
The octet �A

� is of opposite sign and is suppressed by a
factor 1=�N2

c � 1�: Single gluon exchange between a
quark and an antiquark has relatively weak repulsion in
the color-octet channel, compared to strong attraction in
the color-singlet channel. Net attraction for the gluon
vertex (at least to this order) is provided by the non-
Abelian �NA

� term, which involves the three-gluon vertex:
The color factor is amplified by �N2

c over the �A
� term.

The specific form of the bare triple-gluon vertex is
conveniently expressed in terms of three momenta p1 �
q� k, p2 � �q, and p3 � �k, that are outgoing. Thus,
with �3g

����q� k; q� � ~�3g
����p1; p2; p3�, we have

~�3g
����p1; p2; p3� � �f�p1 � p2����� � �p2 � p3�����

� �p3 � p1�����g; (5)

and the complete vertex is symmetric under permutations
of all gluon coordinates. In Landau gauge �3g

��� obeys the
Slavnov-Taylor identity

k��
3g
����q� k; q� � D�1

0 �q�T���q�

�D�1
0 �q� k�T���q� k�: (6)
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The nonperturbative model of Sec. III addresses the k � 0
case and makes an extension of the bare result

�3g
����q; q� � �

@
@q�

D�1
0 �q�T���q�; (7)

which allows the amplitude for the non-Abelian diagram
at k � 0 to take the form

�NA
� �p; p� � �i

CA

2

Z �

q
��S0�p� q���

�

�
@
@q�

g2D0�q
2�

�
T���q�: (8)

It is easy to verify that the Abelian diagram gives

�A
��p; p� � �i

�
1�

CA

2
C�1
F

	
@
@p�

��1��p�; (9)

in terms of the one-loop self-energy.
The dressing provided by the combination �A

� � �NA
�

yields a vertex that satisfies the Slavnov-Taylor identity
(STI) through O�g2� [14]. This identity expresses the
divergence of the vertex in terms of the bare and one-
loop contributions to three objects: S�p��1, the ghost
propagator dressing function, and the ghost-quark scat-
tering amplitude. The one-loop S�p��1 part of this rela-
tion is generated partly from �A

� (with a weak repulsive
color strength) and partly from �NA

� (with the comple-
mentary strongly attractive color strength). The �NA

� term
also provides the explicitly non-Abelian terms of the
O�g2� STI.
III. NONPERTURBATIVE VERTEX MODEL

Our nonperturbative model for the dressed-quark-
gluon vertex is defined by extensions of Eqs. (2) and (3)
into dressed versions determined solely from an existing
ladder-rainbow model DSE kernel. The bare quark propa-
gators in Eqs. (2) and (3) are replaced by solutions of the
quark DSE in rainbow truncation, namely,

S�p��1 � Z2ip6 � Z4m���

� CF

Z �

p0

G�q2�

q2
T���q���S�p

0���; (10)

where q � p� p0. A particular ladder-rainbow kernel is
specified by the effective quark-quark coupling G�q2�.
Two different DSE models are employed and both have
the ultraviolet behavior specified by QCD with one-loop
renormalization group improvement, i.e., the one-loop
renormalizations of the quark and gluon propagators
and the pair of quark-gluon vertices have been absorbed
so that G�q2� matches 4�!one-loop

s �q2� �
4�2�m= ln�q2=�2

QCD� [15]. Here �m � 12=�33� 2Nf� is
the anomalous mass dimension which arises in the lead-
ing logarithmic behavior of the quark mass function in
the ultraviolet. The two DSE models differ in the infrared
content of G�q2� specified by parametrization.
-2



2We note that in Ref. [12] both the lattice data and the
Abelian (Ward identity) Ansatz for �3�p� are presented as
positive. These two sign errors have been acknowledged [13].

3To facilitate change of the scale �, we have slightly modi-
fied both DSE kernels (both originally defined at fixed scale
�0 � 19 GeV) by including the additional kernel strength
factor Z22��

2;�2�=Z22��
2
0;�

2� recommended by Maris [24].
This does not alter results for observables.
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The first model (DSE-Lat) [16] is defined by

G�q2�

q2
� Dlat�q

2��1�q
2; m����; (11)

where Dlat�q
2� is a fit to quenched-lattice data for the

Landau gauge gluon propagator [17] that has the correct
one-loop logarithmic behavior �ln�q2=�2

QCD�
�13=22 in

the ultraviolet. In the infrared Dlat�q2� is finite and is
suppressed with respect to the bare propagator. The vertex
factor ���1�q2; m���� represents the remaining one-loop
renormalizations for ultraviolet matching to
4�!one-loop

s �q2�=q2 (with Nf � 0) and also contains a
parametrized representation of the remaining infrared
dressing. Explicit formulas are given in Ref. [16].
Parameters are determined by requiring that the DSE
solutions reproduce the quenched-lattice data [18] for
S�p� in the available domain p2 < 10 GeV2 and m�� �
2 GeV�< 200 MeV. In this sense, the DSE-Lat model
represents quenched dynamics. It is found that the neces-
sary vertex dressing is a strong but finite enhancement.
The model easily reproduces m� with a current mass that
is within acceptable limits. However, the resulting chiral
condensate h �qqi0��1 GeV � �0:19 GeV�3 is a factor of 2
smaller than the value �0:24� 0:01 GeV�3 from a best
fit [19] of strong interaction observables [16]. This is
attributed to the quenched approximation in the lattice
data.

The second model (DSE-MT) [20] implements a one-
parameter representation for the infrared sector of G�q2�
that is fit to the empirical chiral condensate. The explicit
form is

G�q2�

q2
�

4�2Dq2

!6
e�q

2=!2
�

4�2�mF �q2�
1
2 ln�$� �1� q2=�2

QCD�
2�
:

(12)

Here the first term implements the infrared enhancement
necessary to generate the empirical condensate, while the
second term, with F �s� � f1� exp��s=�4m2

t ��g=s, con-
nects smoothly with the one-loop renormalization group
behavior of QCD. Apart from the fixed values mt �
0:5 GeV, $ � e2 � 1, Nf � 4, and �QCD � 0:234 GeV,
the free parameters, ! and D, are not independent. The
fitted observables are essentially constant along the tra-
jectory!D � �0:72 GeV�3 for! � 0:3–0:5 GeV. A stan-
dard choice is ! � 0:4 GeV and D � 0:93 GeV2. The
model provides an excellent description of a wide variety
of light-quark meson physics including the masses and
decay constants of the light-quark pseudoscalar and vec-
tor mesons [15,20], the elastic charge form factors
F��Q

2� and FK�Q2� [21], and the electroweak transition
form factors of the pseudoscalars and vectors [22,23]. In
this sense it represents unquenched dynamics.

In the ultraviolet, the �qq scattering kernel appearing in
the Abelian-like vertex diagram shown in Fig. 1(A) co-
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incides with the ladder-rainbow kernel; thus the latter
provides a suitable nonperturbative extension. We substi-
tute g2D0�q2� ! G�q2�=q2 in the integrand for �A

�, in
Eq. (2). The vertex for the external gluon is taken to be
bare.

Even in the ultraviolet, the �qq scattering kernel does
not appear explicitly in the non-Abelian vertex diagram
shown in Fig. 1(NA). However, at k � 0, the expression in
Eq. (8) for �NA

� �p; p� has combined the triple-gluon vertex
and the gluon propagators to produce a form that empha-
sizes the close connection to the ladder kernel and the
self-energy integral. The same nonperturbative extension
g2D0�q2� ! G�q2�=q2 now suggests itself for Fig. 1(NA),
and we use it. Justifications for this choice are consistency
and simplicity; no new parameters are introduced.

IV. RESULTS AND DISCUSSION

The general nonperturbative vertex at k � 0 has a
representation in terms of three invariant amplitudes;
here we choose

���p; p� � ���1�p
2� � 4p�� � p�2�p

2� � i2p��3�p
2�;

(13)

since the lattice-QCD data [12] is provided in terms of
these �i�p2� amplitudes. A useful comparison is the cor-
responding vertex in an Abelian theory like QED; it is
given by the Ward identity �WI

� �p; p� � �i@S�1�p�=@p�
in terms of the exact propagator S�1�p�. With S�1�p� �
i� � pA�p2� � B�p2�, this leads to the correspondence
�WI
1 � A, �WI

2 � �A0=2, and �WI
3 � B0, where

f0 � @f�p2�=@p2.
In Fig. 2 we display the DSE-Lat model results in a

dimensionless form for comparison with the (quenched)
lattice data.2 The renormalization scale of the lattice data
is � � 2 GeV where �1��� � 1, A��� � 1. We compare
to the lattice data set for which m��� � 60 MeV. The
same renormalization scale and conditions have been
implemented for both DSE models.3 For �1 and �3, we
also compare with the Abelian Ansatz in which the am-
plitudes are obtained from the quark propagator through
the Ward Identity, which is equivalent to the k � 0 limit
of either the Ball-Chiu [6] or Curtis-Pennington [7]
Ansatz. Without parameter adjustment, the model repro-
duces the lattice data for �1 and �3 quite well over the
whole momentum range for which data is available. The
Abelian Ansatz, while clearly inadequate for �1 below
1.5 GeV, reproduces �3. The present lattice data for �2 has
-3
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FIG. 3. The amplitudes of the dressed-quark-gluon vertex at
zero gluon momentum, and for quark current mass m�� �
2 GeV� � 60 MeV, from two models: DSE-Lat [16] and DSE-
MT [20] that relate to quenched and unquenched content,
respectively.
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FIG. 2. The amplitudes of the dressed-quark-gluon vertex at
zero gluon momentum and for quark current mass m�� �
2 GeV� � 60 MeV. Quenched-lattice data [12] is compared
to the results of the DSE-Lat model [16]. The Abelian Ansatz
(Ward identity) is also shown except for �2�p� which is almost
identical to the DSE-Lat model.
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large errors; it suggests infrared strength that is seriously
underestimated by the model. (The Abelian Ansatz for �2
is very close to the DSE model and, for reasons of clarity,
is not displayed.)

The relative contributions to the vertex dressing made
by �NA

� and �A
� are indicated by the following amplitude

ratios at p � 0: �NA1 =�
A
1 � �60, �NA2 =�

A
2 � �14, and

�NA3 =�
A
3 � �12. Thus, the non-Abelian term �NA

� domi-
nates to a greater extent than what the ratio of color
factors ( � 9) would suggest; it also distributes its infra-
red strength to favor �1 more so than does �A

�. Since the
momentum-dependent shapes of the �NAi �p� and �Ai �p�
are quite similar, the present model results could be
summarized quite effectively by ignoring �A

� and scaling
�NA
� up by about 10%.
Because of the definition of the two DSE models, their

comparison in Fig. 3 provides an estimate of the effects of
the quenched approximation. The effects are moderate
within the present DSE model framework. Figure 3 also
suggests that a model including the four-gluon vertex as
well as the two diagrams of Fig. 1 should be considered,
especially for amplitude �2. The question of the impor-
tance of the iterations of the diagrams of Fig. 1 also arises.
We have estimated such effects by iteration to all orders
based on the ladder-rainbow kernel. This amounts to
solution of a ladder Bethe-Salpeter integral equation in
which the inhomogeneity is our dressed extension of
Z1F�� � �NA

� �p; p� and the kernel term is the dressed
extension of �A

��p; p� with the internal �� replaced by
���q; q�. This generates very little change —significantly
less than the quenching effect evident in Fig. 3. This is due
to the small color factor of the kernel term. We have not
094039
explored the consequences of using the dressed vertex
self-consistently for the internal quark-gluon vertices of
�NA
� in Fig. 1(NA).
The nonperturbative Ansatz we have applied to Eq. (8)

for the non-Abelian diagram, Fig. 1(NA), effectively
includes dressing of the triple-gluon vertex �3g

���. Some
perturbative studies of �3g

��� have been made at one loop
[25,26] but they provide no guidance for extension to
infrared scales. The nonperturbative Ansätze for �3g

���

suggested in Refs. [2,27] for use within truncated
gluon-ghost-quark DSEs require explicit models for the
ghost dressing function and the ghost-gluon vertex that
appear in the STI for �3g

���. Such considerations are
beyond the scope of the present work; they would entail
additional parameters that are not warranted at this stage.

A different approach to the nonperturbative extension
of the non-Abelian diagram, Fig. 1(NA), has recently
been explored in Refs. [10,11]. That approach employs a
bare triple-gluon vertex and dressed gluon two-point
functions resulting from previous solution of a truncation
of the coupled ghost-gluon-quark DSEs [3]. (The quark-
gluon vertex within that calculation was described by the
Curtis-Pennington [7] Abelian Ansatz times the square
of the infrared enhanced ghost dressing function.) The
strong infrared suppression inherent in such gluon propa-
gator solutions produces a very weak quark-gluon vertex
unless the internal quark-gluon vertices of Fig. 1(NA) are
also enhanced. References [10,11] proceed by assuming
that attachment of a single ghost dressing function to each
vertex is appropriate for this. The results are similar to
the present work, except that the m��� � 115 MeV case
is considered [10,11].
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The infrared content of QCD two-point and three-
point functions is not a settled subject and there is much
to be gained from comparison of a variety of modeling
strategies. Our approach to the vertex differs from
Refs. [10,11] in the following respect. We exploit the
similarity between Eq. (8) for �NA

� �p; p� and a zero mo-
mentum gluon insertion into the lowest order �qq scatter-
ing kernel appearing in the rainbow diagram for the
quark self-energy. Note that if the derivative in Eq. (8)
were to act also on the transverse projector, the result
would be an Abelian-like derivative of the self-energy.
The correction terms to this are evidently small for the
resulting amplitudes �2 and �3, but they are large for �1.
Since the renormalization group improved DSE-Lat ker-
nel has infrared content that supplements quenched-
lattice data for the gluon two-point function to get a
precise fit to the quenched-lattice quark propagator
mass function, it is not surprising that our result for �3
is a closer representation of the lattice data than the
corresponding result from Refs. [10,11]. The latter works
do not determine parameters by fitting the quark
propagator.

Our approach induces effective dressing of the gluon
propagators, internal quark vertices, and the triple-gluon
vertex in one quantity that is tightly constrained by
quenched-lattice data for two-point functions. There is
no well-defined and consistent way to separate the vari-
ous contributions. If we assume this �qq kernel can be used
for each quark-gluon interaction in Fig. 1(NA) then our
Ansatz is equivalent to corresponding use of a dressed
triple-gluon vertex �3g

��� satisfying Eqs. (6) and (7) with
the substitution D0�q2� ! �G�q2�=g2��2��=q2. If one
were to replace this by the bare vertex, leaving other
factors unchanged, then the final vertex amplitudes in-
094039
crease by at least an order of magnitude; the infrared
dressing enhancements have been treated inconsistently.
An opposite extreme, that is at least consistent, is to use
the bare limit for all elements of Fig. 1(NA) except for the
quark propagator. That is, use D0�q2� ! 1=q2 in Eq. (8).
This underestimates the quark-gluon vertex amplitudes
by an order of magnitude. In the absence of clear guidance
for the infrared content of each of the two-point and
three-point functions involved, the consistent use of an
empirical ladder-rainbow kernel representation of the �qq
scattering amplitude recommends itself.

An issue of consistency that requires future attention is
the following. Both lattice data and the present model
calculation indicate that vertex amplitude �1 is infrared
enhanced to about 2.5 times the bare value. However, the
phenomenological vertex enhancement found in the DSE-
Lat model (assumed to be concentrated solely in that
single amplitude) is about 6 times this at a typical infra-
red point p2 � 0:04 GeV2 [28]. The proper distribution of
vertex strength over the many amplitudes available at
finite momenta may be part of the resolution. On a more
general note, it would be desirable to replace the phe-
nomenological aspects of the dressing effects implicitly
included for the internal quark-gluon vertices by the
results of explicit model calculations.
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