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Covariant baryon charge radii and magnetic moments in a chiral constituent-quark model
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The charge radii and magnetic moments of all the light and strange baryons are investigated within
the framework of a constituent-quark model based on Goldstone-boson-exchange dynamics. Following
the pointform approach to relativistic quantum mechanics, the calculations are performed in a
manifestly covariant manner. Relativistic (boost) effects have a sizeable influence on the results. The
direct predictions of the constituent-quark model are found to fall remarkably close to the available
experimental data.
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I. INTRODUCTION

The charge radii and magnetic moments, as measures
for the distribution of charge and magnetization, repre-
sent important observables in hadronic physics. While
quantum chromodynamics (QCD) is accepted as the fun-
damental theory of strong interactions, one is still lacking
its direct predictions for this kind of observables. The
reason is simply that QCD cannot (yet) be solved—ac-
curately enough—in the low-energy domain of hadron
ground-state properties, even though one has recently
made progress in deducing hadron masses and also has
obtained first results for hadron charge radii and magnetic
moments from lattice QCD [1–3] (for a review see, e.g.,
[4]).

In view of the difficulties of solving QCD at low
energies one has developed effective (field) theories
and/or effective models. A promising approach is offered
by constituent-quark models (CQMs). Modern CQMs can
be constructed so as to include the relevant properties of
QCD in the low-energy regime, notably the consequences
of the spontaneous breaking of chiral symmetry (SB�S).
At the same time the requirements of special relativity
can be incorporated by making the theory Poincaré-
invariant.

Some time ago the Graz group suggested an interesting
new type of CQM [5]. Its dynamics were motivated by the
idea that at low energies the dominant QCD degrees of
freedom are furnished by constituent quarks and
Goldstone bosons [6]. The so-called Goldstone-boson-
exchange (GBE) CQM for baryons relies on the
Hamilton operator [5]

Ĥ �
X3
i�1

�������������������
~̂p2i � m̂i2

q
�

X3
i<j�1

�V̂conf�ij� � V̂hf�ij�� (1)

which is defined on the fQQQg Hilbert space H . The first
term represents the relativistic kinetic-energy operator,
where ~̂pi and m̂i are the three-momentum and mass
operators of the constituent quarks, respectively. The
confinement potential V̂conf�ij� is taken in linear form
with a strength in accordance with the string tension of
04=70(9)=094027(5)$22.50 70 0940
QCD. The hyperfine interaction V̂hf�ij� consists of the
spin-spin part of the exchange of octet and singlet pseu-
doscalar bosons (mesons) and produces a specific spin-
flavor dependence [5,7]. With this hyperfine interaction
the level orderings of positive- and negative-parity states
in the N and � spectra can be reproduced simultaneously
in agreement with experiment (the detailed spectra of the
GBE CQM may be found in Refs. [5,7]). The Hamiltonian
of Eq. (1) also lends itself to an invariant mass operator in
relativistic Hamiltonian dynamics (RHD) [8]. This turns
out to be very important for obtaining relativistic results
of all kind of observables in hadron reactions.

Beyond spectroscopy the GBE CQM has in the mean-
time been put to testing its performance with regard to
the electroweak structure of the nucleons. Specifically
one has produced its predictions for the nucleon elastic
electromagnetic [9] and axial form factors [10]. Working
in the framework of the pointform version of RHD [11,12]
one has obtained covariant results for all elastic observ-
ables relating to nucleon electroweak form factors [13].
The direct predictions of the GBE CQM have been found
to be in close agreement with all existing data in the low-
momentum transfer domain (up to a few GeV2).

In this work we present first covariant results of the
GBE CQM for charge radii and magnetic moments of all
the octet and decuplet baryon ground states. We again
apply the pointform version of RHD. Whenever possible
the theoretical predictions are compared to experiments.

II. FORMALISM OF THE POINT-FORM

The pointform was already defined in 1949 by Dirac
[11] when he studied RHD with regard to the (smallest)
stability groups of Poincaré generators of an interacting
system. It is characterized by the fact that only the four-
momentum operator P̂ is affected by interactions. All
other generators of the Poincaré group remain
interaction-free. As a result the spatial rotations and,
most importantly, the Lorentz boosts are purely kine-
matic. Consequently, the theory is manifestly covariant.

In the pointform, the problem of solving the
Hamiltonian of Eq. (1) is completely equivalent to the
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solution of the eigenvalue problem of the mass operator
M̂ � M̂free � M̂int, where the interaction M̂int is added to

the free mass operator M̂free �
�����������������������
P̂freeP̂free;

q
according to

the Bakamjian-Thomas (BT) construction [14].
Correspondingly the four-momentum operator gets split
into a free part P̂free and an interaction part P̂int

P̂  � P̂free � P̂

int � M̂V̂ � �M̂free � M̂int�V̂

: (2)

It is a peculiarity of the pointform that in the BT con-
struction the four-velocity remains interaction-free:
V̂ � V̂free. When solving the eigenvalue equation of
the interacting mass operator

M̂j�Bi � MBj�Bi (3)

one obtains the eigenvalues MB and the eigenstates j�Bi
for baryon B on the Hilbert space H . Because of the
commutation relations of the Poincaré algebra, the j�Bi

are simultaneous eigenstates of P̂ ( � 0; 1; 2; 3) and
thus also of the Hamiltonian Ĥ of Eq. (1). Furthermore,
they are simultaneously eigenstates of the four-velocity
operator V̂ and evidently of the total-angular-
momentum operator Ĵ and its z-component �̂. Therefore
we shall subsequently characterize them by the corre-
sponding eigenvalues and express them as
jvB;MB; J;�i. The fQQQg Hilbert space H is spanned
by the free states

jp1;�1;p2;�2;p3;�3i� jp1;�1i�jp2;�2i�jp3;�3i; (4)

which are direct products of free single-particle states
jpi; �ii, with pi and �i denoting the individual (free)
four-momenta and spin projections, respectively. In
pointform, instead of working with the usual three-
body states in Eq. (4), one introduces so-called velocity
states. They can be constructed by applying a specific
Lorentz boost B�v� to the free three-body states
jk1; 1; k2; 2; k3; 3i in the center-of-momentum frame
(for which

P
i
~ki � 0):

jv; ~k1; 1; ~k2; 2; ~k3; 3i � UB�v�jk1; 1; k2; 2; k3; 3i

�
Y3
i�1

X
�i

D1=2�iifRW�ki; B�v��gj

� p1; �1;p2; �2;p3; �3i: (5)

These velocity states also span the whole Hilbert space
H . They have the important advantage that under gen-
eral Lorentz transformations the occurring Wigner
D-functions are the same for all three particles and the
individual momenta are all rotated by the same amount
(what is not the case for the three-particle states of
Eq. (4)). Of course, the practical calculations are facili-
tated a lot by expressing the baryon mass eigenstates
j�Bi in the velocity-state representation
094027
hv; ~k1; 1; ~k2; 2; ~k3; 3jvB;MB; J;�i

� �3� ~v� ~vB��MBJ��
~k1; 1; ~k2; 2; ~k3; 3�; (6)

where ~v and ~vB are the total three-velocities of the bra
and ket states, respectively.

A. Invariant nucleon form factors

For the elastic electromagnetic form factors one has to
compute matrix elements of the current operator Ĵ�x�
between the baryon states. The electromagnetic current
operator itself is an irreducible tensor operator of the
Poincaré group. One can apply a generalized Wigner-
Eckart theorem and decompose the matrix elements
into Clebsch-Gordan coefficients times reduced matrix
elements, which are the invariant form factors [12].
Because of the covariance properties of the matrix ele-
ments one can use any reference frame and proceed with
the calculation. We choose the usual Breit frame, where
the Clebsch-Gordan coefficients are unity. The elastic
invariant form factors are then given by the matrix ele-
ments of the current operator Ĵ�0� between incoming
and outgoing baryon states boosted to the (standard) Breit
frame

2MBF

�0��Q

2�� hv0B;MB;J;�
0jĴ�0�jvB;MB;J;�i: (7)

The invariant momentum transfer q2 � �Q2 along the
z-axis is defined as the difference between the final and
the initial four-momenta of the baryon, P0 � MBv

0
B and

P � MBvB, respectively,

q � �0; 0; 0; Q� � P0 � P; (8)

where vB and v0B are the initial and final baryon four-
velocities.

The invariant form factors are related to the electric
and magnetic Sachs form factors GE and GM, respec-
tively. In the Breit frame one has for spin- 12 baryons

GE � F�01
2
1
2
; GM �

2MB

Q
F�11
2�

1
2

(9)

and for spin- 32 baryons [15,16]

GE �
1

2
�F�01

2
1
2

� F�03
2
3
2

� (10)

GM �
6

5

MB

Q
�F�11

2�
1
2

�
���
3

p
F�13
2
1
2

�: (11)
B. Point-form current model

In case of a relativistic three-body system, the matrix
elements in Eq. (7) cannot be calculated with the full
structure of the electromagnetic current operator. Rather
one has to resort to simplifications. For the three-body
electromagnetic current operator we therefore assume a
-2



TABLE I. PFSA predictions of the GBE CQM for baryon
charge radii r2ch [fm2] in comparison to experiment [17].

Baryon GBE CQM Experimental
PFSA Data

p 0.82 0:7569� 0:0139
n �0:13 �0:1161� 0:0022
�� 0.72 0:61� 0:12� 0:09
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spectator model, i.e., only a single-quark directly couples
to the virtual photon while the other two act as spectators

hp01;�
0
1;p

0
2;�

0
2;p

0
3;�

0
3jĴ

�0�jp1;�1;p2;�2;p3;�3i

�3
�

M2
B

MfreeM0
free

�
3=2
�3� ~p02� ~p2��

3� ~p03� ~p3�

���0
2�2
��0

3�3
2E22E3hp01;�

0
1jĴ


�1��0�jp1;�1i; (12)

where Ei �
������������������
~p2i �m

2
i

q
(i � 2; 3) are the energies of the

spectator quarks. The single-particle current is taken in
the usual form for a pointlike Dirac particle with charge
en (n � 1; 2; 3)

hp0n; �0
njĴ


�1��0�jpn; �ni � en �u�p0n; �0

n�%u�pn; �n�; (13)

where the quark spinor can be expressed in terms of the
two-component Pauli spinor � in the following way

u�p;�� �
��������������
E�m

p �
~�� ~p
E�m�

� �
: (14)

Eqs. (12) and (13) define the so-called pointform specta-
tor approximation (PFSA). It should be noted that the
PFSA current model does not represent a pure one-body
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operator. Even though the virtual photon couples only to a
single quark, also the spectator quarks participate in the
process. The whole baryon experiences a boost due to the
total momentum transfer q2, which is then shared by all
quarks. Only a part of it is transferred to the struck quark,
namely,

~q 2 � �p0n � pn�2 � �B�v0B�k
0
n � B�vB�kn�2: (15)

Furthermore, since in pointform the momenta are af-
fected by interactions, the PFSA current rather represents
an effective dynamical three-body current.

In PFSA, the matrix elements of the current operator
are finally given by the multiple integral
F�0��Q
2� � 3

Z
d ~k2d ~k3d ~k

0
2d ~k

0
3

�
M2
B

MfreeM0
free

�
3=2

������������
!0
2!

0
3

!2!3

s
� �3�k02 � B

�1�v0B�B�vB�k2��
3�k03 � B

�1�v0B�B�vB�k3�

���
MBJ�0 � ~k

0
1; 

0
1;
~k02; 

0
2;
~k03; 

0
3�D

1=2�
�0
1

0
1
fRW�k

0
1; B�v

0
B��g �

1

2
������������
!1!

0
1

p hp0
1; �

0
1jĴ


�1��0�jp1; �1i

�D1=2�11fRW�k1; B�vB��g�MBJ��
~k1; 1; ~k2; 2; ~k3; 3� �D

1=2
0
22

fRW�k2; B�1�v0B�B�vB��g

�D1=20
33

fRW�k3; B�1�v0B�B�vB��g; (16)

������������������q
TABLE II. PFSA predictions of the GBE CQM for baryon
magnetic moments (in n.m.) compared to experiment [17].

Baryon GBE CQM Experimental
PFSA Data

p 2.70 2.792847351
n �1:70 �1:91304273
� �0:65 �0:613� 0:004
�� 2.35 2:458� 0:010
�� �0:92 �1:160� 0:025
�0 �1:24 �1:250� 0:014
�� �0:68 �0:6507� 0:0025
 � 2.08 2:7�1:0�1:3 � 1:5� 3a

 �� 4.17 3:7� 7:5
!� �1:59 �2:020� 0:05

aThis result is taken from Ref. [18].
where !n � ~k2n �m
2
n are the single-quark energies in

the baryon center-of-momentum frame.

C. Charge radii and magnetic moments

The baryon charge radii r2ch and magnetic moments 
can be calculated from the electric and magnetic Sachs
form factors of Eqs. (9)–(11) in the limit Q2 ! 0:

r2ch � �6
dGE
d�Q2�

��������Q2�0;  � GM�Q
2 � 0�: (17)

III. RESULTS AND DISCUSSION

The predictions of the GBE CQM for the charge radii
and magnetic moments are given in Tables I and II for all
octet and decuplet baryons, where experimental data are
available. The quoted PFSA results are manifestly cova-
riant and they are immediately found in good or reason-
able agreement with experiment in all cases. Their quality
is similar to the one of the nucleon electroweak form
factors obtained before [9,10,13]. This is remarkable be-
cause the results represent direct predictions obtained just
with the quark model eigenstates, without introducing
any further phenomenological parametrizations such as
quark form factors etc.

There is certainly still some room for improvements in
the reproduction of the experimental data. In this context
one could think about possible uncertainties in the pa-
-3



TABLE III. Results for charge radii r2ch (in fm2) of all octet
and decuplet baryons in NRIA, a calculation using the relativ-
istic current and no boosts, a calculation using the nonrelativ-
istic current with boosts included, and in PFSA.

Baryon NRIA RC w/o NRC + PFSA
Boosts Boosts

p 0.10 0.18 0.58 0.82
n �0:01 �0:01 �0:09 �0:13
� 0.01 0.02 0.01 0.03
�0 0.02 0.03 0.14 0.20
�� 0.12 0.21 0.77 1.13
�� 0.09 0.16 0.50 0.72
�0 0.01 0.03 �0:17 �0:19
�� 0.10 0.16 0.41 0.54
��0 0.02 0.03 0.01 0.03
��� 0.20 0/32 0.32 0.42
��� 0.16 0.25 0.29 0.37
 � 0.15 0.25 0.32 0.43
 0 0.00 0.00 0.00 0.00
 �� 0.15 0.25 0.32 0.43
 � 0.15 0.25 0.32 0.43
��0 0.04 0.07 0.03 0.06
��� 0.16 0.24 0.26 0.33
!� 0.16 0.22 0.24 0.29

TABLE IV. Results for magnetic moments (in n.m.) of all
octet and decuplet baryons in NRIA, a calculation using the
relativistic current and no boosts, a calculation using the non-
relativistic current with boosts included, and in PFSA.

Baryon NRIA RC w/o NRC + PFSA
Boosts Boosts

p 2.74 1.31 2.74 2.70
n �1:82 �0:85 �1:82 �1:70
� �0:61 �0:37 �0:61 �0:65
�0 0.81 0.39 0.81 0.72
�� 2.63 1.25 2.62 2.35
�� �1:01 �0:46 �1:01 �0:92
�0 �1:40 �0:79 �1:40 �1:24
�� �0:53 �0:38 �0:53 �0:68
��0 0.29 0.08 0.29 0.09
��� 3.06 1.62 3.06 2.07
��� �2:47 �1:45 �2:47 �1:89
 � 2.76 1.51 2.76 2.08
 0 0.00 0.00 0.00 0.00
 �� 5.52 3.03 5.52 4.17
 � �2:76 �1:51 �2:76 �2:08
��0 0.59 0.17 0.59 0.18
��� �2:17 �1:38 �2:17 �1:73
!� �1:88 �1:29 �1:88 �1:59
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rametrization of the GBE CQM. The open parameters of
the model were determined by a fit to the baryon spectra.
They could be fine-tuned by considering further con-
straints (such as the charge radii and magnetic moments
of the baryon ground states as measured so far). We have
estimated the variation of the results in Tables I and II due
to different possible parametrizations of the GBE CQM.
For this purpose we have calculated the PFSA predictions
of the so-called extended version of the GBE CQM [19]. It
includes additional force components for the hyperfine
interaction and thus contains also different parameters
while the fit to the baryon spectra is practically of the
same (good) quality as in the case of the original GBE
CQM [5]. We have found that the variations of the pre-
dictions for charge radii and magnetic moments remain in
general very small. Some results for magnetic moments do
not change at all, others vary at most up to 5%. The
charge radii of the proton and the neutron are changed
by about 3% and 7%, respectively. Only the charge radius
of the �� experiences a bigger variation but it still
remains within the experimental error of about 25%.

We have also studied the influence of relativity on the
results. First we compare to the calculations in nonrela-
tivistic impulse approximation (NRIA), see Tables III and
IV. For the charge radii the shortcomings of the non-
relativistic approach are immediately evident.
Considerable effects are caused by both the relativistic
current operator (cf. columns one and two of Table III)
and the relativistic boosts (cf. column three of Table III).
Only the covariant results (last column of Table III) turn
out to be reasonable and compare well with experimental
data, whenever such a comparison is possible (see Table I).

For the magnetic moments seemingly good results are
obtained with the NRIA, especially in case of the nucle-
ons and some other octet baryons. However, this has to be
considered as accidental. Already in the decuplet bary-
ons, the influence of relativity becomes rather large. From
the relativistic (PFSA) calculation, which employs a rela-
tivistic current operator and also includes boost effects,
one learns that both of these ingredients are necessary in
order to produce a reasonable prediction in concordance
with experiment (cf. the last three columns in Table IV).
In other words, in the covariant calculation, relativistic
effects (both from the current and the boosts) appear even
though the magnetic moments are observables at Q2 � 0.
In case a nonrelativistic current is used, Lorentz boosts
have essentially no effect, since they enter only in higher
orders of Q. As a consequence the deviations from the
covariant results may become considerable (up to about
30%, for example, in the case of  �).

In summary, it appears evident that, in order to reach
consistent results, any calculation of both the charge radii
and the magnetic moments must be performed in a fully
relativistic manner, employing a relativistic current op-
erator as well as including Lorentz boosts. This is true
094027
even though we deal here with observables in the limit
Q2 ! 0. The pointform approach appears as a reasonable
framework to obtain covariant predictions for charge
radii as well as magnetic moments.
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