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Analytic calculation of color-Coulomb potential
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We develop a calculation scheme in Coulomb and temporal gauge that respects gauge invariance and
is most easily applied to the infrared asymptotic region of QCD. It resembles the Dyson-Schwinger
equations of Euclidean quantum field theory in Landau gauge, but is three dimensional. A simple
calculation yields a color-Coulomb potential that behaves at large R approximately like Vcoul�R� �
R�1�0:2�d�1�� for spatial dimension 1 � d � 3. This is a linearly rising potential plus a rather weak
dependence on d.
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I. INTRODUCTION

There is a simple confinement scenario in Coulomb
gauge [1,2] which, in short, attributes confinement to
the long range of the color-Coulomb potential Vcoul�R�.
This quantity is the instantaneous part of the 00-
component of the dressed gluon propagator in minimal
Coulomb gauge,1

g20D00� ~x; x0� � hg0A
a
0� ~x; x0�g0A

b
0�0; 0�i

� Vcoul�j ~xj�
�x0� � �non-instantaneous�;

(1.1)

and is given by [3]

Vcoul�x� y�

ab � hg20�M

�1�A���@2�M�1�A��abxy i: (1.2)

Here M�A� 
 �@iDi�A� is the Faddeev-Popov operator,
and the gauge-covariant derivative is defined by
�Di�A�!�

a � @i!
a � g0f

abcAbi !
c.

We present a calculation of Vcoul�R�. This quantity is of
interest because: (i) It couples universally to color charge.
(ii) Confinement of color charge may be explained by the
long range of this potential. (iii) It is a renormalization-
group invariant and is independent of the cutoff and
the renormalization mass [2]. (iv) A necessary condition
for the Wilson potential V�R� to be confining is that
Vcoul�R� be confining [4], and if both potentials rise
linearly at large R, V�R� � �R, and Vcoul�R� � �coulR,
then �coul � �. (v) We wish to compare with a recent
numerical determination [5] of Vcoul�R� that does show a
linear rise at large R, with �coul � 3�.

Calculations in the Coulomb gauge have been pursued
vigorously. For recent work and further references, see
[6]. The present approach is distinguished by particular
attention to gauge invariance, and its easiest application
is to the infrared asymptotic limit of QCD.
address: daniel.zwanziger@nyu.edu
ation ~x represents a 3-vector, but everywhere else
3-vectors are represented by x.
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II. TEMPORAL GAUGE AND COULOMB GAUGE

For simplicity we consider pure gluodynamics. In the
temporal or Weyl gauge A0 � 0 the wave functionals
	�A� depend on Aai �x� for i � 1; 2; 3. The color-electric
field operator is represented by Eai �x� � i
=
A

a
i �x�, and

the Hamiltonian by

H 

1

2

Z
d3x�E2 � B2�; (2.1)

where Bai � "ijk�@jA
a
k �

1
2 g0f

abcAbjA
c
k�, and the fabc are

the structure constants of the Lie algebra of the SU(N)
group. Wave functionals in temporal gauge are required to
be gauge invariant 	�gA� � 	�A�, where g�x� 2 SU�N�
is a three-dimensional local gauge transformation, and
gAi 
 g

�1
0 g

�1@ig� g
�1Aig. These continuum equations

have precise analogs in lattice gauge theory, where
the Kogut-Suskind Hamiltonian replaces the Weyl
Hamiltonian.

Poincare invariance of the continuum theory is pre-
served because the Hamiltonian density T00 � 1

2 �

�E2 � B2� satisfies the Dirac-Schwinger equal-time com-
mutation relation

�T00�x�; T00�y�� � �i�T0i�x� � T0i�y��@i
�x� y� � S:T:;

(2.2)

where T0i � 1
2"ijk�E

a
jB
a
k � B

a
kE
a
j � is the Poynting vector ,

and S.T. is the Schwinger term [7].
Inner products in temporal gauge �	1;	2� �

N
R
dA	�

1�A�	2�A� are divergent because of the gauge
invariance of the wave functionals. They may be made
finite by using the Faddeev-Popov identity

�	1;	2� �
Z

�
dAtr detM�Atr�	�

1�A
tr�	2�Atr�: (2.3)

The integral extends over three-dimensionally transverse
configurations in the fundamental modular region �,
which is a region free of Gribov copies. To be definite
we suppose that we are in the minimal Coulomb gauge,
which is obtained by minimizing FA�g� � kgAk2 with
34-1  2004 The American Physical Society
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respect to gauge transformations g�x�, so that kAk �
kgAk for all g�x� and all A in �.

Wave functionals in minimal Coulomb gauge 	�Atr�
are the restriction of gauge-invariant wave functionals in
temporal gauge 	�A� to the fundamental modular region
�. Conversely, every wave functional in minimal
Coulomb gauge has a unique gauge-invariant extension
to temporal gauge. Every point A in the interior of �, is a
unique absolute minimum (modulo global gauge trans-
formations), so that strict inequality holds kAk< kgAk
[for all g�x� that is not a global gauge transformation]. But
every point A1 on the boundary @� or � is related by a
local gauge transformation g�x� to some other point A2 �
gA1 also on @�, with which it is degenerate, kA1k �
kA2k. This gauge transformation may be infinitesimal
A2 � A1 � "D�A1�!, where D�A1�! is tangent to @�.
Gauge invariance requires that the wave functional in
Coulomb gauge be identified at corresponding boundary
points 	�A2� � 	�A1�, or, for the infinitesimal case, that
the wave functional satisfies �D�A1�!;


	

A jA1� � 0. This

provides the boundary condition that is needed to make
the Hamiltonian in Coulomb gauge well defined and
symmetric. The identification of boundary points is often
ignored because one does not know explicitly what the
boundary of � is. But in general it would be a violation of
gauge invariance to ignore this identification and take
arbitrary wave functionals in so-called physical coordi-
nates which are the transverse configurations in �. In
order not to make this error, in the present article we shall
use wave functionals 	�A� that are manifestly gauge
invariant.

As an example, we exhibit an approximate vacuum
wave functional that is gauge invariant. The variation of
the color-magnetic field is given by


Bai � "ijkD
ac
j 
A

c
k 
 �D̂
A�ai ; (2.4)

which defines the Hermitian operator D̂�A� that is the
gauge-covariant curl. Consider the wave functional

� � exp
�
�

1

2

Z
d3xBai ��D̂

2��1=2B�ai

�
: (2.5)

The operator D̂�A� has small eigenvalues when acting on
longitudinal fields, but the Bianchi identity DiBi � 0
insures that the wave functional is regular. We have 
�
Ai �

��D̂�D̂2��1=2B�i�, and

�
1

2

Z
d3x

2�


A2
i

�
Z
d3x

�
�

1

2
B2 � f

�
�; (2.6)

where f�x� 
 1
2 ��D̂

2�1=2�aaii �x; y�jy�x, and � means that
derivatives with respect to �D̂2��1=2 are neglected. The
first term will cancel the magnetic energy density, which
is the most singular term, being the product of quantum
fields at the same point. We have f�x� � e� u�x; A�,
where e � 1

2 ��@
2�1=2�aaii �x; y�jy�x is a divergent constant,
094034
and u�x; A� is a gauge-invariant nonlocal functional that
vanishes with A. The Schrödinger equation reads

H� �
Z
d3x�e� u�x; A���; (2.7)

and is violated by nonlocal terms only.
III. CALCULATIONAL SCHEME

The vacuum wave functional 	0�A� is positive, and we
write 	0�A� � exp��S�A�=2�, where S�A� is manifestly
gauge invariant. We assume that S�A� is either an approxi-
mate expression, such as the one given above, or a trial
expression. With gauge-invariant wave functionals it is
difficult to evaluate matrix elements by direct integration,
and we shall borrow techniques from Euclidean quantum
field theory. We have j	0�A�j2 � exp��S�A��, and we
define the generating functional of equal-time correlators,

Z�J� 

Z

�
dAtr exp�J; Atr� detM�Atr� exp��S�Atr��; (3.1)

normalized to Z�0� � 1. This is precisely the formula for
the partition function or generating functional of three-
dimensional Euclidean gauge theory in the minimal
Landau gauge, with the Yang-Mills Euclidean action
SYM�A� replaced by some gauge-invariant action S�A�.
Only the transverse part of the source Jai �x� contributes,
and we take Ji to be identically transverse @iJi � 0 and
Ji � Jtri .

We do not have an explicit expression for �, and we rely
on the argument of [8] that fundamental modular region
� and the Gribov region � have the same moments or
correlators so we may integrate over � instead of �,

Z�J� 

Z

�
dAtr exp�J; Atr� detM�Atr� exp��S�Atr��: (3.2)

Whereas � is the set of absolute minima of the minimiz-
ing functional, the Gribov region � is the set of relative
minima. The matrix of second derivatives of the mini-
mizing functional is the Faddeev-Popov operatorM�A�. It
is a non-negative matrix at a relative minimum, so the
Gribov region � is the set of transverse configurations Atr

for which all eigenvalues &n�Atr� of M�Atr� are non-
negative, &n�Atr� � 0. The interior of � consists of points
Atr where all eigenvalues are strictly positive, &n�Atr�> 0
(apart from a trivial null-eigenvector corresponding to
global gauge transformations). Its boundary @� consists
of points where M�Atr� has a nontrivial null-eigenvector
M�Atr�! � 0, so &1�Atr� � 0 and all other eigenvalues are
non-negative, &n�Atr� � 0, for Atr 2 @�.

We do not have an explicit expression for � either,
by we may exploit the fact that the integrand of (3.2)
vanishes on @� to derive the Dyson-Schwinger (DS)
equations nevertheless [9]. Indeed the Faddeev-Popov
determinant vanishes for Atr 2 @�, detM�Atr� �Q
n&n�A

tr� � 0. Thus the identity
-2
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0 �
Z

�
dAtr 



Atr
i �x�

fexp�J; Atr� detM�Atr� exp��S�Atr��g;

(3.3)

holds without a contribution from the boundary @�. The
set of DS equations in functional form,


�


Atr;a
i �x�

�



J

�
Z�J� � Jai �x�Z�J�; (3.4)

follow from this identity. Here ��Atr� 
 S�Atr� �
tr lnM�Atr� is the effective action. Because the integrand
vanishes on @�, the DS equations have the same form
as they would if the integral (3.3) were extended to
infinity. It is not necessary to know the boundary @�
explicitly, and the cutoff at @� is implemented by impos-
ing on the solution of the DS equations the natural pos-
itivity conditions that must be satisfied by the (equal-
time) correlator hAi�x�Aj�y�i, by the ghost propagator
G�x� y� � hg0M

�1�Atr��x; y�i, and by the higher-order
correlators.

As in Euclidean quantum field theory, we rewrite (3.4)
as a functional DS equation for W�J� 
 lnZ�J�, which is
the analog of the free energy


�


Atr;a
i �x�

�

W

J

�



J

�
1 � Jai �x�: (3.5)

By Legendre transformation we convert this to a
functional DS equation for the analog of the quantum
effective action ��Atr� 
 �Atr; J� �W�J�, where Atr;a

i �x� 


W�J�

Jai �x�

,


�


Atr;a
i �x�

�
Atr �D




Atr

�
1 �


�


Atr;a
i �x�

; (3.6)

where D is the gluon propagator in the presence of the
source D�1�Atr� � 
2�


Atr
Atr . The problem of evaluating cor-
relators by direct functional integration has been replaced
by the problem of solving the DS equations and, given the
action S�A�, we can, at least in principle, calculate all
correlators by solving the DS equations for ��Atr�.

Suppose we take a trial expression S�A; +� for the
gauge-invariant action that depends on some unknown
parameters +. These parameters are determined by min-
imizing E�+� 
 hHi � �	0; H	0�. To calculate E�+�,
write H � He �Hm. We have Hm � 1

2

R
d3xB2�x�, where

Bai �x� � B
a
i �x;A

tr�, and the magnetic energy is given by

Em�+� � hHmi �
1

2

Z
d3xB2

�
x;



J

�
Z�J�jJ�0: (3.7)

To calculate the electric energy

Ee�+� � hHei �
1

2

Z
d3x

Z
�
dAtr detM�Atr�jE�x�	0j

2;

(3.8)
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we evaluate Ei	 in temporal gauge and then restrict
to �. With 	0�A� � exp�� 1

2S�A��, we have Eai �x�	0 �

i 
	0


Aai �x�
� �iEai �x;A�	0, where Eai �x;A� 


1
2

S�A�

Aai �x�

, which

gives

Ee�+� �
1

2

Z
d3x

Z
�
dAtr detM�Atr�E2�x;Atr�

� exp��S�Atr��

�
1

2

Z
d3xE2

�
x;



J

�
Z�J�jJ�0: (3.9)

Now E�+� � Ee�+� � Em�+� has, in principle, been ex-
pressed in terms of the + parameters that appear in
S�A; +�.

IV. INFRARED ANSATZ

This program may be difficult to carry out, especially
if the action S�A� is nonlocal. However if our experience
with DS equations with action SYM�A� is a reliable guide,
then a remarkable simplification occurs in the infrared
limit, as we now explain.

The DS equations with Yang-Mills action were first
solved, with due attention to the ghost contribution, in
[10]. The subject is reviewed in [11], and recent results are
reported in [12]. We will follow the method of [9,13]. It
was found in these investigations that the ghost contribu-
tion is the dominant one in the infrared. For example, in
the DS equation for the gluon propagator, the leading
contribution in the infrared is provided by the ghost
loop. It was subsequently realized [8] that in the DS
Eq. (3.6), with effective action � � SYM � tr lnM,
one obtains the correct infrared asymptotic limit by
setting SYM � 0. Thus the infrared asymptotic limit is
entirely determined by the Faddeev-Popov determinant
detM�Atr� and the cutoff at the Gribov horizon @�. One
might think that the functional integral with SYM � 0
would diverge. However the DS equations are merely a
technique for evaluating the functional integral, and since
they give a finite result with SYM � 0, it appears that
cutoff at the Gribov horizon makes the functional inte-
gral converge.

Infrared Ansatz: We shall assume that in the present
case also, the correct infrared limit is obtained by setting
S�A� � 0. Moreover once one sets S�A� � 0, the present
calculation reduces to the calculation of the infrared limit
in Landau gauge, where one has SYM � 0, and we may
use directly the solution of [9], where d now represents
the dimension of space instead of the dimension of space-
time.

We briefly outline how the solution was obtained in [9].
The crucial point is that a solution was sought for which
the ghost propagator ~G�k� is more singular than 1=k2 at
k � 0. This property has been called the ‘‘horizon con-
dition,’’ and it triggers the confinement scenario in
Coulomb gauge. The horizon condition holds because
-3
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the Gribov region � is bounded in every direction and, in
a space of high dimension such as configuration space,
entropy favors population density near the Gribov hori-
zon @�. At the horizon M�1�Atr� is singular, and this
enhances the ghost propagatorG�x� y� � hg0�M�1�xyi at
large separation or small k. The coupled DS equations for
the gluon and ghost propagars were solved in [13], and
[9], taking the tree-level expression for the ghost-gluon
vertex, and imposing the transversality condition @iAi �
0 on shell.
V. CALCULATION OF COLOR-COULOMB
POTENTIAL

To calculate Vcoul�R� we write (1.2) as

Vcoul�x� y�

ab �

Z
d3zhGac�x; z;Atr�

� ��@2z�Gcb�z; y;Atr�i; (5.1)

and Gab�x; y;Atr� 
 g0�M
�1�Atr��abxy . Its expectation value

G�x� y�
ab � hGab�x; y;Atr�i is the ghost propagator. We
separate the expectation value of the product in (5.1) into
disconnected and connected parts,

Vcoul�x�y��
Z
d3zG�x�z���@2z�G�z�y��Vcon�x�y�;

(5.2)

which reads, upon Fourier transformation,

~V coul�k� � k2 ~G
2�k� � ~Vcon�k�: (5.3)

The infrared asymptotic form of the gluon and ghost
propagators depends on two infrared critical exponents,

Das�k2� �
bD

�k2�1�-D
; Gas�k2� �

bG
�k2�1�-G

: (5.4)

By equating like powers of momentum in either the gluon
or the ghost DS equation, one obtains in either case the
same relation -D � 2-G � ��4� d�=2. We use this
equality to eliminate -D, in favor of - 
 -G. In the
infrared limit, only the ghost loop contributes to the
DS equation for the gluon which gives �bDb

2
G�

�1 �
ID�-; d�, where, by Eq. (A6) of [9],

ID�-; d� �
N

2�4/�d=2
��2-� 1� d=2��2��-� d=2�

�2�1� -���d� 2-�
:

(5.5)

The only process that contributes to the DS equation for
the ghost propagator is emission and absorption of a
gluon. In the infrared limit this gives �bDb2G�

�1 �
IG�-; d�, where, by Eq. (A17) of [9],
094034
IG�-; d� �
N�d� 1�

2�4/�d=2
/

sin�/-�

�
��2-� 1����-� d=2�

�2�-� 1����2-� d=2���-� 1� d=2�
:

(5.6)

We must solve

ID�-; d� � IG�-; d�; (5.7)

to find the infrared critical exponent - � -�d�.
VI. DISCUSSION OF SOLUTION

We are interested in spatial dimension 1< d � 3. The
integral for ID�-; d� converges for - in the interval 1

4 �

�d� 2�<-< 1
2d, and ID�-; d� is positive in this interval

and diverges at the end points. The integral for IG�-; d�
converges for - in the interval 0<-< 1, and it diverges
at the end points. However IG�-; d� changes sign in this
interval at - � 1

4d and is positive only for 0<-< 1
4 d.

Thus we look for solutions for - in the range
max�0; 14 �d� 2�� � - � 1

4d.
First take d in the interval 1< d< 2. We have 1

4 �

�d� 2�< 0 so we restrict our consideration to the interval
0<-< 1

4d. From the values at the end points it follows
that there are an odd number of solutions, and from
numerical plots one sees that there is precisely one solu-
tion -�d� for 1< d< 2. At d � 1; IG�-; d� vanishes
because of the coefficient �d� 1� in (5.6). This coefficient
occurs because the ghost emits and absorbs a gluon whose
propagator contains a d-dimensional transverse projector,
which vanishes at d � 1. (The coefficient d� 1 is an
exact property of the DS equation of the ghost and holds
also in a more refined evaluation.) In contrast, ID�-; d� is
finite at d � 1 because a coefficient d� 1 has been fac-
tored out of both sides of the DS equation for the gluon
propagator. So -�d� vanishes linearly with �d� 1�, and
from (5.7) one obtains in the limit d! 1,

-�d� !
2

/2 �d� 1� � 0:20264�d� 1�: (6.1)

In fact this formula fits a solution -�d� of (5.7) to about
2% accuracy in the entire interval 1 � d � 4. At d � 2
the exact solution is given by

-�2� �
1

5
; (6.2)

which differs from (6.1) by 1.3%. The fitting formula,

-f1�d� �
1

5
�d� 1�; (6.3)

represents a solution -1�d� to (5.7) with about 1% accu-
racy in the interval 1 � d � 4.

Now consider spatial dimension 2 � d � 3. We have
0 � 1

4 �d� 2�, so we seek a solution in the interval 1
4 �
-4
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have a similar behavior in Euclidean dimension d � 3 [15] but
to be consistent with D�0� finite in Euclidean dimension d � 4
[16].
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�d� 2�<-< 1
4d. From the values at the end points,

there are now an even number of solutions, and from
numerical plots it appears that there are precisely two
distinct real roots -1�d� and -2�d� for 2 � d � 3, except
possibly at d � dc � 2:662 where there appears to be one
root at -�2:662� � 0:33095, which is thus a crossing point
of the two roots. At the crossing point (6.3) gives
-f1�2:662� � 0:33240, which is accurate to 0.5%. At d �
2 the two roots are given by -1�2� �

1
5 and -2�2� � 0.

Only the root -1�2� �
1
5 matches the one root interval 1<

d< 2, so it is the physical one, and the root -1�2� � 0 is
spurious. Thus for 2 � d < dc � 2:662, the larger root
is the physical one. For values d > dc above the
crossing point we do not know which of the two roots is
physical. At d � 3 the equality (5.7) simplifies to
32-�1�-��1�cot2�/-��

�3�2-��1�2-� � 1, with roots

-1�3� � 0:3976; -2�3� �
1

2
: (6.4)

The fitting formula (6.3) gives -f1�3� � 0:4, which agrees
with the first root to about 1%. At d � 4, there are two
roots, -1�4� �

93�
��������
1201

p

98 � 0:5953, and -2�4� � 1. The fit-
ting formula (6.3) gives -f1�4� � 0:6, still accurate to 1%.
The fitting formula for the second root

-f2�d� �
1

2
�d� 2�; (6.5)

is exact at d � 2; 3; and 4: The two fitting formulas cross
at d � 8

3 � 2:666 and - � 1
3 � 0:333.

From the relation -D � 2-G � 1
2 �d� 4�, and the fit-

ting formula (6.3), we obtain the critical exponent of the
gluon propagator, -D�d� � � 3

2 �
1
10 �d� 1�. This has a

rather weak dependence on the spatial dimension d and
gives a gluon propagator D�k� that vanishes at k � 0 for
1 � d � 3. Thus the would-be transverse physical gluon
does not appear in the spectrum.

The critical exponent of the color-Coulomb potential is
defined by

~Vas
coul�k� �

1

�k2�1�-V
:

Suppose for simplicity that we neglect the connected
term in (5.3) in the infrared asymptotic limit, leaving
for another occasion an evaluation of this term. Then we
have in this limit

~V as
coul�k� �

b2G
�k2�1�2-G

; (6.7)

and we obtain for the infrared critical exponent of the
color-Coulomb potential -V � 2-G. The color-Coulomb
potential is given at large R by Vcoul�R� � R

2�d�2-V . If
one uses the simple fitting formula (6.3) for -G, one gets
-V � 2

5 �d� 1� and Vcoul�R� � R�1�0:2�d�1��, which is a
094034
linear potential plus a rather weak dependence on d for
1 � d � 3. For comparison we note that if instead
-G�d� �

1
4 �d� 1�, which is not so different from our

solution, then one gets for the critical exponent of the
gluon -D � � 3

2 , and of the color-Coulomb potential
-V � 1

2 �d� 1�. This gives an exactly linear potential
for all d, Vcoul�R� � R, asymptotically at large R.

The second solution at d � 3, namely-2�3� �
1
2 , yields

~Vas
coul�k� � 1=k4, which gives an exactly linearly rising

color-Coulomb potential. However this success must be
regarded as partly accidental because our solution does
not give an exactly linear potential at d � 2, and a correct
calculation should work for both d � 2 and d � 3.

The deviation from a linear potential should not be
regarded as a failure of the approach because our trunca-
tion scheme requires making an educated guess for the
ghost-gluon vertex. We have chosen the tree-level vertex,
but different choices give slightly different critical expo-
nents [10]. So in our approach there is an inherent uncer-
tainty in the critical exponent of the color-Coulomb
potential. Moreover, the connected piece ~Vcon�k�, in
Eq. (5.3), has not yet been estimated, and may yield a
correction to the critical exponents. However, granted
these limitations, our results are at least qualitatively
correct and capture the essential features of a confining
theory. We used the horizon condition which is the quali-
tative requirement that the ghost propagator be enhanced
in the infrared compared to 1=k2. The dynamics of the DS
equation then determine the infrared critical exponents of
the ghost and gluon propagators and of the color-Coulomb
potential. These are consistent with the confinement sce-
nario in Coulomb gauge, which requires an infrared sup-
pressed gluon propagator and a long-range color-Coulomb
potential. They are also in at least qualitative agreement
with numerical studies which show an equal-time, three-
dimensionally transverse gluon propagator in Coulomb
gauge D�k� that is suppressed in the infrared and consis-
tent with D�0� � 0 [14],2 and a linearly rising color-
Coulomb potential Vcoul�R� [5]. The color-Coulomb po-
tential we have obtained is confining and not far from
linear for 1 � d � 3. The present results were originally
reported in [17] and similar results were obtained in [18].
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