
PHYSICAL REVIEW D, VOLUME 70, 094029
Phase diagram of twisted mass lattice QCD
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We use the effective chiral Lagrangian to analyze the phase diagram of two-flavor twisted mass
lattice QCD as a function of the normal and twisted masses, generalizing previous work for the
untwisted theory. We first determine the chiral Lagrangian including discretization effects up to next-
to-leading order (NLO) in a combined expansion in which m2

�=�4�f��2 � a� (a being the lattice
spacing, and � � �QCD). We then focus on the region where m2

�=�4�f��
2 � �a��2, in which case

competition between leading and NLO terms can lead to phase transitions. As for untwisted Wilson
fermions, we find two possible phase diagrams, depending on the sign of a coefficient in the chiral
Lagrangian. For one sign, there is an Aoki phase for pure Wilson fermions, with flavor and parity
broken, but this is washed out into a crossover if the twisted mass is nonvanishing. For the other sign,
there is a first order transition for pure Wilson fermions, and we find that this transition extends into the
twisted mass plane, ending with two symmetrical second order points at which the mass of the neutral
pion vanishes. We provide graphs of the condensate and pion masses for both scenarios, and note a
simple mathematical relation between them. These results may be of importance to numerical
simulations.
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I. INTRODUCTION AND CONCLUSION

There has been considerable recent interest in the
twisted mass formulation of lattice QCD (tmLQCD).1

This formulation has several significant advantages com-
pared to ‘‘untwisted’’ Wilson fermions: first, the twisted
mass provides an infrared cutoff for small eigenvalues of
the lattice Dirac operator and thus avoids so-called excep-
tional configurations [2,3]; second, for maximal twisting
(i.e., a purely twisted mass term) physical quantities are
automatically O�a� improved [4]; and, finally, calcula-
tions of weak matrix elements are considerably simplified
[3,5,6]. It may thus serve, for practical simulations, as an
intermediate formulation between improved staggered
fermions (which share the above advantages, but have
the disadvantage of taking the square- or fourth-root of
the fermion determinant) and chiral lattice fermions
(which are more computationally expensive).

We consider here simplest version of tmLQCD which,
by construction, is equivalent in the continuum limit to
QCD with two degenerate flavors. At nonzero lattice
spacing, however, the flavor group is explicitly broken
from SU(2) down to U(1). This flavor breaking is analo-
gous to the ‘‘taste symmetry’’ breaking of staggered
fermions that plays a major role in practical simulations.
It is thus important to study the impact of flavor breaking
in simulations of tmLQCD. This can be done analytically
using the chiral effective theory including the effects of
discretization. The methodology for doing so for Wilson
fermions was worked out in Ref. [7]. Here we provide the
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generalization to tmLQCD, determining the chiral effec-
tive Lagrangian to next-to-leading order (NLO). This
extends the work of Ref. [8] by including terms propor-
tional to a2 (a being the lattice spacing).

There are many possible applications of the resulting
effective Lagrangian. In this paper we focus on the phase
structure. We extend the analysis of Ref. [7] (and the
similar considerations of Ref. [9]) into the twisted mass
plane. For untwisted Wilson fermions, Ref. [7] found two
possibilities as the (untwisted) quark mass approaches the
critical mass. In the first, the pion mass vanishes, and the
theory enters an Aoki phase, in which flavor and parity
are spontaneously broken. This is the scenario proposed
long ago by Aoki [10–12], and supported by results from
quenched simulations. The phase has width �m� a2, in
terms of the physical quark mass m. The second possi-
bility is that there is a first order transition at which the
condensate flips sign, and the pion mass reaches a mini-
mum, but is nonvanishing. In this scenario flavor and
parity are unbroken. The choice of scenario is determined
by the sign of a particular coefficient in the chiral
Lagrangian [the coefficient is c2 defined in Eqs. (35)
and (37)], the value of which depends on the gauge action
and the coupling constant. Indeed, numerical work with
unquenched Wilson fermions [13] finds evidence for an
Aoki phase at strong coupling (consistent with the expec-
tations of analytic results in the strong coupling, large Nc
limit [10]), but also finds that the phase disappears as the
coupling is weakened. This suggests that the second sce-
nario applies for moderate and weak couplings, at least
with the Wilson gauge action. This conclusion is sup-
ported by the very recent work of Ref. [14], who find
clear evidence of a first order transition along the Wilson
axis.
29-1  2004 The American Physical Society
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The extension of the analysis of Ref. [7] into the
twisted mass plane turns out to be relatively straightfor-
ward. The twisted mass introduces only a single addi-
tional term in the potential, one that attempts to twist the
condensate in the direction of the full mass. We find that
any nonzero value for the twisted mass washes out the
Aoki phase of the first scenario, as expected when the
would-be spontaneously broken symmetry is explicitly
broken. Thus the Aoki phase itself is confined to a short
segment of the untwisted axis, as shown in Fig. 1(a).
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FIG. 1. Phase diagram of tmLQCD. � and � are proportional
to the untwisted and twisted mass, respectively, in units pro-
portional to the lattice spacing squared [see Eqs. (28),(29)]. The
sign of the coefficient c2 determines whether flavor symmetry
is spontaneously broken in the standard Wilson theory. The
solid lines are first order transitions across which the conden-
sate is discontinuous, with second order endpoints. Figs. 2–4
show the dependence of the condensate and pion masses along
the horizontal dashed lines. See text for further discussion.
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Traversing this segment in the twisted direction there is
a first order transition, with a discontinuity in the chiral
condensate. More interesting, and, in light of the results
of simulations noted above, probably more relevant, is the
impact of twisting on the scenario with a first order
transition. Here we find that the transition extends a
distance of size ��� a2 (where� is the physical twisted
mass) into the plane, as shown in Fig. 1(b). The transition
weakens as j�j increases, ending with second order
points where the neutral pion mass vanishes.

Looking at the phase diagram, the two scenarios ap-
pear related by a 90� rotation. In fact, this relation is
exact for the condensate and the neutral pion mass, aside
from corrections of O�a3� in the chiral effective theory. In
other words, approaching the critical mass along the
twisted mass axis the neutral pion mass has exactly the
same dependence on the twisted mass as it does on the
normal mass in an untwisted Wilson simulation with the
opposite value of c2. Similarly, the condensates in the two
cases are simply related by a 90� twist. This identity does
not, however, hold for the charged pion masses. These
vanish in the Aoki phase, but do not vanish along the first
order transition line for c2 < 0. Nevertheless, there is still
a simple relation between the two scenarios: the charged
pion mass-squareds for c2 < 0 are obtained from those for
c2 > 0 by rotating by 90� and then adding a constant
positive offset (proportional to jc2ja2).

The possible presence of phase structure extending in
the twisted mass direction may hinder numerical simu-
lations—there would be premature critical slowing down
due to the second order endpoint, and metastability be-
yond [14]. One can reduce these effects either by working
at weaker coupling (since �� / a2), or by attempting to
find a gauge action which gives rise to a smaller value of
c2.

The rest of this paper is organized as follows. In the
next section, we present the two-step process of obtaining
an effective chiral theory that describes the long distance
physics of the underlying lattice theory of tmLQCD in-
cluding discretization effects.We then, in Sec. III, explain
how to use the resulting chiral Lagrangian to investigate
the phase diagram of tmLQCD.

An partial account of the work presented here was
given in Ref. [15]. Results on the masses and decay
constants of pions will be presented elsewhere [16].

Similar conclusions have been reached independently
by Münster [17,18] and Scorzato [19].

II. EFFECTIVE CHIRAL THEORY

The theory we consider here is tmLQCD with a doublet
of degenerate quarks.2 In this section, we start by briefly
reviewing the symmetry properties of the tmLQCD ac-
2We do not consider the generalization to nondegenerate
quarks discussed in Ref. [20].

-2



PHASE DIAGRAM OF TWISTED MASS LATTICE QCD PHYSICAL REVIEW D 70 094029
tion. We obtain the effective chiral theory for pions by
first determining the effective continuum Lagrangian at
the quark level and then matching it onto the chiral
Lagrangian.

A. Twisted mass lattice QCD

The fermionic part of the Euclidean lattice action has
the form [3,4]

SLF � a4
X
x

� l�x�

"
1

2

X
�

���r
?
� 	r��


r
a
2

X
�

r?
�r� 	m0 	 i�5�3�0

#
 l�x�; (1)

where  l and � l are the bare lattice fields (with ‘‘l’’
standing for lattice and not indicating left-handed), and
r� and r?

� are the usual covariant forward and backward
lattice derivatives, respectively. The bare normal mass,
m0, and the bare twisted mass, �0, are taken to be
proportional to the identity matrix in flavor space. A
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possible ‘‘twist’’ in theWilson term has not been included
because it can be rotated away by appropriate changes in
m0 and �0. This means that we are using the so-called
‘‘twisted basis’’, which we find simplifies the subsequent
analysis. We will not need to specify the irrelevant pa-
rameter r in our analysis, other than that it should be a
nonvanishing constant, satisfying jrj � 1 for reflection
positivity [4]. What we have in mind is the value r � 1
used in most numerical simulations.

The action given in (1), combined with any hypercubi-
cally invariant gluon action, shares the following sym-
metries with standard Wilson fermions: invariance under
gauge transformations, lattice rotations and translations,
charge conjugation, and the U(1) transformations associ-
ated with fermion number. It differs from standard
Wilson fermions in two important ways. First, the flavor
SU(2) symmetry is broken explicitly by the�0 term down
to the U(1) subgroup with diagonal generator �3. Second,
ordinary parity P is only a symmetry if combined either
with a discrete flavor rotation
P 1;2
F :

8<: U0�x� ! U0�xP�; Uk�x� ! Uy
k �xP 
 ak̂�; k � 1; 2; 3;

 l�x� ! i�0�1;2 l�xP�;
� l�x� ! 
i � l�xP��1;2�0;

(2)
[where xP � �
x; t�, and our generators are normalized
as �2i � 1], or combined with a sign change of the twisted
mass term

eP � P � ��0 ! 
�0�: (3)

The additional symmetries called Rsp
5 and R5 �Dd in

Ref. [4] will not be needed here.

B. Effective continuum Lagrangian at the quark level

Following the program of Symanzik [21,22], the long
distance properties of tmLQCD can be described by an
effective continuum Lagrangian of the form:

L eff � L0 	 aL1 	 a2L2 	 � � � : (4)

The key constraint is that this Lagrangian need only be
invariant under the symmetries of the lattice theory. We
will work through the terms in turn, emphasizing the
differences that are introduced by the twisted mass. The
analysis parallels and extends that of Ref. [7].

We consider first L0, which consists of operators of
dimension four or less, and is the Lagrangian which
survives in the continuum limit. The lattice symmetries
restrict its form to be
L 0 � Lg 	 � 
�
6D	 Zm

m0

a
	 i�5�3�

	
 
 Zm

emc

a
�  ;

(5)

where Lg is the continuum gluon Lagrangian, and, as
discussed below, � / �0. In particular, the parity-flavor
symmetry P 1;2

F requires parity and flavor to be violated in
tandem: it forbids the flavor singlet parity violating terms
� �5 and eF�"F�", as well as the flavor violating, parity

even operator � �3 . The residual flavor U(1) symmetry
forbids bilinears containing the flavor matrices �1;2. The
coefficients Zm, � and mc must be real in order to retain

reflection positivity. Finally, the spurionic symmetry eP
implies that the flavor-parity violating operator � �5�3 
comes with a coefficient odd in �0, here of linear order.

The net effect is that the result (5) differs from that for
Wilson fermions only by the � term. In particular, the
twisted mass is only multiplicatively and not additively
renormalized [3].

The relationship between the parameters in the contin-
uum Lagrangian and those in the bare lattice Lagrangian
has been given in Ref. [3]. The continuum fields  are
related to the bare lattice fields as follows:

 � a
3=2Z�g2�a�; ln��rega�� l; (6)

where Z is a matching factor, and �reg is the renormal-
-3



3This is not strictly necessary. Terms vanishing by the
equations of motion break the continuum symmetries in the
same way as other terms which do not vanish. Since it is the
symmetry breaking properties that matter when constructing
the effective chiral Lagrangian, the form of the latter is the
same whether or not the vanishing terms are kept.
Nevertheless, we drop these terms as it simplifies the equations.
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ization scale of the continuum theory. The physical quark
mass is defined in the usual way,

m � Zm�m0 
 emc�=a; (7)

while the physical twisted mass is related to the bare
parameters as

� � Z��0=a � Z
1
P �0=a; (8)

with ZP is the matching factor for the pseudoscalar
density. Finally, the coupling constants in the continuum
and lattice theories are related in the standard way. All
the renormalization factors depend on g2�a� and, due to
their anomalous dimensions, on ln��rega�. We keep this
(weak) dependence on the lattice spacing implicit. It
should be borne in mind, however, that when, in the
following, we refer to a power-law dependence on a, there
will always be implicit subleading logarithmic correc-
tions. We also note that the Z factors are mass-
independent (assuming that we are using a mass-
independent regularization scheme in the continuum)
and thus are the same for the twisted mass theory as for
normal Wilson fermions. The same is true of emc.

In terms of the physical parameters, we finally have

L 0 � Lg 	 � � 6D	m	 i�5�3�� : (9)

In this theory, unlike on the lattice, the apparent flavor
and parity breaking is fake, as� can be rotated away by a
nonanomalous axial rotation. This theory is thus equiva-
lent to the usual, untwisted, two-flavor QCD with a mass

m0 �




















m2 	�2

p
.

We next construct L1, which contains dimension five
operators. The enumeration of these operators is similar
to that carried out in Ref. [23], and we find

L1 � b1 � i$�"F�" 	 b2 � � 6D	m	 i�5�3��2 

	b3m � � 6D	m	 i�5�3�� 	 b4mLg

	b5m
2 �  	 b6� � f� 6D	m	 i�5�3��; i�5�3g 

	b7�2 �  : (10)

The coefficients bi must be real for reflection positivity,
and have a similar implicit weak dependence on a as do
the Z factors discussed above. Note that the form of L1 is
similar to that for untwisted Wilson fermions [7], except
for the inclusion of the twisted mass in the operator � 6D	
m	 i�5�3��, and the addition of the b6 and b7 terms.

A number of potential terms have been excluded by theeP symmetry: m� �  , m2 � i�5�3 , �2 � i�5�3 ,
� D2i�5�3 and � i$�"F�"i�5�3 . The last of these,

the ‘‘twisted Pauli term’’, requires a factor of � and
thus appears only in L2. Charge conjugation symmetry
enters at O�a�, forbidding a term similar to that with
094029
coefficient b6 but containing a commutator instead of
an anticommutator.

We can simplify L1 by dropping terms that vanish by
the leading order equation of motion, i.e., that which
follows from L0. This is equivalent to changing quark
variables by an amount proportional to a. It removes the
b2, b3 and b6 terms.3

The situation with the b4, b5 and b7 terms is more
subtle. On the one hand, they can be removed by O�a�
redefinitions of the parameters in L0 (the coupling con-
stant for b4, and the untwisted mass for b5 and b7). Note
that for b7 this is an additive redefinition (m!
m	 b7a�

2) which leads to a curvature in the critical
mass mc as a function of the twisted mass. On the other
hand, when one makes such a redefinition one loses direct
contact with the underlying bare parameters, which are
linearly related to g, m and � as explained above. If one
wants to map out the phase diagram in terms of bare
parameters, which is what one does in a numerical simu-
lation, one should keep the b4, b5 and b7 terms.

At this point, however, it is useful to anticipate the
power-counting scheme that we use in our chiral effective
theory. We consider m=�, �=� and a� as small quanti-
ties of the same size, and work to quadratic order in a
combined chiral-continuum expansion. In this power-
counting the three terms in question are all of cubic order,
and can be dropped, avoiding the choice discussed in the
previous paragraph. That the b5 and b7 terms are of cubic
order is manifest, since they involve two powers of quark
masses in addition to the overall factor of a multiplying
L1. The b4 term appears to be only of quadratic order,
since it involves only a single power of the quark mass.
However, this is a relative correction to a leading order
term, and the leading order terms in the chiral effective
theory are themselves of linear order. Thus its contribu-
tions to the effective theory are of cubic order.

Since we are working to quadratic order in the joint
chiral-continuum expansion, we need to determine the
form of L2, which contains dimension six operators.
There are three such purely gluonic operators [24,25].
We do not write these down since, as explained in
Ref. [26], they will lead to terms of too high order in
our expansion. In particular, those which do not break the
continuum rotation symmetry give rise to relative correc-
tions proportional to a2. Since the leading term in the
chiral-continuum expansion is of O�m; a�, these correc-
tions are of cubic order and can be dropped. There are also
gluonic operators which break the rotation symmetry
-4
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down to its hypercubic subgroup, but these only enter the
chiral Lagrangian at O�a2m2� because of the need to have
four derivatives.

The analysis of fermionic operators in the untwisted
Wilson theory has been carried out in Refs. [27,28]. There
are fermion bilinears and four-fermion operators. What is
found, however, is that the only operators which break
more symmetries than those already broken by L0 	L1

are the bilinears which break rotation symmetry down to
its hypercubic subgroup. As for the gluonic operators
discussed above, these contribute beyond quadratic order
in our expansion. The contributions of the remaining
operators to the effective chiral Lagrangian are of exactly
the same form as those obtained by treating the effects at
L1 at second-order. Thus we do not list these operators.

This leaves the new dimension six operators induced by
the twisted mass. These, however, are all of cubic or
higher order in our expansion. This is because they have
at least one factor of� in addition to the a2 common to all
operators in L2. An important example is the twisted
Pauli term discussed above.

Thus we conclude that, for the purpose of constructing
the effective chiral Lagrangian to next-to-leading order
(NLO) we need only keep the following terms at the
quark level

L eff � Lg 	 � � 6D	m	 i�5�3�� 	 b1a � i$�"F�" ;

(11)

with the relations to bare parameters given in Eqs. (6), (7)
and (8). The only difference from the result for the stan-
dard Wilson theory given in Ref. [7] is the addition of a
twisted mass term.

C. Effective chiral Lagrangian

Following [7], the next step is to write down a general-
ization of the continuum chiral Lagrangian that includes
the effects of the Pauli term. As already noted, we use the
following power-counting scheme4:

1 � fm; p2; ag � fm2;mp2; p4; am; ap2; a2g

� fm3; . . .g: (12)

Here m is a generic mass parameter that can be either the
renormalized normal mass m, or the renormalized
twisted mass �. There is no O(1) term in the chiral
expansion for pions. The leading order (LO) terms are
of linear order in this expansion, and the NLO terms of
quadratic order. We work to NLO, which is sufficient for
the study of the phase diagram. We stress that we can use
the expansion in other regimes, e.g., m � a or m� a2,
except that we then need to drop certain terms which
become of too high order.
4Factors of � needed to make quantities dimensionless are
implicit from now on unless otherwise specified
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The chiral Lagrangian is built from the SU(2) matrix-
valued � field, which contains the relevant low-energy
degrees of freedom. It transforms under the chiral group
SU�2�L � SU�2�R as

� ! L�Ry; L 2 SU�2�L; R 2 SU�2�R: (13)

The vacuum expectation value of �0 breaks the chiral
symmetry down to an SU(2) subgroup. The fluctuations
around �0 correspond to the pseudoscalar mesons
(pions):

��x� � �0 exp
�
i
X3
a�1

�a�x��a=f



� �0fcos���x�=f� 	 i�̂�x� � � sin���x�=f�g; (14)

where f is the decay constant (normalized so that f� �
93 MeV). The norm and the unit vector of the pion fields
are given by � �














� � �

p
� �a�a and �̂a � �a=�.

The chiral Lagrangian can be obtained from the quark
Lagrangian, Eq. (11), by a standard spurion analysis. We
must introduce a spurion matrix Â for the Pauli term, as
well as the usual spurion ( for the mass terms. Both
transform in the same way as the � field. At the end of
the analysis the spurions are set to their respective con-
stant values

( ���! 2B0�m	 i�3�� � m̂	 i�3�̂;

Â ���! 2W0a � â;
(15)

where B0 and W0 are unknown dimensionful parameters,
and we have defined useful quantities m̂, �̂ and â. Note
that the only change caused by the presence of the twisted
mass is the appearance of the� term in the constant value
of (. Other than this, the construction of the chiral
Lagrangian is identical to that for untwisted Wilson
fermions.

Because of this simplification, we can read off the form
of the chiral Lagrangian for tmLQCD from Ref. [28], in
which the Lagrangian for untwisted Wilson fermions was
worked out to quadratic order in our expansion. The only
extension we make is to include sources for currents and
densities. The left- and right-handed currents are intro-
duced in the standard way by using the covariant deriva-
tive D�� � @��
 il��	 i�r�, and the associated
field strengths, e.g., L�" � @�l" 
 @"l� 	 i�l�; l"�, and
enforcing invariance under local chiral transformations
[29,30]. Sources for scalar and pseudoscalar densities are
similarly included if we write ( � 2B0�s	 ip�, with s
and p hermitian matrix fields. Although the sources play
no role in the discussion of the phase diagram, we have
used them to obtain forms for various matrix elements of
phenomenological interest [15]. These results will be
described elsewhere [16].

Putting these ingredients together the resulting effec-
tive chiral Lagrangian is (in Euclidean space)
-5
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L( �
f2

4
Tr�D��D��

y� 

f2

4
Tr�(y�	 �y(� 


f2

4
Tr�Ây�	 �yÂ� 
 L1Tr�D��D��

y�2


L2Tr�D��D"�
y�Tr�D��D"�

y� 	 �L4 	 L5=2�Tr�D��
yD���Tr�(y�	 �y(� 	 L5fTr��D��

yD���

� �(y�	 �y(�� 
 Tr�D��
yD���Tr�(y�	 �y(�=2g 
 �L6 	 L8=2��Tr�(y�	�y(��2


L8fTr��(
y�	 �y(�2� 
 �Tr�(y�	 �y(��2=2g 
 L7�Tr�(

y�
 �y(��2 	 iL12Tr�L�"D��D"�
y

	R�"D��
yD"�� 	 L13Tr�L�"�R�"�� 	 �W4 	W5=2�Tr�D��

yD���Tr�Â
y�	�yÂ�


�W6 	W8=2�Tr�(
y�	 �y(�Tr�Ây�	�yÂ� 	W10Tr�D�Â

yD��	D��
yD�Â�


�W0
6 	W0

8=2��Tr�Â
y�	�yÂ��2

	contact terms: (16)
Here the Li’s are the standard Gasser-Leutwyler low-
energy constants of continuum chiral perturbation theory,
and the Wi’s and W0

i’s unknown low-energy constants
associated with discretization errors. For the latter con-
stants we use the notation of Ref. [28,31]. In fact, these
constants related to discretization are the same as those
for the untwisted Wilson theory, assuming the same
gauge action, since the twisting enters only through the
parameters in the spurions.
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In writing (16) we have used various simplifications
that result from the fact that the flavor group is SU(2). In
particular, because Â is, in the end, proportional to an
element of SU(2) with a real proportionality constant,
and because we do not use it as a source, we can take
Ây�	�yÂ to be proportional to the identity matrix, and
Tr�Ây�
 �yÂ� to vanish. Thus the following possible
terms vanish for SU(2):
	W5fTr��D��
yD����Â

y�	�yÂ�� 
 Tr�D��
yD���Tr�Â

y�	 �yÂ�=2g 
W8fTr��(y�	 �y(��Ây�	 �yÂ��


Tr�(y�	 �y(�Tr�Ây�	�yÂ�=2g 
W7Tr�(y�
 �y(�Tr�Ây�
�yÂ� 
W0
8fTr��Â

y�	�yÂ�2�


�Tr�Ây�	 �yÂ��2=2g 
W0
7�Tr�Â

y�
�yÂ��2: (17)
Similarly, the operators multiplied by L5, L7 and L8 alone
in (16) do not contribute once we set ( to 2B0�m	 i�3��,
although they are needed when using ( as a source. They
do not contribute in our subsequent study of the phase
diagram.

Finally, we comment on the W10 term, which is present
only because we include both discretization errors and
external sources. This term can, in fact, be removed using
the equations of motion, but we have found that it pro-
vides a useful diagnostic in computations of matrix
elements.

Our result (16) agrees with, and extends, the work of
Ref. [8], in which the chiral Lagrangian for tmLQCD
including effects linear in a was determined. Our gener-
alizations are to include the term of O�a2�, to make the
simplifications due to using the group SU(2), and to
include the sources for currents. In comparing our result
to that in Ref. [8] it should be noted that the result in that
work is expressed in the physical basis, while we use the
twisted basis. The two results are related by a nonanom-
alous axial rotation.
III. ANALYSIS OF PHASE DIAGRAM

To investigate the phase diagram of tmLQCD, we are
interested in the vacuum state of the effective continuum
chiral theory. To the order that we are working, the
potential energy is

V( � 

c1
4
Tr��	 �y� 	

c2
16

�Tr��	�y��2

	
c3
4
Tr�i��
 �y��3� 	

c4
16

fTr�i��
 �y��3�g
2

	
c5
16

Tr�i��
�y��3�Tr��	 �y�; (18)

where the explicit forms of the coefficients, and their
sizes in our power-counting scheme, are
c1 � f2�m̂	 â� �m	 a; c2 � 
8��2L6 	 L8�m̂
2 	 �2W6 	W8�â m̂	�2W0

6 	W0
8�â

2� �m2 	 am	 a2;

c3 � f2�̂��; c4 � 
8�2L6 	 L8��̂
2 ��2; c5 � 16��2L6 	 L8�m̂ �̂	�W6 	W8=2�â �̂� ���m	 a�:

(19)

Note that there are no relations between the ci coefficients: all five are independent at nonzero lattice spacing. The extra
terms introduced by twisting are those with coefficients c3, c4 and c5.
-6
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To determine the pattern of symmetry breaking as a
function of the coefficients ci, we repeat the analysis of
[7]. We distinguish three regions of quark masses, each
successively smaller by a factor of a:
(i) P
hysical quark masses: 1 � m��� a. In this
case, both discretization errors and terms of qua-
dratic order in masses can be neglected, so that
only the c1 �m and c3 �� terms need be kept. In
this case the symmetry breaking is as in the
continuum. In particular, the condensate �0 lies
in the direction of the full mass term, so that:

�0 �
�m	 i�3��



















m2 	�2

p �
�m̂	 i�3�̂�



















m̂2 	 �̂2

p : (20)

The pions are degenerate, with masses

m2
� �





















m̂2 	 �̂2

q
�1	O�a;m;���: (21)

Note that this result holds also if either m� a or
�� a.
(ii) S
ignificant discretization errors: 1 � m���
a. This is the parameter region for which our
expansion is most natural. The LO coefficients
c1;3 still dominate over the NLO coefficients
c2;4;5, but the O�a� term in c1 cannot be ignored.
Thus the results for region (i) still hold, except
that the untwisted quark mass m̂ must be replaced
by the shifted mass m̂0 � m̂	 â, or equivalently
m! m0 � m	 aW0=B0. In other words, there is
an O�a� shift in the critical mass, as noted in
Ref. [7]. In terms of this new mass the coefficients
become

c1 �m0; c2 �m02 	 am0 	 a2; c3 ��;

c4 ��2; c5 ���m0 	 a�: (22)
(iii) A
oki region: m0 ��� a2. In this region the
nominally NLO coefficient c2 is of the same size
as the LO coefficients c1;3; all are of O�a2�. The
other NLO coefficients remain suppressed by at
least one power of a: c4 � a4, c5 � a3. The fact
that LO and some NLO coefficients are compa-
rable might suggest a breakdown in convergence.
This is not so, however. The largest NNLO term
in this parameter region is �a3, and thus sup-
pressed by one power of a. Loop corrections are
also suppressed, since they are quadratic inm0 and
� (up to logarithms) and thus �a4. The key result
that allows this reordering of the series is that the
leading order discretization error has exactly the
same form as the term proportional to m and so
can be completely absorbed into m0, to all orders
in the chiral expansion.
5Henceforth, we will drop references to the O�a3�
corrections.
As in the untwisted Wilson theory, it is the competition
between the LO terms and the NLO c2 term that can lead
094029
to interesting phase structure. Note that both m0 and �
must be of O�a2� in order for such competition to occur; if
either m0 or � is of O�a� then one is in the continuumlike
region (ii).

To determine the condensate we must minimize the
potential energy (18). We parameterize the chiral field in
the standard way: � � A	 iB � � with real A and B
satisfying A2 	 B2 � 1, so that A;Bi 2 �
1; 1�.
Similarly, the condensate (the value of � that minimizes
the potential) is written �0 � Am 	 iBm � �. In the Aoki
region the potential is5

V( � 
c1A
 c3B3 	 c2A
2: (23)

Although c1 � f2m̂0 and c3 � f2�̂ can both take either
sign, we need only consider the case when both are
positive. The other possibilities can be obtained using
the symmetries of V(: if c1 ! 
c1 with c2;3 fixed (i.e.,
whenm0 ! 
m0), the condensate changes as Am ! 
Am,
B3;m ! B3;m; while if c3 ! 
c3 with c1;2 fixed (i.e., when
�! 
�), then Am ! Am, B3;m ! 
B3;m. We do not
need to specify the transformation of the other two
components of the condensate since they vanish, as we
now show.

To do so it is useful to define r and / by

A � r cos/; B3 � r sin/; A2 	 B2
3 � r2;

B2
1 	 B2

2 � 1
 r2; 0 � r � 1; (24)

in terms of which the potential becomes

V( � 
r�c1 cos/	 c3 sin/� 	 r2c2cos2/: (25)

We will first minimize this at fixed r, and then minimize
with respect to r. Based on the symmetries just discussed,
we consider only c1;3 > 0. At fixed r, the term linear in r,

�c1 cos/	 c3 sin/�, has its minimum in the quadrant
0< /< �=2, while the term quadratic in r, c2cos2/, has
its minima at ��=2 for c2 > 0 and 0; � for c2 < 0. It
follows that, irrespective of the sign of c2, the minimiz-
ing angle, /0�r�, also lies in the first quadrant: 0< /0�r�<
�=2. Its actual value is given by the appropriate solution
to

c1 sin/0�r� 
 c3 cos/0�r� � c2r sin�2/0�r��; (26)

and we denote the value of the potential at the minimum
by V(;min�r�. To minimize with respect to r we evaluate
the derivative:

dV(;min�r�

dr
�
@V(
@r

j/�/0�r� � 

c3

sin/0�r�
; (27)

where to obtain this simple form we have used Eq. (26).
Since c3 > 0 by assumption, and sin/0�r�> 0 as /0�r� lies
in the first quadrant, we find that V(;min�r� is a monotoni-
-7
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cally decreasing function of r. The symmetries discussed
above show that this holds for any c1;3. Thus the absolute
minimum of V( is at r � 1, and the minimizing angle is
/m � /0�r � 1�.

At this point it is useful to introduce scaled variables

� �
c1
jc2j

�
f2�m̂	 â�

8j2W0
6 	W0

8jâ
2 �m0=a2; (28)

� �
c3
jc2j

�
f2�̂

8j2W0
6 	W0

8jâ
2 ��=a2: (29)

In words, � is the shifted, untwisted mass in units pro-
portional to a2, while � is the twisted mass in the same
units. In the Aoki region � and � are of order unity. In
terms of these variables, the equation to be solved to
determine Am � cos/m is

A4
m � �A3

m 	
�2 	 �2 
 4

4
A2
m � �Am 


�2

4
� 0: (30)

[This is just Eq. (26) for r � 1 after some manipulation.]
Here the upper sign is for c2 > 0, the lower for c2 < 0.
One must pick solutions with Am real and satisfying

1 � Am � 1, and of these choose that which minimizes
V(. Given Am, the other components are given by

B1;m � B2;m � 0; B3;m � sign�c3�

















1
 A2

m

q
; (31)

where the sign of B3;m follows from the form of the
potential, Eq. (23).

The pion masses are given by the quadratic fluctuations
about the condensate, using Eq. (14). The unbroken U(1)
flavor symmetry ensures that the charged pions are de-
generate. We find

m2
�1

� m2
�2

�
c1Am 	 c3B3;m 
 2c2A

2
m

f2
�

jc2j

f2
�
B3;m

;

(32)

�m2
� � m2

�3

m2

�1
�

2c2B2
3;m

f2
; (33)

where to obtain the final form for charged pions we have
used Eq. (26). It is straightforward to show that none of
the pion masses become negative for any values of the
parameters.

Before we show plots of the results, it is useful to
discuss how the sign of c2 affects the solutions. Recall
that the sign of c2 depends on the gauge action, and is not
known a priori. For the untwisted Wilson action, the sign
has an important impact: the Aoki phase appears only for
c2 > 0, while there is a first order transition for c2 < 0.
Once we extend the theory into the full twisted mass
plane, however, the two possibilities are related. We focus
on the A
 B3 plane (i.e., we set r � 1) since we know
from above that the minimum of the potential lies in this
094029
plane for all c2. The potential in this plane is

V( � 
c1 cos/
 c3 sin/	 c2cos2/: (34)

If we change variables as follows

c1 � c03; c3 � 
c01; c2 � 
c02;

/ � /0 
 �=2;
(35)

so that cos/ � sin/0 and sin/ � 
 cos/0, then the poten-
tial has the same form

V( � 
c01 cos/
0 
 c03 sin/

0 	 c02cos
2/0 
 c02; (36)

aside from an overall shift. This implies that if we take
the phase diagram for, say c2 > 0, and rotate it anticlock-
wise by 90�, we will obtain the phase diagram for c02 �

c2 < 0, with the components of the condensate given by
A0
m � 
B3;m and B0

3;m � Am. The mass of �3 is given
simply by its value at the rotated point, m0

�3
� m�3

.
This discussion does not include fluctuations in the

other two directions. To obtain the charged pion masses,
however, we can use the general result Eq. (33) for the
splitting between charged and neutral pion masses, and
the equality of the neutral masses, to obtain

�m0
�1
�2 � m2

�1
	 �m2

� 
 �m02
� (37)

� m2
�1

	
2c2sin2/m

f2



2c02sin
2/0m

f2
(38)

� m2
�1

	

2c02cos

2/0m
f2



2c02sin

2/0m
f2

(39)

� m2
�1



2c02
f2

: (40)

Thus we find a fixed offset (independent of c1 and c3)
between the charged pion masses. The offset has the
correct sign so that all pions have positive or zero mass-
squared. In particular, if c2 > 0 there is an Aoki phase
with m�1

� 0. This rotates (as shown in Fig. 1(b)] into a
phase with m02

�1
� 
2c02=f

2 � 	2c2=f2 > 0.
It is straightforward to solve the quartic equation and

determine the condensate and pion masses. The only
subtlety is that care must be taken when either � or � is
set to zero. This can be seen, for example, from the final
form for the charged pion masses, Eq. (32), which be-
comes 0=0 when �! 0. In either of these two limits,
�! 0 or �! 0, the quartic equation reduces to a qua-
dratic. The solutions for �! 0 have been given in
Ref. [7], and we do not repeat them here. Those for �!
0 can be obtained from those for �! 0 using the 90�

rotation in the mass plane just discussed.
For the remainder of this article we illustrate the nature

of the phase diagram by plotting the condensate and pion
-8
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FIG. 3. Mass of the pions as a function of �, for c2 > 0 and
� � 0, 1, 2, 3.
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masses. We display results as a function of � for fixed �
and c2. We only show results for� � 0 since, as explained
above, those for �< 0 differ only by changing the sign of
B3;m. In particular, the pion masses are symmetrical
under �! 
�. We could also consider only � � 0, but
find it clearer to show results for both signs.

We begin with results for c2 > 0. Figure 2 shows the
form of the identity component of the condensate, Am �
Tr��0�=2, for � � 0, 1, 2 and 3. The corresponding pion
masses are shown in Fig. 3. In the untwisted theory (� �
0) there are second order transitions at � � �2, as shown
by the kinks in Am and the vanishing of the pion masses.
The Aoki phase, with B3;m � 0, which breaks flavor and
parity, and correspondingly has two Goldstone bosons,
lies between these second order points. Once � is non-
vanishing, however, the transition is smoothed out into a
crossover, and the pion masses are always nonzero. Flavor
is broken for all �, with the charged pions heavier than
the neutral pion by O�a2�, as given by Eq. (33). For the
special case of � � 0 (maximal twisting), Am vanishes
and B2

3;m � 1, so the mass-squared splitting is 2c2=f2 for
all � (which becomes a difference of 2 in the units in the
plots).

It is now possible to pass through the Aoki phase by
varying �, i.e., by changing the sign of the twisted mass.
When doing so there is a first order phase transition, since

B3;m jumps from 	

















1
 A2

m

p
�






















1
 �2=4

p
to




















1
 A2

m

p
� 























1
 �2=4

p
.

We now consider the case where c2 is negative. Figure 4
shows Am and the pion masses as a function of � for fixed
values of �. Figure 4(a) and Fig. 4(b) show the results for
� � 0. As discussed in Ref. [7], the condensate jumps
from �0 � 1 (and thus Am � 1, B � 0) for�> 0 to �0 �

1 (and thus Am � 
1, B � 0) for �< 0. This is a first
order transition without flavor breaking, so all pions
remain massive and degenerate.
-6 -4 -2 2 4 6
α

-1

-0.5

0.5

1

A
m

β = 0

β = 1
β = 2

β = 3

FIG. 2. The global minimum of the potential, Am, as a
function of �, for c2 > 0 and � � 0, 1, 2, 3.
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The remainder of Fig. 4 shows what happens at nonzero
twisted mass. The effect of � is to twist the condensate,
so that there is a nonzero �3 component B3;m. There is,
however, still a first order transition at which B3;m flips
sign between ��1
 �=2� (assuming �> 0). The neutral
pion is now lighter than the charged pions due to the
explicit flavor breaking. The neutral pion has a mass
m2
�3

� 2jc2j�1
 �=2�2=f2 at the transition, while, as
noted above, the charged pions have a constant mass
given by m2

�1;2
� 2jc2j=f2. The transition weakens as

j�j increases, and ends with a second order transition
point at � � �2, at which the neutral pion is massless
[see Fig. 4(f)]]. For larger � the transition is smoothed
out. Note that, once away from the transition, for � � 0
the mass-squared splitting between charged and neutral
pions is 2jc2j=f2.
-9
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FIG. 4. Global minimum Am [(a), (c), (e), (g)] and pion
masses [(b), (d), (f), (h)] as a function of �, for c2 < 0 and
� � 0, 1, 2, 3. The dashed lines are for �1;2 and the solid lines
are for �3.
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These plots illustrate the general result shown above,
namely, that the c2 < 0 case can be obtained from that
with c2 > 0 by a 90� rotation and appropriate redefini-
tions. Indeed, the results for c2 > 0 can alternatively be
viewed as the plots for c2 < 0 at fixed � with � varying,
and vice versa, with the exception of the charged pion
masses, which differ by a constant offset of 2jc2j=f2. To
illustrate this latter point we plot, in Fig. 5, the pion
masses for c2 < 0 as a function of � for fixed values of
�. Comparing to Fig. 3, we see the equality of the neutral
094029
pion masses and the constant offset in the charged pion
masses.
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