
PHYSICAL REVIEW D, VOLUME 70, 094026
Semi-inclusive decays �b ! Xc � �Ds;D
�
s� at O�as� including �b and D�

s polarization effects

M. Fischer, S. Groote, J. G. Körner, and M. C. Mauser
Institut für Physik, Johannes-Gutenberg-Universität Staudinger Weg 7, D–55099 Mainz, Germany

(Received 5 September 2003; revised manuscript received 13 August 2004; published 16 November 2004)
1550-7998=20
In the leading order of the �1=mb�-expansion in HQET the dominant contribution to the semi-
inclusive decays of polarized �b baryons into the charm-strangeness mesons Ds and D�

s is given by the
partonic process b�"� ! c� �D�

s ; D
��
s �. Using standard values for the parameters of the process one

expects a rather large branching ratio of � 8% into these two channels. In the factorization approxi-
mation the semi-inclusive decay of a polarized �b is governed by three unpolarized and four polarized
structure functions for which we determine the nonperturbative O�1=m2

b� corrections and the O�	s�
radiative corrections. We find that the perturbative and nonperturbative corrections amount to � 10%
and � 3%, respectively. The seven structure functions can be measured through an analysis of the joint
decay distributions of the process involving the polarization of the �b and the decays D��

s ! D�
s � 


and D��
s ! D�

s � �0 for which we provide explicit forms. We also provide numerical results for the
Cabibbo-suppressed semi-inclusive decays �b ! Xu � �Ds;D�

s�.
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I. INTRODUCTION

In the leading order of the �1=mb�-expansion in HQET
the semi-inclusive decay �b ! Xc � �D�

s ; D
��
s � is domi-

nated by the partonic process b! c� �D�
s ; D��

s �. The
basic assumption is that factorization holds for the non-
leptonic decay process �b ! Xc � �D�

s ; D��
s �. One can

then factorize the semi-inclusive decay into a current-
induced �b ! Xc transition and a current-induced vac-
uum one-meson transition. The leading order 1=mQ con-
tribution to the �b ! Xc transition is given by the
partonic b! c transition. There are two types of correc-
tions to the leading order result. First there are the non-
perturbative corrections which set in at O�1=m2

b� in the
heavy mass expansion. They can be estimated using the
methods of the operator product expansion in HQET.
Second there are also the perturbative O�	s� corrections
which can be calculated using standard techniques. From
a previous calculation of the corresponding decays in the
mesonic sector �B0 ! Xc � �D�

s ; D��
s � one expects pertur-

bative and nonperturbative corrections of � 10% [1,2]
and � 1% [2], respectively.

When the �b is unpolarized, the decay �b !
Xc � �D�

s ; D
��
s � is quite similar to the corresponding

mesonic decay �B0 ! Xc � �D�
s ; D

��
s � [1,2]. In fact, to

leading order in the 1=mb expansion and to any order in
the perturbative QCD corrections the two semi-inclusive
decays are identical to one another. However, when the �b
is polarized, there are four additional polarized structure
functions that enter the decay analysis. One can thus
probe four more structure functions in the semi-inclusive
decay of a polarized �b than it is possible in the corre-
sponding B-meson decay. Polarized b-quarks and thereby
polarized �b baryons arise quite naturally in weak de-
cays such as Z! b �b and t! Wb. When the polarized
b-quark fragments into a �b baryon, � 70% of its polar-
ization is retained [3,4].
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We mention that large samples of �b ’s are expected to
be produced at the currently running p �p collider
Tevatron 2. In fact the first few �b’s have been recon-
structed by the CDF collaboration using the superior
tracking capacity of their new silicon vertex trigger [5].
II. ANGULAR DECAY DISTRIBUTIONS

In the factorization approximation the semi-inclusive
decays of polarized �b baryons �b�"� ! Xc � �D�

s ; D��
s �

are governed by altogether seven structure functions
which can be measured by an angular analysis of the
decay process. We mention that there are two additional
parity-violating structure functions in the decays
�b�"�!Xc�D

��
s which, however, cannot be measured

since the dominating decays of the D��
s are parity-

conserving.
Five of the structure functions describe the semi-

inclusive decay �b ! Xc �D��
s into vector mesons fol-

lowed by their subsequent decay intoD��
s ! D�

s � 
 and
D��
s ! D�

s � �0. The branching ratios of the D��
s into

these two principal channels are given by �94:2 	 2:5�%
and �5:8 	 2:5�% [6], respectively.

The angular decay distribution of the semi-inclusive
polarized �b decays can be obtained from the master
formula (see e.g. [7])

W��P; �; �� /
X

�D�s
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D�s
���b

��0
�b
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��0
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��b
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(1)

where ���b
�0

�b
��P� is the density matrix of the �b which

reads
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FIG. 1. Definition of polar angles �P and �, and the azimuthal
angle � in the semi-inclusive decay �b�"� ! Xc �D

�
s �!

D�
s � 
 or �0�. ~P is the polarization vector of the �b. The

polar angle � is defined in the D��
s rest frame relative to the

direction of the D��
s in the �b rest frame.
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���b
�0

�b
��P� �

1

2

�
1 � P cos�P P sin�P
P sin�P 1 � P cos�P

�
: (2)

P is the magnitude of the polarization of the �b. The

H
��b

�0
�b

�D�s
�0
D�s

are the helicity components of the hadronic ten-

sor H���s�b
� describing the semi-inclusive decay. The

sum in Eq. (1) extends over all values of �D�
s
; �0D�

s
; ��b

and �0�b
compatible with the constraint �W � �0W �

��b
� �0�b

(the spin degrees of freedom of Xc are being
summed over). The polar angles �P, � and the azimuthal
angle � are defined in Fig. 1. Because of angular mo-
mentum conservation, the second lower index in the
small Wigner d���-function d1

�D�s
m��� runs over m � 	1
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for the decay D��
s ! D�

s � 
 and over m � 0 for the
decay D��

s ! D�
s � �0. One thus obtains the angular

decay distributions
d���"�
b !Xc�D��

s �!D�
s �
�

d cos�Pd cos�d�
�

1

4�
BR�D��

s ! D�
s � 
�

�
3

8
�1 � cos2����U � �UPP cos�P� �

3

4
sin2���L � �LPP cos�P�

�
3

4

���
2

p
P sin�P sin2� cos��IP

�
(3)

and

d���"�
b !Xc�D��

s �!D�
s ��0�

d cos�Pd cos�d�
�

1

4�
BR�D��

s ! D�
s � �0�

�
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4
sin2���U � �UPP cos�P� �

3

2
cos2���L � �LPP cos�P�

�
3

2

���
2

p
P sin�P sin2� cos��IP

�
: (4)
Two-fold or single angle decay distributions can be ob-
tained from Eqs. (3) and (4) by further integration. For
example, the single angle dependence on cos�P for both
cases is given by

d���"�
b !Xc�D��

s

d cos�P
�

1

2
��U�L � ��U�L�PP cos�P�

�
1

2
�U�L�1 � 	P�D�

s�P cos�P�; (5)

where we have defined an asymmetry parameter
	P�D

�
s� � ��U�L�P=�U�L.

The transverse/longitudinal composition of the vector
meson D��

s can be best determined by analyzing the
cos�-dependence of the decay distributions after integrat-
ing over cos�P and �. Note that the cos�-dependence is
different in the two decay modes.

The decay distribution for �b�"� ! Xc �D
�
s can be

obtained from the same master formula (1) with the
appropriate substitutions �D�

s
!�Ds �0 and d1 !d0 �1.

The helicity of the �Ds will be denoted by the symbol ‘‘S’’
for ‘‘scalar.’’ One has

d���"�
b !Xc�D�

s

d cos�P
�

1

2
��S � �SPP cos�P�

�
1

2
�S�1 � 	P�Ds�P cos�P�; (6)

where we have again defined an asymmetry parameter
	P�Ds� � �PS=�S.
The angular coefficients �i (i � S; SP;U; L;UP; LP; IP)
appearing in the decay distributions are partial helicity
rates defined by

�i �
G2
F

8�
jVbcV

�
csj

2f2
D���
s
m2
bpD���

s
a2

1Hi; (7)

where the helicity structure functions Hi are linear com-
binations of the helicity components. They read

HS�H
��
SS �H��

SS ; HSP �H
��
SS �H��

SS ;

HU�H
��
���H��

���H��
���H��

�� ; HL�H
��
00 �H��

00 ;

HUP �H
��
���H��

���H��
���H��

�� ; HLP �H
��
00 �H��

00 ;

HIP �
1

4
�H��

�0 �H��
0� �H��

�0 �H��
0� ��

1

2
�H��

�0 �H��
�0 �;

(8)

where, for the ease of writing, we have omitted factors of
1=2 in the upper indices standing for the helicities of the
�b. The remaining quantities appearing in (7) are defined
in Sec. III.

When the �b is unpolarized (P � 0), or when one
integrates over the angles �P and � that describe the
orientation of the polarization vector of the �b, one
remains with the contributions of the three structure
functions HU, HL and HS in the decay distributions. In
this way one recovers the decay distributions for the
corresponding semi-inclusive decays of B mesons into
Ds and D�

s treated in [2].
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III. BORN TERM RATES

As explained in Sec. II, the decay �b ! Xc �
�D�

s ; D
��
s � involves seven structure functions which can

be resolved by an angular analysis of the decay products.
We begin by writing down the leading order Born term
contributions given by the quark level transition b! c�
�D�

s ; D��
s � [see Fig. 2(a)]. For the partial helicity rates one

obtains

�Born
i �b�"� ! c�D����

s � �
G2
F

8�
jVbcV�

csj
2f2
D���
s
m2
bpD���

s
a2

1Bi;

(9)

where

BS � BL � �1 � y2�2 � x2�1 � y2�;

BU � 2x2�1 � x2 � y2�;

BU�L � �1 � y2�2 � x2�1 � y2 � 2x2�;

BSP � BLP �
����
�

p
�1 � y2�; BUP � �2x2

����
�

p
;

B�U�L�P �
����
�

p
�1 � y2 � 2x2�; BIP � �

1���
2

p x
����
�

p
;

(10)

and where x � mD���
s
=mb and y � mc=mb. The kinemati-

cal factor � is defined by � � 1 � x4 � y4 � 2�x2 � y2 �

x2y2� such that pD���
s
� 1

2mb�
1=2. In Eq. (9), fDs and fD�

s

denote the pseudoscalar and vector meson coupling con-
stants defined by hD�

s jA
�j0i � ifDsp

�
Ds

and
hD��

s jV�j0i � fD�
s
mD�

s
-��, respectively. The Kobayashi-

Maskawa matrix element is denoted by Vq1q2
, and the pDs

and pD�
s

are the magnitude of the three-momenta of the
Ds and D�

s in the b rest system. The parameter a1 is
related to the Wilson coefficients of the renormalized
current-current interaction and is obtained from a com-
b c

c
s

Ds
-,Ds

*-

b c

c
s

Ds
-,Ds

*-

(a)

(c)

FIG. 2. Leading order Born term contribution (a) and
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bined fit of several decay modes (ja1j � 1:00 	 0:06) [1].
Note that the structural similarity of the unpolarized and
polarized rate formulae for the decay intoDs and into the
longitudinal D�

s is an accident of the Born term calcula-
tion and does not persist, e.g., at higher orders of 	s, or for
the nonperturbative contributions to the unpolarized lon-
gitudinal rate into D�

s to be written down later on.
�Born
S and �Born

U�L determine the total �b ! Xc �D
�
s and

�b ! Xc �D
��
s rates at the Born term level, respectively.

Using fDs � 230 MeV and fD�
s
� 280 MeV as in [1],

/�b
� 1:23 ps, Vbc � 0:04, Vcs � 0:974 and the central

value for a1, one arrives at

BR �b!Xc�D�
s
� 2:5%; BR�b!Xc�D��

s
� 5:2%: (11)

While the semi-inclusive �b ! Xc � �D�
s ; D

��
s � rates

have not been measured yet, a comparison of the Born
term prediction with data on the corresponding mesonic
decay �B0 ! Xc � �D�

s ; D��
s � is meaningful because the

Born level predictions for both processes are identical.
Allowing for the factor /�b

=/B � 0:77 and summing up
the Ds and D�

s modes, one arrives at a branching ratio of
10% which is consistent with the measured value
BR�B! X�D	

s � � �10:0 	 2:5�% [6] if one assumes
that the above two rates saturate the semi-inclusive rate
into D	

s .
IV. O�	s� RADIATIVE CORRECTIONS

Next we turn to the O�	s� radiative corrections. As is
evident from Fig. 2, the radiative gluon corrections con-
nect only to the b and c legs of the parton decay process
b! c� �Ds;D�

s� because of the conservation of color
[see Fig. 2(b)–2(d)]. The radiative corrections for the
seven structure functions are thus identical to the corre-
b c

c
s

Ds
-,Ds

*-

b c

c
s

Ds
-,Ds

*-(b)

(d)

O�	s� contributions (b, c, d) to b! c� �D�
s ; D

��
s �.
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sponding radiative corrections calculated in [7] where the
process t! W� � bwas considered (including the scalar
case) keeping mb � 0 1.

For theO�	s� radiative corrections one has to calculate
the square of the tree-graph amplitudes Figs. 2(c) and
2(d), and the one-loop contribution Fig. 2(b). We concen-
1In the unpolarized case the totalO�	s� correction to the spin
1 piece of the weak current keeping both quark masses finite
had been calculated before in [8–11]. The O�	s� corrections to
the (unpolarized) spin 0 piece of the weak current can also be
deduced from the calculations of [8,12].

094026
trate on the tree-graph contribution given by the squares
of the tree-graph amplitudes Fig. 2(b) and 2(c) which will
be denoted by H���tree�. The b! c hadron tensor can
be obtained from the corresponding t! b hadron tensor
given in [7] by the replacements pt ! pb and pb ! pc

2.
One obtains
H ���tree� � �4�	sCF
8

�k � pb��k � pc�

�

�
k � pb
k � pc

fm2
c�k

� �p�b � k
� �p�b � k � �pbg

��� � i�-	3���pc � k� � �pb

�-	3
��pc � k�� �pb;
 � -	3
��pc � k�� �pb;
�k	pc;3g �
k � pc
k � pb

f� �pb � pb��k�p�c � k�p
�
c � k � pcg��

�i-	3��k	pc;3� � � �pb � k���pb � k��p�b � �pb � k��p
�
c � �pb � k� � pcg�� � i-	3���pb � k�	pc;3�g

�� �pb � pc��k�p�c � k�p
�
c � k � pcg�� � i-	3��k	pc;3� � �pb � pc��k� �p�b � k

� �p�b � k � �pbg���

��k � pc��p
�
b �p�b � p

�
b �p�b � pb � �pbg��� � �k � pb���pc � k�� �p�b � �pc � k�� �p�b � �pc � k� � �pbg���

��k � �pb��2p
�
c p�c � pc � pcg

��� � i�-	3���k � �pb� � -
	3
�k� �pb;
 � -

	3
�k� �pb;
�pc;	pb;3

�i�-	3���pb � �pb� � -	3
�p�b �pb;
 � -	3
�p
�
b �pb;
�k	pc;3

�

� B�� � �SGF (12)
�SGF: � �4�	sCF

�
m2
c

�k � pc�
2 �

m2
b

�k � pb�
2

� 2
pc � pb

�k � pc��k � pb�

�
(13)

where k is the four-momentum of the emitted gluon. The
polarization of the bottom quark is taken into account by
introducing the shorthand notation �pb � pb �mbsb. We
have found it convenient to split the tree-graph hadron
tensor into an infrared (IR) finite piece and an IR diver-
gent piece given by the usual soft-gluon factor �SGF
multiplied by the Born term tensor B��

B�� � 2� �p�bp
�
c � �p�b p

�
c � g

�� �pb � pc
� i-��	3pc;	 �pb;3�: (14)

In this way the IR singularity is isolated in the uni-
versal function �SGF which can be integrated by
introducing a gluon mass regulator to regularize the IR
singularity. The ensuing logarithmic gluon mass
singularity is cancelled by the corresponding gluon
mass singularity occurring in the loop contribution (see
e.g.[7]).

The phase-space integration of the IR convergent piece
can be done without a gluon mass regulator. One first
projects the convergent piece of the tree-graph tensor
(12) onto the seven helicity structure functions Eq. (8)
and then does the phase-space integration in the sequen-
tial order (i) k0 (gluon energy), (ii) q0 (energy of the off-
shell W�).
The final O�	s� answer including the one-loop contri-
bution can be written in a very compact way by introduc-
ing combinations of dilogarithmic functions A and
N 0;::;4. The contribution denoted by A is part of the
finite remainder of the Born term type one-loop contri-
bution plus the soft-gluon contribution. The combinations
N 0;::;4 appear when integrating those helicity structure
functions HSP;HU;HUP;HLP; HLP and HIP that are not
associated with the total rate. All these functions are
defined after Eq. (24). We mention that we have now
been able to present our results on the radiatively cor-
rected structure functions in a much more compact form
than thought possible when we wrote up [7].

We shall present our O�	s� results in a form where the
respective Born terms ��0�

i are factored out from the
O�	s� result. Including the Born term and the nonpertur-
bative O�1=m2

b� contributions to be discussed in Sec. IV
we write �̂i: � �i=�

Born
S and �̂Born

i : � �Born
i =�Born

S for i �
S; SP, and �̂i: � �i=�Born

U�L and �̂Born
i : � �Born

i =�Born
U�L for

i � U;L;U� L;UP; LP;UP � LP; IP. One has

�̂ i � �̂Born
i �1 � CF

	s
4�

~�i � aKi Kb � a
-
i -b�: (15)

Kb is the expectation value of the kinetic energy of the
heavy quark in the �b baryon and -b parametrizes the
spin-dependent contribution of the heavy quark in the �b
baryon [13].

To begin with, we list the reduced O�	s� rates ~�i. For
the reduced unpolarized and polarized scalar spin 0 rates
~�S and ~�SP we obtain
2We take the opportunity to correct two sign typos in the
corresponding t! b expression in [7]

-4



SEMI-INCLUSIVE DECAYS �b ! Xc � �Ds;D
�
s� AT O�as� INCLUDING. . . PHYSICAL REVIEW D 70 094026
~�S�A�
1����
�

p ���x2�1�x2�y2���1

�
2

x2 ��1�x
2��2�x2���6�4x2�5x4�y2��6�7x2�y4�2y6�

����
�

p
ln�y�

�8�1�x2��2�x2�y2�y4�
����
�

p
ln
�
xy
�

�
�

1

x2 ��1�x
2�2�2�3x2���8�3x2�4x4�3x6�y2�3�4�5x2�y4

��8�5x2�y6�2y8� ln�w1��8�1�y2��1�x2��2�x2�y2�y4� ln�6��3
����
�

p
�3�1�x2���10�3x2�y2�3y4�

�
(16)

~�SP �A�
1

�

�
4�2�x4��3�2x2�y2�y4�N 0�4

����
�

p
�1�x2�y2�N 4�

2

x2

1

1�y2 �2�x
2��4�5x2�y2�2y4��ln�y�

�8�ln
�
xy
�

�
�

����
�

p

x2 �2�9x2�x4��4�3x2�y2�2y4� ln�w1��8�ln
�
�1�x�2�y2

x

�
�4��1�x2��5�2x2�

�2�2�x2�y2� ln
�
1�x
y

�
���1�x�2�y2��11�6x�7x2�7y2�

�
: (17)

The other variables and functions appearing in Eqs. (28) and (29) are explained at the end of this section. For the five
unpolarized and polarized reduced spin one rates ~�i (i � U;L;UP; LP; IP) we obtain

~�U � A�
1����
�

p
1

1 � x2 � y2

�
�4�7 � x2 � y2�N 1 �

2

x
��1 � x�2 � y2���1 � x��5 � x� � y2�N 2 �

2

x
��1 � x�2 � y2�


��1 � x��5 � x� � y2�N 3 �
2

x2 �1 � x2 � y2��1 � 2x2 � y2�
����
�

p
ln�y� � 8�1 � x2 � y2�

����
�

p
ln
�
xy
�

�

�
1

x2 ��1 � x2�2�1 � 6x2� � �1 � 4x2 � 3x4�y2 � �1 � 2x2�y4 � y6� ln�w1� � 4�7 � 3x2 � �4 � 5x2�y2 � 3y4�


 ln�6� �
����
�

p
�19 � x2 � 5y2�

�
; (18)

~�L � A�
1����
�

p ��� x2�1 � x2 � y2���1

�
8x2�7 � x2 � y2�N 1 � 4x��1 � x�2 � y2���1 � x��5 � x� � y2�N 2

�4x��1 � x�2 � y2���1 � x��5 � x� � y2�N 3 � 2�1 � x2 � �4 � 3x2�y2 � 3y4�
����
�

p
ln�y�

�8�1 � x2 � �2 � x2�y2 � y4�
����
�

p
ln
�
xy
�

�
� �5�1 � x2�2 � �3 � 20x2 � x4�y2 � �9 � 2x2�y4 � y6� ln�w1�

�8�1 � x2 � y2��1 � 7x2 � �2 � x2�y2 � y4� ln�6� �
����
�

p
�5 � 47x2 � 4x4 � �22 � x2�y2 � 5y4�

�
; (19)

~�U�L � A�
1����
�

p ��� 3x2�1 � x2 � y2���1

�
�2��1 � x2��1 � 4x2� � �4 � x2�y2 � 5y4�

����
�

p
ln�y�

�8��1 � x2��1 � 2x2� � �2 � x2�y2 � y4�
����
�

p
ln
�
xy
�

�
� �3�1 � x2�2�1 � 4x2� � �1 � 12x2 � 5x4�y2

��11 � 2x2�y4 � y6� ln�w1� � 8�1 � y2��1 � x2 � 4x4 � �2 � x2�y2 � y4� ln�6�

�
����
�

p
�5 � 9x2 � 6x4 � �22 � 9x2�y2 � 5y4�

�
; (20)

~�UP �A�
1

�

�
4�11�3x2�x4�2�3�x2�y2�y4�N 0�4

����
�

p
�1�x2�y2�N 4�

2

x2 �1�2x2�y2��ln�y��8�ln
�
xy
�

�

�

����
�

p

x2 �7�21x2�2x4��8�3x2�y2�y4� ln�w1��8�ln
�
�1�x�2�y2

x

�
�

4

x2 ��1�x
2��3�14x2�2x4�

��6�7x2�x4�y2��3�x2�y4� ln
�
1�x
y

�
�

1

x
��1�x�2�y2��12�55x�6x2�x3�3�4�x�y2�

�
; (21)
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~�LP � A�
1

�
1

1 � y2

�
4�2 � 22x2 � 11x4 � �5 � 12x2 � x4�y2 � 2�2 � x2�y4 � y6�N 0 � 4�1 � y2�



����
�

p
�1 � x2 � y2�N 4 � 2�1 � 3y2�� ln�y� � 8�1 � y2�� ln

�
xy
�

�
�

����
�

p
�17 � 53x2 � �18 � x2�y2 � y4� ln�w1�

�8��1 � y2� ln
�
�1 � x�2 � y2

x

�
� 4��1 � x2��11 � 24x2� � �13 � 15x2�y2 � 2y4� ln

�
1 � x
y

�

���1 � x�2 � y2��15 � 22x� 105x2 � 24x3 � �12 � 22x� x2�y2 � 3y4�

�
; (22)

~�UP�LP � A�
1

�
1

1 � 2x2 � y2

�
4�2 � 5x4 � 2x6 � �5 � 3x4�y2 � 4y4 � y6�N 0 � 4

����
�

p
�1 � x2 � y2�


�1 � 2x2 � y2�N 4 � 2��3 � 4x2 � 5y2� ln�y� � 8��1 � 2x2 � y2� ln
�
xy
�

�
� �3 � x2 � y2��1 � 4x2 � y2�



����
�

p
ln�w1� � 8��1 � 2x2 � y2� ln

�
�1 � x�2 � y2

x

�
� 4��1 � x2��5 � 4x2 � 4x4� � �1 � x2 � 2x4�y2

�2�2 � x2�y4� ln
�
1 � x
y

�
� ��1 � x�2 � y2��15 � 2x� 5x2 � 12x3 � 2x4 � �12 � 2x� 7x2�y2 � 3y4�

�
; (23)

~�IP � A�
1

�

�
2�7 � 15x2 � 4x4 � �11 � 8x2�y2 � 4y4�N 0 � 4

����
�

p
�1 � x2 � y2�N 4 �

1

x2 �1 � 3x2 � y2�� ln�y�

�8� ln
�
xy
�

�
�

����
�

p

2x2 �1 � 30x2 � 21x4 � 2�1 � 11x2�y2 � y4� ln�w1� � 8� ln
�
�1 � x�2 � y2

x

�

�2��1 � x2��21 � 5x2� � �11 � 15x2�y2 � 4y4� ln
�
1 � x
y

�
� 2��1 � x�2 � y2��12 � 7x� 12x2 � 9y2�

�
: (24)

As mentioned before the contribution denoted by A is that part of the finite remainder of the Born term type one-
loop contribution plus the soft-gluon contribution which contains dilogs and products or squares of logs . It is given by

A �
2����
�

p �1 � x2 � y2�

�
�4Li2�1 � w1� � 4Li2�1 � w2� � 4Li2�1 � w3� � ln�w1� ln

�
�2w3

x2y3

�

�
1

2
ln2�w1� � ln

�
1

2
�1 � x2 � y2 �

����
�

p
�

�
ln�w2w3�

�
: (25)

The functions N 0;::;4 are defined by

N 0 � Li2

�
x
6

�
� Li2�x6� � 2Li2�x�

N 1 � Li2�x6� � Li2

�
x
6

�
� 2 ln�1 � 6x� ln

�
�6� 1�x

1 � x

�
� ln

�
6

6� x

�
ln
�
x2�6� 1�2

6�6� x�

�

N 2 � Li2

�
�6� 1�x
6� x

�
� Li2

�
�6� 1�x

1 � x

�
�

1

2
ln2�1 � x� � ln

�
6

6� x

�
ln
�
�6� 1�x
6� x

�

� ln�1 � x� ln
�

1 � x
6� x

�
� ln�1 � 6x� ln

�
�6� 1�x

1 � x

�

N 3 � Li2

�
1 � 6x
1 � x

�
� Li2

�
6� x
6�1 � x�

�
�

1

2
ln
�
6

6� x

�
ln
�
6�6� 1�2�1 � x�2

�6� 1�2�6� x�

�

N 4 � 4Li2

�
6

����
�

p

6� x

�
� 2Li2

�
�6� 1�x

1 � x

�
� 2Li2

�
�6� 1�x
6� x

�
� Li2

�
x
6

�
� Li2�x6� � ln2�1 � x� � ln

�
6

6� x

�


 ln
�
6�6� 1�2

6� x

�
� 2 ln�1 � 6x� ln

�
�1 � x��6� 1�

6� x

�
;
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where we use the abbreviations

w1 �
1�x2�y2�

����
�

p

1�x2�y2�
����
�

p ; w2 �
1�x2�y2�

����
�

p

1�x2�y2�
����
�

p ;

w3 �
1�x2�y2�

����
�

p

1�x2�y2�
����
�

p ; 6�
1�x2�y2�

����
�

p

2x
:

(26)

V. NONPERTUBATIVE CONTRIBUTIONS

When one uses the operator product expansion in
HQET one can determine the nonpertubative corrections
094026
to the leading partonic b! c rate. The nonpertubative
corrections set in at O�1=m2

b� and arise from the kinetic
energy and the spin-dependent piece of the heavy quark
in the heavy baryon [13]. The strength of the kinetic and
the spin-dependent piece are parametrized by the expec-
tation values of the relevant operators in the �b system
and are denoted by Kb and -b, respectively. We have
completely recalculated the nonpertubative contributions
to the seven partial rates and have found some errors in
the calculation of [14] which will be corrected in an
Erratum to [14]. One has
S: aKS � �1; a-S � 0;

U: aKU � �

�
1 �

8

3

1

1 � x2 � y2

�
; a-U � 0;

L: aKL � �

�
1 �

16

3

x2

�1 � y2�2 � x2�1 � y2�

�
; a-L � 0;

U� L: aKU�L � �1; a-U�L � 0;

SP: aKSP � �

�
1 �

8

3

x2

�

�
; a-SP � 1;

UP: aKUP � �

�
1 �

8

3

x2

�

�
a-UP � 1;

LP: aKLP � �

�
1 �

8

3

x2

�

�
a-LP � 1;

�U� L�P: a�U�L�P � �

�
1 �

8

3

x2

�

�
a-
�U�L�P � 1;

IP: aKIP �
2

3

�
1 � 4

x2

�

�
a-IP � 1:

(27)
The nonperturbative contributions for �U�L� and �U�
L�P can be compared to the corresponding
q2-distributions in semileptonic b-decays written down
in [15]. We find agreement.

For our numerical evaluation we use Kb � 0:013 for
the mean kinetic energy of the heavy quark in the �b as in
[14]. An estimate of the spin-dependent parameter
has been given in [16] with the result -b � � 2

3Kb, based
on an assumption that the contribution of terms arising
from double insertions of the chromomagnetic operator
can be neglected. A zero recoil sum rule analysis gives
the constraint -b � � 2

3Kb [17] which puts the estimate
of [16] at the upper bound of the constraint. We use
the value of [16] keeping in mind that the numerical
value of -b could be reduced in more realistic
calculations.
VI. NUMERICAL RESULTS

Using mb�4:85 GeV, mc�1:45 GeV, mDs �1968:5 MeV, mD�
s
�2112:4 MeV and 	s�mb��0:2 we obtain for b!c

�̂S � �1 � 0:0964 � 0:0130 � 0�; �̂SP � 0:9884�1 � 0:1027 � 0:0245 � 0:0087�;

�̂U � 0:3541�1 � 0:1079 � 0:0255 � 0�; �̂UP � �0:2646�1 � 0:0616 � 0:0276 � 0:0087�;

�̂L � 0:6459�1 � 0:1103 � 0:0341 � 0�; �̂LP � 0:6351�1 � 0:1043 � 0:0276 � 0:0087�;

�̂U�L � �1 � 0:1095 � 0:0130 � 0�; �̂�U�L�P � 0:3705�1 � 0:1348 � 0:0276 � 0:0087�;

�̂IP � �0:2148�1 � 0:0876 � 0:0059 � 0:0087�;

(28)

The four entries in the round brackets correspond to the Born term contribution, the O�	s� corrections, and the
nonperturbative kinetic and spin-dependent corrections in that order, as specified in Eq. (15).
-7
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The reduction of the partial rates from the radiative
corrections scatter around 10%, where the reduction
is largest for �̂�U�L�P (�13:5%) and smallest for �̂UP (�
6:2%). When normalized to the total rate, as is appropri-
ate for density matrix elements, the corresponding den-
sity matrix elements are reduced by 2:84% and increased
by 5:38% in magnitude by the radiative corrections,
respectively.

The nonperturbative corrections range from �0:9% for
the spin-dependent corrections to a maximal �3:4% for
the kinetic energy correction to �̂L. The nonperturbative
corrections are all negative except for the kinetic energy
correction to �̂U and �̂IP .

As specified in Eqs. (5) and (6), the asymmetry pa-
rameters 	P�Ds;D

�
s� can be measured in the semi-

inclusive decays of a polarized �b into the two decay
channels. For the pseudoscalar case the Born term level
asymmetry 	P�Ds� � 0:99 is quite close to its maximal
attainable value of one which would be achieved for y �
0. The Born term value is only slightly reduced to
094026
	P�Ds� � 0:97 by the radiative and nonperturbative cor-
rections. For the vector case the asymmetry parameter is
smaller. At Born term level one has 	P�D�

s� � 0:37 which
is reduced to 	P�D�

s� � 0:35 including the radiative and
nonperturbative corrections. As outlined in Sec. II the
transverse/longitudinal composition of the D�

s can be
measured by the cos�-dependence in the angular decay
distribution of its decay products. At the Born term level
the transverse/longitudinal composition is given by
�̂U=�̂L � 0:55. This ratio is shifted upward by the insig-
nificant amount of 0:3% through the radiative correc-
tions. Adding all corrections one finds a 7:3%
enhancement in the U=L ratio.

Next we turn to our numerical results for the Cabibbo-
suppressed semi-inclusive decays �b ! Xu � �Ds;D

�
s�

induced by the b! u transitions. Compared to the above
Cabibbo-enhanced semi-inclusive decays they are down
by a factor �Vub=Vcb�2 � 10�2, which is only slightly
compensated for by a kinematical enhancement factor
of � 1:5. Setting mu � 0, i.e. y � 0, one has
�̂S � �1 � 0:1694 � 0:0130 � 0�; �̂SP � �1 � 0:1745 � 0:0212 � 0:0087�;

�̂U � 0:2750�1 � 0:1150 � 0:0285 � 0�; �̂UP � �0:2750�1 � 0:1275 � 0:0212 � 0:0087�;

�̂L � 0:7250�1 � 0:1777 � 0:0267 � 0�; �̂LP � 0:7250�1 � 0:1800 � 0:0212 � 0:0087�;

�̂U�L � �1 � 0:1605 � 0:0130 � 0:0087�; �̂�U�L�P � 0:4500�1 � 0:2121 � 0:0212 � 0:0087�;

�̂IP � �0:2233�1 � 0:1506 � 0:0005 � 0:0087�:

(29)
3As concerns the semi-inclusive decays �b ! Xc �
�D�

s ; D
��
s � the possibility of producing extra D�

s and D��
s

mesons through fragmentation of the c-quark is ruled out for
kinematic reasons.
In the b!u case the radiative corrections and their
spread are larger than in the b! c case. The reduction
of the partial rates from the radiative corrections now
scatter around �17%, where the reduction is largest for
�̂�U�L�P (�21:2%) and smallest for �̂U ( � 11:5%). When
normalized to the total rate, the corresponding density
matrix elements are reduced by 6:1% and increased by
5:4% in magnitude by the radiative corrections, respec-
tively. The dominance of the longitudinal rate is now
more pronounced. At the Born term level one finds
�U=�L � 2x2 � 0:38. The ratio �U=�L is shifted upward
by 7:6% by the radiative corrections. Adding up all
corrections one finds a 14:8% upward shift for this ratio.
For the asymmetry parameter one obtains 	P�Ds� �
0:984 including all corrections which shifts the uncor-
rected result 	P�Ds� � 1 downward by 1:6%. For the
asymmetry parameter 	P�D�

s� one obtains 	P�D�
s� �

0:42 which is lower than the uncorrected result of
	P�D�

s� � 0:45 by 7:3%. Let us mention that our O�	s�
results on �U�L and �S numerically agree with the results
of [1] for both the b! c and b!u transitions.

As a last point we want to discuss the semi-inclusive
decays �b ! Xc � ���; ��� which have not been dis-
cussed so far. They are also induced by the diagrams in
Fig. 2 when the c! s transition in the upper leg is
replaced by a u! d transition. Using f�� � 132 MeV,
f�� � 216 MeV and Vud � 0:975 one finds the Born term
branching fractions BRb!���c � 1:6% and BRb!���c�
4:6%. In the latter case the rate is dominated by the
longitudinal contribution since q2 � m2

� is not far from
q2 � 0 where the rate would be entirely longitudinal.
In fact one finds �U=�L � 0:067. It is important to
note that the diagrams in Fig. 2 are not the only
mechanisms that contribute to the semi-inclusive
decays �b ! Xc � ���; ���. Additional �� and ��

mesons can also be produced by fragmentation of the
c-quark at the lower leg.3 As concerns the �� mesons
resulting from the fragmentation process they would not
be polarized along their direction of flight. This lack of
polarization as compared to the strong polarization of the
� mesons from the weak vertex could possibly be used to
separate �� mesons coming from the two respective
sources.

VII. SUMMARY AND CONCLUSIONS

We have calculated the perturbative O�	s� and the
nonperturbative O�1=m2

b� corrections to the seven struc-
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ture functions that can be measured in the semi-inclusive
decay of a polarized �b in the process �b�"�!
Xc��D�

s ;D��
s �. We have used the factorization hypothe-

sis to factorize the semi-inclusive decay into a current-
induced �b!Xc transition and a current-induced vac-
uum one-meson transition. The dominant contribution to
the current-induced �b!Xc transition is given by the
leading order HQET transition b!c. Thus the semi-
inclusive decays of a polarized �b offer the unique op-
portunity to measure seven of the nine structure functions
that describe the current-induced free quark transition
b!c.

We emphasize that there are also nonfactorizing O�	s�
contributions which have not been included in our analy-
sis. However, the nonfactorizing O�	s� contributions are
color suppressed and are thus expected to be small.
094026
We find that the perturbative corrections are always
negative. The nonperturbative corrections are negative in
most of the cases. The net effect of the corrections to the
structure functions can become as large as �20% for the
b!c transitions and can exceed �20% for the b!u
transitions. When normalized to the total rate, as is
appropriate for density matrix elements accessible to ex-
perimental measurement, the corrections become smaller
but can still amount to � 	5%.
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