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Relativity and constituent quark structure in model calculations of parton distributions
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According to recent studies, Parton Distribution Functions (PDFs) and Generalized Parton
Distributions (GPDs) can be evaluated in a Constituent Quark Model (CQM) scenario, considering
the constituent quarks as composite objects. In here, a fully covariant model for a system of two
particles, together with its non relativistic limit, are used to calculate PDFs and GPDs. The analysis
permits to realize that by no means the effects of Relativity can be simulated taking into account the
structure of the constituent particles, the two effects being independent and necessary for a proper
description of available high energy data in terms of CQM.
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I. INTRODUCTION

Parton Distribution Functions (PDFs) and Generalized
Parton Distributions (GPDs) [1–3], the latter relating
PDFs and electromagnetic Form Factors (FF), encode
unique information on the non perturbative hadron struc-
ture (for a recent review, see [4]). In principle, any real-
istic model of hadron structure should be able to estimate
them. Among the non perturbative approaches, the
Constituent Quark Model (CQM) has a long story of
successful predictions in low energy studies of the elec-
tromagnetic structure of the nucleon, such as the calcu-
lation of FF. In the high energy sector, in order to compare
model predictions of PDFs with Deep Inelastic Scattering
(DIS) data, one has to evolve, according to perturbative
QCD, the leading twist component of the physical struc-
ture functions obtained at the low momentum scale asso-
ciated with the model. Such a procedure, already
addressed in [5,6], has proven successful in describing
the gross features of standard PDFs by using different
CQM (see, e.g., [7]), and it has been applied also to the
calculation of the valence quark contribution to GPDs in
Ref. [8]. Anyway, in order to achieve a better agreement
with data, such a program has to be improved.

Two main directions have been followed in this respect
by different authors. One has been to show that unpolar-
ized and polarized DIS data are consistent with a low
energy scenario dominated by composite constituent
quarks of the nucleon [9]. The latter are defined through
a scheme suggested by Altarelli, Cabibbo, Maiani and
Petronzio (ACMP) [10], updated with modern phenome-
nological information. The idea of complex constituents,
as old as the quark-parton model itself [11], used exten-
sively in other frameworks [12], has been recently applied
to demonstrate the evidence of complex objects inside the
proton, analyzing intermediate energy data of electron
scattering off the proton [13]. In Ref.[14], the idea has
been successfully applied also to GPDs, in particular,
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allowing for the evaluation of the sea quark contribution,
so that GPDs can be calculated in their full range of
definition. Such an achievement will permit to estimate
the cross-sections which are relevant for actual GPDs
measurements, providing us with an important tool for
planning future experiments. In any case, one has to
realize that the CQM calculations, as developed in [7],
even if the structure of the constituent is taken into
account as in [9], are affected by the problem of poor
support, being the Bjorken variable xBj not limited be-
tween zero and one.

The other direction makes use of light-front dynamics,
which allows to estimate relativistic effects in a covariant
framework. Another good feature of this program is that,
by construction, it is not affected by the problem of poor
support. This approach is particularly useful when spin
degrees of freedom are considered, and it has been indeed
applied to the calculation of polarized, transversity and
orbital angular momentum distributions [15]. Recently, it
has been also applied to the calculation of the quark
contribution to spin-independent and spin dependent
GPDs [16], using the overlap representation [17]. A rele-
vant contribution to the calculation of GPDs on the light-
front has been given by Tiburzi and Miller [18], and some
remarks on the use of light-front for calculating GPDs
can be found in [19].

A question which naturally arises is whether or not the
two approaches described above, the one which takes into
account the structure of the constituent quark, or the one
which implements relativity in a CQM by a light-front
approach, are introducing in different effective ways the
same physics into the problem. In other words, whether or
not the structure of the constituent quark has to be
implemented even in a relativistic model, such as the
one obtained in a light-front approach. These issues are
discussed in the present paper. To do so we implement the
discussion in a simple model of a bound system of two
scalar particles, defined in a quantum field theoretical,
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explicitly covariant, framework [20]. The model, despite
its simplicity, is a rather general one and allows the exact
evaluation of the PDF’s and GPD’s. Moreover, their Non
Relativistic (NR) limit can be calculated. We will show
that it is not possible to recover the shape of the initial full
covariant PDFs and GPDs by implementing, in the dis-
tributions obtained as their NR limit, the structure of the
constituent quark. We find therefore that, for the quite
general model under scrutiny, the effect of introducing
the structure of the constituents describes different phys-
ics than that described by implementing Relativity.

The paper is structured as follows. After a short defi-
nition of the main quantities of interest, the used model
and its NR limit are presented in Section II, together with
the possible modifications due to the structure of the
constituent quark; in Section III, the results of the calcu-
lations are shown. Conclusions are drawn in the last
section.

II. FORMALISM

PDFs and GPDs are the main quantities of interest in
this paper. Here below they are shortly defined together
with the conventions used. The GPDs are nondiagonal
matrix elements of bi-local field operators. Let us con-
sider a scalar system of mass M, with initial momentum
P, final momentum P0, and momentum transfer given by
� � P0 � P, made of two scalar particles of mass m. If
the momentum of the interacting one is labeled by p and
the quantity �P � �P� P0�=2 is used, the GPD of such a
system is defined by the matrix elements of bi-local
scalar field operators [1–3]:

J� �
1

2

Z dz�

2�
eixP

�z�hP0j�y�0�@
$���z�jPi

��������z��z?�0

� H �x; �; t�; (1)

In the above equation, � is the so-called skewedness
parameter, defined as

� � �
��

2 �P�
; (2)

so that

x� � �
p�

�P�
; (3)

and @
$
� ~@� @� (any four vector v� will be denoted

�v�; v?; v��, where the light cone variables are defined
by v� � �v0 � v3�=

���
2

p
and the transverse part v? �
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�v1; v2�). The standard PDF is defined as the forward
limit of Eq. (1), when t ! 0 and � ! 0.

The elastic electromagnetic form factor of a system
composed of two scalar particles is given by:

J� � hP0j�y�0�@
$���0�jPi � �P� P0��F�t�: (4)

It follows directly from these definitions that integrating
the GPD over x gives the form factor,

Z
H �x; �; t�dx � F�t�; (5)

where the dependence on the skewedness parameter �
drops out. This result is an important constraint for any
model calculation.

Only elastic processes will be considered, so P2 �
P02 � M2 and �2 � t. The values of � which are possible
for a given value of �2 are:

0 � � �
����������
��2

p
=

����������������������
4M2 � �2

p
: (6)

In Ref. [20], GPDs have been estimated by a simple
model, which allows for a completely analytic solution of
the Bethe-Salpeter equation. The model describes a bound
state of two distinguishable equal-mass scalar particles
bound together by a zero-range interaction. The
Lagrangian is,

L � �D���y�D��� �m2�y��
1

2
@��@

���
1

2
m2�2

�
g
2
��y��2�; (7)

with D� � @� � ieA� so that the electromagnetic charge
only couples to the field �. Being the coupling constant g
larger than a critical value, bound states are encountered.
The corresponding Bethe-Salpeter equation can be trivi-
ally solved in the ladder approximation. The theory is
renormalizable and a renormalization program for bound
states can be defined.

The main advantage of the model defined by Eq. (7) lies
in its simplicity, in the fact that one may obtain analytic
solutions, avoiding approximations that might destroy
physical requirements, symmetries or sum rules. These
properties make it a useful playground to perform bench-
mark calculations, as it was used recently in order to test
the viability of certain relativistic quantum mechanics
approaches [21].

In this model, the GPD H is obtained as an integral
over Bethe-Salpeter amplitudes. It reads:
H �x; �; t� � x
C2

i

Z d4p

�2��4
��x� �� p�= �P��

�p2 �m2 � i����p� ��2 �m2 � i����P� p�2 �m2 � i��
: (8)
Inspecting the pole structure of the integrand for the
evaluation of the p� integral, one realizes that it vanishes
unless �� � x � 1, i.e., the GPDs have the correct sup-
port properties. The integral of Eq. (8) may be calculated
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analytically and the explicit result is given in Ref. [20],
where it is shown that it fulfills the polynomiality condi-
tion [22]. The quark distribution function is very simple
and is written again here below for the reader’s conve-
nience:

q�x� � H �x; 0; 0� �
C2

16�2

x�1� x�

m2 � x�1� x�M2 : (9)

The normalization integral may be done analytically and
determines the normalization constant C; it is clear that
crucial parameters of the model are the mass M of the
hadron and the mass m of its constituents.

In here we will use one of the many nice properties of
the model, namely that it allows for a clear NR limit. This
is done by considering an NR approximation of the en-
ergies appearing in the denominator of Eq. (8), i.e., by
094018
taking, up to order O� ~p2=m2�:

p0 ’ m�
~p2

2m
; �P� p�0 ’ m�

� ~P� ~p�2

2m
;

�p� ��0 ’ m�
� ~p� ~��2

2m
:

(10)

One should realize that the above approximations also
imply, as already discussed in [14], �t � m2, �2 � 1.
This means that the NR limit in the calculation of GPDs
is rougher than in the calculation of standard PDFs,
because it implies an additional approximation on the
momentum transfer.

Neglecting some terms which are of order O� ~p2=m2�,
one finds:
H �x; �; t� �
C2

�2��3
x �M

Z pmax�x;t�

pmin�x;t�
dpp�

Z 2�

0

d�

2�m� p2

2m��f
�M� �M� 2�m� p2

2m�� �
t
4g
2 � d2�

; (11)
where �M �
����������������
1� t=4

p
, d � ~�? � ~p? � 2 �M�"p,

" � � �M�1 � x� � m � p2=�2m��=p, pmax�x; t� �
m�1 � A�, pmin�x; t� � Maxfm��1 � A�; m�1 � A�g,
A�

���������������������������������������
2� �M=m��1�x��1

p
.

The forward limit is again analytical, being given by:

q�x� � H �x; 0; 0�

�
C2

2�2��2
m3

M
xfI�p2

max�x; 0�� � I�p2
min�x; 0��g; (12)

where

I�y� � �
1

�y� a��a� b�
�

1

�a� b�2
ln

��������y� a
y� b

��������; (13)

with a � m�M� 2m� and b � �2m2.
In Ref. [14], a convolution formula has been derived,

giving the quantity H q, i.e., the contribution of the quark
of flavor q to the GPD H q, in terms of a constituent
quark off-forward momentum distribution, H q0 , and of a
GPD of the constituent quark q0 itself, H q0q. It is
assumed that the hard scattering with the virtual photon
takes place on a parton of a hadron target, made of
complex constituents, in an Impulse Approximation sce-
nario. One parton (current) quark, belonging to a given
constituent, interacts with the probe and it is afterwords
reabsorbed by the same constituent, without further re-
scattering with the recoiling system. Details of the ap-
proach can be found in Ref. [14,23].

The convolution formula, valid for low values of t and
�, can be written in the form [14]:
H q�x; �; t� �
X
q0

Z 1

x

dz
z
H q0�z; �; t�H q0q

�
x
z
;
�
z
; t
�
;

(14)

where H q0 is the GPD to be evaluated in any CQM, such
as the scalar model under scrutiny here, for the flavor q0,
while H q0q�

x
z ;

�
z ; t� is the constituent quark GPD. One can

realize that the GPD defined by Eq. (14) satisfies the
polynomiality condition if both the functions H and
H q0q do it. This will be the case for the distributions
used in this paper.

The constituent quark GPD H q0q�
x
z ;

�
z ; t� has also been

modeled in [14]. As usual, one can start modelling this
quantity thinking first of all to its forward limit, where
the constituent quark-parton distributions have to be
recovered. As already said in the previous section, in a
series of papers a simple picture of the constituent quark
as a complex system of pointlike partons has been pro-
posed [9], retaking a scenario suggested by Altarelli,
Cabibbo, Maiani and Petronzio (ACMP) [10].

According to that idea, the structure of the constituent
quark is described by a set of functions �q0q�x� that
specify the number of pointlike partons of type q which
are present in the constituent of type q0, with fraction x of
its total momentum. These functions will be called, ge-
nerically, the structure functions of the constituent quark.
They are expressed in terms of the independent �q0q�x�
and of the constituent density distributions (q0 � u0; d0)
as,

q�x� �
X
q0

Z 1

x

dz
z
q0�z��q0q

�
x
z

�
; (15)
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where q labels the various partons, i.e., valence quarks
(uv; dv), sea quarks (us; ds; s), sea antiquarks ( �u; �d; �s) and
gluons g. The different types and functional forms of the
structure functions of the constituent quarks are derived
from three very natural assumptions, i.e., the pointlike
partons are QCD degrees of freedom, i.e., quarks, anti-
quarks and gluons; Regge behavior for x ! 0 has to be
valid; invariance under charge conjugation and isospin
has to be reproduced. The last assumption of the approach
relates to the scale at which the constituent quark struc-
ture is defined. We choose for it the so-called hadronic
scale �2

0 [7,24]. This hypothesis fixes all but one the
parameters of the approach. The only free one is fixed
according to the value of F2 at x � 0:01 [10], and its value
is chosen again according to [24]. We stress that all these
inputs are forced only by the updated phenomenology,
through the 2nd moments of PDFs. The values of the
parameters obtained are listed in [9].

These considerations define, in the case of the valence
quarks, the following structure function

�q0qv�x� �
��A� 1

2�

��12���A�

�1� x�A�1���
x

p : (16)

The physical arguments leading to this expression are
indeed the ones listed above. In fact, first of all, Regge
theory fixes the behavior x�1=2 for x ! 0. Second, the
function has to be normalized to 1, because any constitu-
ent has to contain a leading valence current quark with
the same quantum numbers. This latter fact fixes the
constant in front of the function in the above equation.
Eventually, the parameter A is fixed to the value 0.435, by
imposing that the second moment at the low scale of
the model is reproduced. The corresponding structure
functions for the sea and gluons, not used here, can be
found in [9,14].

One should realize that the original model was thought
for spin 1=2 constituent quarks, while here scalar constit-
uents are discussed. Anyway, since only spin-independent
observables will be evaluated, there is no physical reason
to change the structure functions of the model.

This scenario has been generalized in Ref. [14] to
describe off-forward phenomena. The main steps are
reported here. First of all, the forward limit of the
GPDs formula, Eq. (14), has to be given by Eq. (15). By
taking the forward limit of Eq. (14), one obtains:

H q�x; 0; 0� �
X
q0

Z 1

x

dz
z
H q0�z; 0; 0�H q0q

�
x
z
; 0; 0

�

�
X
q0

Z 1

x

dz
z
q0�z�H q0q

�
x
z
; 0; 0

�
; (17)
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so that, in order for the latter to coincide with Eq. (15),
one must have H q0q�x; 0; 0� � �q0q�x�. In such a way,
through the ACMP prescription, the forward limit of the
unknown constituent quark GPD H q0q�

x
z ;

�
z ; t� can be

fixed. The off-forward behavior of the Constituent
Quark GPDs can be modeled in a natural way by using
the ‘‘+-Double Distributions’’ (DD’s) language proposed
by Radyushkin [25]. DD’s, ��~x; +; t�, are a representation
of GPDs which automatically guarantees the polynomial-
ity property.

The relation between any GPD H , defined à la Ji, for
example, the one we need, i.e., H q0q for the constituent
quark target, is related to the +-DD’s, which we call
~�q0q�~x; +; t� for the constituent quark, in the following
way [25]:

H q0q�x; �; t� �
Z 1

�1
d~x

Z 1�j~xj

�1�j~xj
��~x� �+

� x� ~�q0q�~x; +; t�d+: (18)

With some care, the expression above can be integrated
over ~x and the result is explicitly given in [25]. The DDs
fulfill the polynomiality condition [22].

In [25], a factorized ansatz is suggested for the DD’s:

~� q0q�~x; +; t� � hq�~x; +; t��q0q�~x�Fq0�t�; (19)

with the + dependent term, hq�~x; +; t�, which has the
character of a mesonic amplitude. Besides, in Eq. (19)
�q0q�~x� represents the forward density and, eventually,
Fq0�t� the constituent quark form factor. It can be easily
verified that the GPD of the constituent quark, Eq. (18),
with the factorized form Eq. (19), fulfills the crucial
constraints of GPDs, i.e., the forward limit, the first-
moment and the polynomiality condition, the latter being
automatically verified in the DD’s description. In the
following the above factorized form will be assumed,
so that we need to model the three functions appearing
in Eq. (19).

We use for the amplitude hq one of the simple normal-
ized forms suggested in [25] on the bases of the symme-
try properties of DD’s (see [14]).

Besides, since we will identify quarks for x � �=2,
pairs for x � j�=2j, antiquarks for x � ��=2, and, since
in our approach the forward densities �q0q�~x� have to be
given by the standard � functions of the ACMP ap-
proach, one has, for the DD of flavor q of the constituent
quark:
~� q0q�~x; +; t� �
�
�hq�~x; +��q0qv�~x� � hq�~x; +��q0qs�~x��Fq0�t� for ~x � 0
�hq��~x; +��q0qs��~x�Fq0�t� for ~x < 0

: (20)
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Eventually, as a form factor we will take a monopole
form corresponding to a constituent quark size rQ ’
0:3fm:

Fq0�t� �
1

1� 1
6 r

2
Qt
; (21)

a scenario strongly supported by the analysis of [13].
By using such a form factor, the amplitude hq and the

standard ACMP �’s, in Eq. (20), and inserting the ob-
tained �q0q�~x; +; t� into Eq. (18), the constituent quark
GPD in the ACMP scenario can be eventually calculated.

All the ingredients of the calculation have therefore
been introduced. In the next section, results will be shown
for the GPD H , calculated in the scalar model according
to Eq. (8) , for its NR limit, evaluated by means of
Eq. (11), and for their forward limit, also considering
the structure of the constituent described above.

III. RESULTS AND DISCUSSION

In this section we show the results of our calculation in
a series of figures and discuss their implication in physi-
cal terms.

In Fig. 1, the PDF obtained with the scalar model,
Eq. (9), is shown together with its NR limit, Eq. (12).
The mass of the constituent is taken to be m �
0:240 MeV, while the mass of the bound system is fixed
to M � 0:432 MeV. This corresponds to a binding energy
of 48 MeV, i.e., 20% of the constituent mass. The system
defined in this way is therefore quite relativistic. It is seen
that the NR limit does not reproduce the high momentum
tail of the exact distribution. Moreover, it has poor sup-
port. This defect can be quantified by measuring the
second moment, once the first has been fixed to 1. The
second moment of the exact PDF gives 0.5, as it should.
0

1

2

3

4

0 0.2 0.4 0.6 0.8 1

FIG. 1. The PDF obtained with the scalar model, Eq. (9)
(dashed), is shown together with its NR limit, Eq. (11) (full).
The mass of the constituent is taken to be m � 0:240 MeV,
while the mass of the bound system is fixed to M �
0:432 MeV.
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Instead, the NR distribution gives 0.444, so that a viola-
tion of the order of 10%, due to the poor support, is found.

Figure 2 shows the same results but for a hadron mass
of M � 0:475 MeV, i.e., a system with a binding energy
2% the mass of the constituent, and weakly bound, es-
sentially a NR one. One should recall that a system like
this is still more bound than any atomic nucleus, by a
factor of 2, approximately. In this case the amount of
support violation is only of the order of 1% since the the
second moment sum rule gives 0.488. This observation
supports the use of the Impulse Approximation and of NR
wave functions for the estimates of the nuclear parton
distributions. In any case, it is evident that also in this
case the NR approximation is not able to reproduce the
high momentum tail of the quark distribution, the prob-
lem being anyway less serious than for the relativistic
situation shown in Fig. 1.

From Figs. 1 and 2 it is evident that, in order to describe
more relativistic distributions by means of the scalar
model under scrutiny, it is enough to increase the binding
of the system, i.e., the mass of the system has to be
reduced keeping fixed the mass of the constituents.

In Fig. 3, we show the effect of considering the struc-
ture of the constituents, in the deeply bound scenario of
Fig. 1. Equation (14) has been evaluated in the forward
limit, by using Eq. (16) for the structure function of
the constituents, H q0q, and using Eq. (9) and (12) as
H q0�x; 0; 0�. The two curves are shown together with
the result obtained without considering the structure of
the constituents, given simply by Eqs. (9) and (12). It is
seen that the effect of inserting some structure for the
constituents in the NR model produces does not help to
reproduce the high momentum components dropped in
the while performing the NR limit. Quite on the contrary,
the ACMP structure increases the number of low-x cur-
rent quarks. One should also notice that, even changing
the parameters of the constituent structure functions, it is
0

2

4

6

8

0 0.2 0.4 0.6 0.8 1

FIG. 2. The same as in Fig. 1 but for constituents of mass
m � 0:240 MeV and a bound system of mass M � 0:475 MeV.
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FIG. 4. The dot-dashed line is the result of the scalar model,
in the forward limit, Eq. (9), for M � 0:140 MeV and m �
0:240 MeV; the dashed line is obtained by considering the
structure of the constituent, i.e., inserting the Eq. (16), together
with Eq. (9), into Eq. (14). The full line represents the evolu-
tion, up to Q2 � 4 GeV2, of the dashed curve, the latter
assumed to be valid at a scale of �2

0 � 0:34 GeV2. All the
Equations have been multiplied by x, to give the curves which
are shown. The dots represent the data for the valence quark
distribution in the pion at Q2 � 4 GeV2, multiplied by x, as it is
parameterized in [26], with their uncertainties.

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

FIG. 3. The long-dashed curve represents Eq. (14), evaluated
in the forward limit, using Eq. (16) for the structure function of
the constituent, H q0q, and Eq. (9) for H q0 �x; 0; 0�. The dot-
dashed curve represents Eq. (14) evaluated in the forward limit,
using Eq. (16) for the structure function of the constituent,
H q0q, and Eq. (12) for H q0 �x; 0; 0�. Dashed curve is given by
Eq. (9), the full curve by Eq. (12). All the Equations have been
multiplied by x to give the curves which are shown. The mass
of the constituent is m � 0:240 MeV, while the mass of the
bound system is M � 0:432 MeV.
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FIG. 5. The GPD in the scalar model, obtained from Eq. (8)
at t � �0:3 GeV2 and � � 0:2 (dashed), compared with its NR
limit, Eq. (11) (full). The mass of the constituent is m �
0:240 MeV, while the mass of the bound system is M �
0:432 MeV.
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not possible to simulate the relativistic result, unless the
physical arguments used to build Eq. (16) are obviated.
We stress that these arguments are quite general based on
pQCD and Regge theory arguments. To drop them would
be equivalent to consider questionable Regge theory or
the capability of pQCD to predict the evolution of the
second moment of the valence quark distribution. All the
curves shown in Fig. 3 are multiplied by x, for the sake
of clarity.

Figure 4 is just an illustration of the full procedure
required to describe DIS data starting from CQM. First of
all, the parton distribution is to be calculated in a (rela-
tivistic) model. Relativity is necessary especially if one
wants to evaluate GPDs at large t and �. After that, some
structure for the constituents, which fixes the scale of
the model calculations (here it turns out to be �2

0 �
0:34 GeV2), should be considered. Finally, pQCD evolu-
tion of the model result up to the experimental scale
should be performed. At this point, the model predictions
can be compared with data. In Fig. 4, the valence quark
distribution of the pion, extracted from data at Q2 �
4 GeV2 [26], is compared with the result of the scalar
model calculation, once the structure is taken into ac-
count and the evolution is performed. The mass of the
constituent is taken to be m � 0:240 MeV, as always,
while the mass of the hadron is chosen to be M �
0:140 MeV, close to the physical pion mass. Con-
sidering that the scalar model is basically used here as
toy model, the exercise produces an unexpected good
agreement with data. We do not claim that a system like
the pion can be described by a model like the one under
094018
scrutiny. However, from the agreement found we draw
some conclusions: i) the model used, despite its simplic-
ity, has many good features which makes its use to study
hadron structure physically meaningful; ii) the structure
of the constituent, given by Eq. (16), kept unchanged
throughout our investigations [9,14], seems quite general
and useful in varied situations; iii) if one starts from a
CQM, relativity and structure of the constituents have to
be considered simultaneously to be able to describe the
-6
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FIG. 6. The GPD in the scalar model, obtained from Eq. (8)
at t � �0:3 GeV2 and � � 0:2 (dashed), compared with its NR
limit, Eq. (11) (full). The long-dashed and dot-dashed lines are
obtained from the two previous ones, respectively, taking into
account the structure of the constituent quark, according to
Eq. (14). The mass of the constituent is m � 0:240 MeV, while
the mass of the bound system is M � 0:432 MeV.
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data. To emphasize the latter point, recall that relativity
strongly changes the large x region, while the structure of
the constituents mainly affects the small x region. The
issue of a detailed study of the pion DIS structure func-
tion, starting from a more realistic CQM, as has been
done by several groups [27,28], is beyond the scope of the
present paper and will be discussed elsewhere.

Results in the non forward case, at low values of t and
�, are shown in Figs. 5 and 6.

In Fig. 5, the GPD in the scalar model, obtained from
Eq. (8), is compared with its NR limit, Eq. (11) again in
the deeply bound scenario of Fig. 1. It is seen that the poor
094018
support becomes more serious with respect to the forward
case.

In Fig. 6, the same is shown once the structure has been
taken into account, according to Eq. (14). The same
conclusions as for the forward case, i.e., the different
nature of the effects due to relativity and constituent
quark structure, can be drawn.

IV. CONCLUSIONS

In this paper, a fully covariant model for a scalar
system of two scalar particles is used as a physically
meaningful toy model to calculate Parton Distributions
Functions and Generalized Parton Distributions. The
analysis permits one to check the conclusions of recent
studies, according to which parton distributions can be
evaluated in a Constituent Quark Model scenario, con-
sidering the constituent quarks as composite objects,
developing an idea which dates back to the seventies.
The NR limits of the corresponding distributions are
also evaluated. The analysis shows that the effects of
Relativity cannot be simulated by the structure proposed
for the constituent particles, which is based on quite
general physical arguments. The two effects are found
to be independent and both necessary for a proper de-
scription of available high energy data in terms of CQM.
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