
PHYSICAL REVIEW D, VOLUME 70, 094016
Flavor-singlet light-cone amplitudes and radiative � decays
in the soft-collinear effective theory

Sean Fleming*
Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

Adam K. Leibovich†

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
(Received 29 July 2004; published 11 November 2004)
*Electronic
†Electronic

1550-7998=20
We study the evolution of flavor-singlet, light-cone amplitudes in the soft-collinear effective theory,
and reproduce results previously obtained by a different approach. We apply our calculation to the color-
singlet contribution to the photon endpoint in radiative � decay. In a previous paper, we studied the
color-singlet contributions to the endpoint, but neglected operator mixing, arguing that it should be a
numerically small effect. Nevertheless the mixing needs to be included in a consistent calculation, and
we do just that in this work. We find that the effects of mixing are indeed numerically small. This result
combined with previous work on the color-octet contribution and the photon fragmentation contribution
provides a consistent theoretical treatment of the photon spectrum in � ! �X.
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I. INTRODUCTION

The soft-collinear effective theory (SCET) [1–4] is a
systematic treatment of the high-energy limit of QCD in
the framework of effective field theory. Prior to the
introduction of SCET this limit of QCD was subject to
intense study using various other approaches including all
order perturbative methods [5]. Some of these classic
calculations have been revisited in SCETand their results
reproduced [6,7]. The effective theory approach, however,
goes beyond the approximations upon which many of the
previous calculations rely. In particular, it is straight
forward to include power corrections to any process, as
was demonstrated in the context of color-suppressed B
meson decays [8], which receive their first contribution at
subleading order. In addition, SCET naturally includes
nonperturbative effects in the form of matrix elements of
operators. This, for example, gives a consistent explana-
tion for the origin of the shape function in semi-inclusive
B meson decay. In this article we study the radiative
decay of the Upsilon, and revisit another classic result:
namely, the evolution equation for light-cone wave func-
tions, also known as the Brodsky-Lepage equation.

At first sight it may seem strange to be discussing a
heavy quarkonium system in the context of a high-energy
effective theory. It is however the final state of radiative
Upsilon decay which can, in a certain region of phase
space, be described by SCET. To describe the � system,
which is a boundstate of a heavy b quark and �b quark, we
need to consider a different limit of QCD: the nonrela-
tivistic limit. This is sensible because the large mass of
the b quark ensures that the typical relative velocity v of
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the b and �b in the � is small, v� 0:3, allowing for a
nonrelativistic expansion. Furthermore the production
and decay of a b �b pair can be calculated perturbatively.
In the earliest works on quarkonium, the v! 0 limit was
always taken, allowing all the nonperturbative dynamics
to be isolated into the wave function at the origin. This
approach is now called the color-singlet model, since in
an effective theory picture it corresponds to keeping only
those operators that create/annihilate the b �b in a color-
singlet configuration. With the advent of nonrelativistic
QCD (NRQCD) [9,10], this simple picture is replaced by a
systematic expansion in operators that scale as higher and
higher powers of v, where some of the time the quark-
onium state can be produced/annihilated in a color-octet
configuration.

The theoretical picture of radiative Upsilon decay that
emerges from these considerations is quite rich. Over
some of phase space the decay is described by the anni-
hilation of a b �b pair in a color-singlet 3S1 configuration
into a photon and a pair of gluons with invariant mass on
the order of the Upsilon mass. This is well described by an
operator product expansion based on NRQCD. However,
the situation is more complicated as the photon energy
reaches its maximum. In this region of phase space the
pair of gluons form a collinear jet back-to-back with the
photon, and there arises a possibly large contribution
from the annihilation of the b �b in a color-octet configu-
ration into a photon back-to-back with a single gluon.
Since the decay products in this ‘‘endpoint’’ region are
jetlike (i.e., their energy is large relative to their invariant
mass) the appropriate effective theory to describe the
dynamics of the decay products is SCET. The � is still
described by NRQCD.

The radiative decay of the Upsilon is of particular
interest since it allows for a measurement of the strong
16-1  2004 The American Physical Society
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coupling constant 	s [11–14]. Furthermore the differen-
tial decay rate as a function of the energy fraction z �
2E�=M� has been measured, and in each case found to be
softer than the QCD predictions. In a series of recent
papers [15–17] this decay has been studied using SCET to
describe the endpoint region of the decay rate. First in
Ref. [15], the large Sudakov logarithms for the color-
octet channels were resummed for the first time using
SCET. In subsequent papers [16], we analyzed the color-
singlet decay in the endpoint region. This was calculated
by Photiadis [18]. However, in Ref. [16] we ignored the
possibility of a jet of a light quark and antiquark in the
final state, and we reproduced Photiadis’s results in this
limit. The �qq final state has a zero tree-level matching
coefficient in the effective theory for this process, but it
can be generated by mixing with the gluon jet, and so it
must be included in a consistent calculation.

The main result of this work is the derivation within
the SCET framework of the evolution equation for matrix
elements of collinear operators that describe the gluon
and quark jet final states in radiative Upsilon decay near
the endpoint. As a consequence of the factorization of soft
physics from collinear physics the evolution of these
matrix elements of helicity-zero, flavor- and color-singlet
collinear operators is quite general, and should hold for
any collinear final state produced from the vacuum. This
was pointed out by Photiadis. Thus, the evolution equation
for the matrix elements we are concerned with should be
similar to that of the pion light-cone wave function which
was first considered in Ref. [19,20]. However, the full
mixing is not incorporated in those works, since the
pion is a flavor nonsinglet. The flavor singlet case was
done by Chase [21] in the context of quark-antiquark and
gluon-gluon jet production in photon-photon collisions.
We reproduce those results using SCET. In Sec. II we
quickly review soft-collinear effective theory, in
Sec. III we introduce the collinear operators that arise
in radiative Upsilon decay, in Sec. IV we calculate the
renormalization group equation that governs the running
of these operators, in Sec. V we use the results of the
previous section to give the resummed rate for radiative �
decay, and in Sec. VI we conclude.
II. REVIEW OF SCET

We begin with a short review of the parts of SCET that
are relevant to this calculation. In particular, we are only
concerned with SCETI [22], which describes the interac-
tions of collinear and ultrasoft (usoft) degrees of freedom.
In this theory collinear particles have momenta whose
light-cone components scale as p � �p�; p�; p?� �
Q��2; 1; ��, where Q is a large energy scale, and �	 1

is a small expansion parameter. In SCETI ��
������������������
�QCD=Q

q
so that the typical invariant mass of a SCETI collinear
particle is p2 �Q�QCD. Usoft particles have momenta
094016
which scale as k � �k�; k�; k?� �Q��2; �2; �2�, so that
the typical invariant mass of a usoft particle is k2 �
�2

QCD. The usoft degrees of freedom interact with the
collinear particles without taking the collinear particles
off shell by more than �Q�QCD. Furthermore it is only
the plus component of the collinear momentum that a
usoft particle can change.

Here we are interested in the differential decay rate for
� ! �� X as a function of the photon energy restricted
to the region where 2E� �M� �O��QCD�. In this regime
the final state hadrons have a light-cone momentum com-
ponent of order M�, and invariant mass of order����������������������������������
M��M� � 2E��

q
. Clearly the jet can be described with

SCETI, where Q � M� and the power-counting parame-

ter is � �
����������������������������
1� 2E�=M�

q
. The � particle can be treated

in NRQCD [9,10], where large fluctuations about the
heavy quark mass are integrated out, leaving only modes
with momentum of order mv2 ��QCD, where v� 0:3.
These usoft modes can interact with both the heavy
quarks in the initial state and the collinear particles in
final state.

By matching QCD onto SCET, the large scale Q is
integrated out. In practice, the matching procedure is to
calculate matrix elements in QCD, expand them in
powers of �, and match onto products of Wilson coeffi-
cients and operators in SCET. Thus it is important to be
able to deduce the SCET operators which can arise at a
given order in �. Field theory generally allows all opera-
tors that are consistent with the symmetries of the theory.
As explained in detail in Ref. [4], the symmetry of SCET
which restricts the operators that can arise is gauge in-
variance. Specifically, SCET is invariant under two types
of gauge transformations: collinear and usoft. Under
collinear-gauge transformations the usoft fields remain
invariant, while the collinear fields transform in the usual
manner. Under usoft-gauge transformations the usoft
fields transform in the usual manner, and the collinear
fields undergo a global color rotation.

The collinear fields in SCET are the fermion field �n;p
and the gluon field A�n;q. These fields are labeled by the
light-cone direction n�, and the large components of the
light-cone momentum ( �n 
 q; q?). The fermion field con-
tains a term ��n;p that annihilates particles, and a term
��n;�p that creates antiparticles. For the construction of
gauge invariant operators we will find it convenient to
make use of the SCET collinear Wilson line,

Wn�x� �

" X
perms

exp
�
�gs

1
�P
�n 
 An;q�x�

�#
: (1)

The operator P� projects out the momentum label [3] of
fields that sit to the right of the operator. We will use the
convention that P� only acts on those fields in the square
-2
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brackets. Generally �f� �P ��y
q1 
 
 
�

y
qm�p1


 
 
�pm � f� �n 

p1 � 

 
� �n 
pn� �n 
 q1 � 

 
� �n 
 qm��

y
q1 
 
 
�pm ,

where �P � �n 
 P . The conjugate operator �P y acts on
fields that sit to the left of the operator, and projects out
the sum of labels on conjugate fields minus the sum of
labels on fields. In the usoft sector there is a usoft fermion
field qus and a usoft gluon field A�us.

Operators in SCET are constructed such that they are
gauge invariant under both collinear and usoft-gauge
transformations. For example, under collinear-gauge
transformations �n;p ! Un�n;p and Wn ! UnWn, so the
combination

Wy
n �n;p (2)

is collinear-gauge invariant. Furthermore it is convenient
to introduce a delta function which fixes the labels of the
combination of fields above:

 n;! � �"!; �PW
y
n �n;p; (3)

where it is understood that we will include a sum over !
for each  n;! in an operator. TheWilson coefficient will in
general depend on the label momentum !, which will
result in a convolution of the short-distance coefficient
with the SCET operator. The combination above still
transforms under a usoft-gauge transformation
 n;! ! V�x� n;!.

The collinear-gauge invariant field strength is

G�%
n � �

i
gs

�Wy�iD�
n � gsA

�
n;q; iD%

n � gsA%n;q0 �W; (4)

where

iD�
n �

n�

2
�P � P�

? �
�n�

2
in 
D; (5)

and iD� � i@� � gsA
�
s is the usoft covariant derivative.

Note that G�%
n is not homogeneous in the power counting.

The leading piece scales like �, and is given by � �PB�? �
�n%G

%�
n , where the perpendicular subscript on B? indi-

cates that the � index only has support over perpendicu-
lar components. Simplifying and including a label-fixing
delta function, we obtain

B�?! �
�i
gs

�"!; �PW
yfP�

? � gs�A
�
n;q�?gW: (6)

Under usoft-gauge transformations B�?! !

V�x�B�?!V
y�x�. We use these objects to build the operators

we need to match onto SCET at the endpoint of the � !
X� spectrum. For further examples the reader is referred
to Ref. [6].
III. SCET OPERATORS

We begin by matching the QCD final states onto SCET
operators. Since we are interested in the color- and flavor-
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singlet, helicity-zero operators, we have the SCET opera-
tors

Og�!1; !2� �
�PTr�B	?!1

B*?!2
g?	*;

Oq�!1; !2� �  n;!1

�n6
2
 n;!2

;
(7)

where g	*? � g	* � �n	 �n* � n* �n	�=2. We have intro-
duced an additional factor of �P into the gluon operator
so that both of the above operators have the same energy
dimension. In addition, both operators scale as �2 in the
SCET power counting. They are the complete set of
leading color-singlet operators. Each of the operators are
convoluted with a short-distance coefficient �g=q�!1; !2�,
which is determined by matching onto QCD.

Matrix elements of the operators in Eq. (7) are non-
perturbative functions of the labels !1 and !2. Consider
the matrix element of a collinear final state F n;p and
collinear initial state In;p0 :

�
F n;p

								 n;!1

�n6
2
 n;!2

								In;p0



: (8)

This can be simplified by introducing!� � !1 �!2 and
p� � p� p0, and using momentum conservation

�
F n;p

								 n;!1

�n6
2
 n;!2

								In;p0




� "!�; �n
p�

�
F n;p

								 ��n;!1
W

�n6
2
"!�;P�

Wy�n;!2

								In;p0



���! "!�; �n
p�

KFI�FI �x��; (9)

where �FI is the light-cone amplitude (LCA) for the
transition I ! F , and is by definition dimensionless, and
P� � �P y � �P . This last requirement on �FI forces us
to introduce the constant KFI which is process depen-
dent and possibly dimensionful. In Upsilon decay KJ �
M2. To arrive at the last line of the above equation we
extend the sum over discrete !� to an integral over
continuous !� and define x� � !�= �n 
 p�. As a result
all sums over !� are converted to integrals over x. In
Appendix A we show how this is done using type (a) RPI
as defined in Refs. [23,24].

Two specific choices of initial and final state are famil-
iar. If we choose the incoming and outgoing state to be a
proton with momentum p, then �FI is related to the
parton distribution functions. If, however, the incoming
state is the vacuum, and the outgoing state is a meson with
momentum p, then �FI is related to the light-cone wave
function of the meson.

In the case of � ! �� X in the large photon energy
regime the QCD amplitude for b �b�1;3 S1� ! �gg matches
onto a convolution of a short-distance Wilson coefficient
and a SCET current [16]
-3
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J��z� �
X
!

e�i�Mv�
�Pn=2�
z��1;3S1�

g �!;��J�
�1;3S1�

�!;��;

(10)

where

J�
�1;3S1�

�!;�� �  y
�p� 
 -� pTr�B	?"!;P�

B?
	 : (11)

The NRQCD fields  p and  y
�p annihilate the heavy

quark and antiquark fields, respectively. From now on
we will drop the �1;3 S1� label. Note we correct a typo
in Ref. [16] where the Kronecker delta has the incorrect
label operator. The Upsilon contains no collinear quanta,
so the current factors into an usoft piece containing the
heavy quark spinors and a collinear piece containing the
trace over the SCET gluon fields. The usoft fields cannot
‘‘talk’’ to the collinear fields due to color transparency.
We have simplified the above expression by fixing the
momenta to be those of the particular decay we are
interested in. Strictly speaking this can only be done
after taking the matrix element of the operator above
between external states, which is given by

hJ�i � hXuj 
y
�p� 
 -� pj�i

X
!

e�i�Mv�Mn=2�
z�g�!;��

� hXcjTr�B	?"!;P�
B?
	 j0i

���! hXuj 
y
�p� 
 -� pj�i

Z 1

�1
dx�g�x;���g�x;��:

(12)

The outgoing state Xc is a jet with total momentum p� �
M�, fixed by the mass of the decaying Upsilon. The
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kinematics are similar to the meson light-cone wave
function, and we therefore expect the running of the
collinear matrix element �g�!;�� which appears here
in Upsilon decay to be the same as the running of the
light-cone wave function of a meson. Note the usoft
matrix element does not run [25].

IV. RUNNING OF OPERATORS

In SCET large logarithms are summed using the re-
normalization group equations (RGEs). In the case we are
interested in there are two LCAs, the matrix elements of
the operators in Eq. (7), and they mix with each other.
This will result in a coupled differential equation. In
addition the LCAs under consideration are functions of
the momentum fraction x, which makes the RGE an
integro-differential equation.

The bare SCET operators, denoted by a zero super-
script, are related to the renormalized operators through
a counterterm:

O�0�
a �x� �

Z
dyZab�x; y;��Ob�y;�� a; b � g; q;

(13)

where the bare operator does not depend on the scale �.
Differentiating this equation with respect to � and using
the identityZ

dzZab�z; x;��Z�1
ca �z; y;�� � "bc"�x� y�; (14)

we obtain
Z
dyZab�x; y;���

d
d�

Ob�y;�� � �
Z
dy

�

d
d�

Zab�x; y;��
�
Ob�y;��

���! �
d
d�

Oc�z;�� � �
Z
dyOb�y;��

Z
dxZ�1

ca �x; z;��

�

d
d�

Zab�x; y;��
�

� �
Z
dy�cb�z; y;��Ob�y;��; (15)
with �cb�z; y;�� the anomalous dimension.
The running of the short-distance coefficient is ob-

tained as a consequence of the scale independence of
the full theory current. For example, differentiating
both sides of Eq. (10) with respect to � gives zero on
the left-hand side, which then gives a relationship be-
tween the running of the operators and the coefficient
function. Generally the QCD current is matched onto the
full set of operators given in Eq. (7), and differentiating
we obtain
0 � �
d
d�

Z
dx�a�x;��Oa�x;�� �

Z
dx

Oa�x;���

d
d�

�a�x;�� � �a�x;���
d
d�

Oa�x;��
�

�
Z
dx

"
Oa�x;���

d
d�

�a�x;�� �
Z
dy�a�x;���ab�x; y;��Ob�y;��

#

�
Z
dxOa�x;��

"
�

d
d�

�a�x;�� �
Z
dy�b�y;���ba�y; x;��

#
� 0; (16)
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where we use the result of Eq. (15) in obtaining the
penultimate expression above, and interchange the x and
y (and a and b labels) in the second term to obtain the
final expression. Since this must hold for any value of x,
this equation implies a RGE for the coefficient function

�
d
d�

�a�x;�� �
Z
dy�b�y;���ba�y; x;��: (17)

The renormalization Z can be calculated in perturba-
tion theory. In dimensional regularization (MS scheme)
we obtain to O�	s�

Zab�x; y;�� � "ab"�x� y� �
1

4
	s���
25

Pab�x; y�: (18)

In order to satisfy Eq. (14) we must have
FIG. 1. One loop renormalization: (a) glue to glue, (b) quark
to glue, (c) glue to quark, and (d) quark to quark. The quark
and gluon lines all represent collinear particles.
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Z�1
ab �x; y;�� � "ab"�x� y� �

1

4
	s���
25

Pab�y; x�; (19)
where on the right-hand side of the equation above, the x
and y have been reversed. We now proceed to calculate Z
for the matrix element which arises in Upsilon decay.

The Feynman diagrams which are needed to calculate
Z are shown in Fig. 1, while the Feynman rules for the
operator vertices are given in Appendix B. We show only
those diagrams that are nonzero in dimensional regulari-
zation where the infrared is regulated by choosing p2

1 �
p2
2 � 0 and p1 
 p2 � 0, with p1;2 the momenta of the

final state particles. The divergent piece of the amplitude
for each set is
Mdiv �
	s
254

Z
dy�ab�x; y��a�x;���b�y;�� i; j � q; g;

�gg�x; y� � �CA

�
x2 � y2

�1� x��1� y�
�

1

2
�

1

�x� y��

�
��x� y� �x!�x

y!�y �"�x� y�
�
;

�gq�x; y� �
CF
2

�
1� x� 2y

�1� x��1� y�
��y� x��x!�x

y!�y

�
; �qg�x; y� �

nf
2

�
1� x
1� y

�1� y� 2x���x� y��x!�x
y!�y

�
;

�qq�x; y� � CF

�
1� x
1� y

�
1

2
�

1

x� y

�
�
��x� y��x!�x

y!�y

�
�

3

2
"�x� y�

�
:

(20)
Here �b�y;�� denotes the matrix element of renormal-
ized fields. In obtaining these expression we made use of
the property �a��x� � �a�x�, which is a consequence of
the invariance of the product of operator and coefficient
function under charge conjugation. These divergent am-
plitudes are canceled by the renormalization Zab. First we
invert Eq. (13) and take the matrix element
�a�x� �
Z
dyhO�0�

b �y�iZ�1
ab �y; x�

�
Z
dy�b�y�ZfZ

�1
ab �y; x�; (21)

where Zf is the renormalization factor for the fields in the
operator Oa. Expanding this to first order in dimensional
regularization where Zf � 1� 	s���"f=�254�, and us-
ing the expression in Eq. (19) we obtain the equation
which fixes the Pab:

Pab�x; y� � �ab�x; y� � "f"ab"�x� y�: (22)

From this we calculate the one loop expression for the
anomalous dimension

�ab�x; y;�� � �
	s���
5

Pab�x; y� (23)

and substitute it into Eq. (17) to obtain the one loop RGE

�
d
d�

�a�x;�� � �
	s���
5

Z
dy�b�y;��Pba�y; x�

� �
	s���
5

Z
dy�b�y;����ba�y; x�

� "f"ab"�x� y�: (24)

With this result in hand we can solve the RGE by
diagonalizing. The first step is to expand the coefficient
functions in a basis which is diagonal under the convolu-
tion with the Pab. This basis is provided by the
-5
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Gegenbauer polynomials [19–21]:

�q�x;�� �
X
n odd

a�n�q ���C3=2
n �x�;

�g�x;�� �
X
n odd

a�n�g ����1� x2�C5=2
n�1�x�;

(25)

where the restriction to odd n is required by Bose sym-
metry for the gluons. Substituting these expansions into
the evolution equations yields coupled ordinary differen-
tial equations

�
d
d�

a�n�q
a�n�g

 !
� �

	s���
5

��n�
q �q ��n�

gq

��n�
qg ��n�

gg

 !
a�n�q
a�n�g

 !
; (26)

where

��n�
q �q � CF

"
1

�n� 1��n� 2�
�

1

2
� 2

Xn�1

i�2

1

i

#
;

��n�
gq �

1

3
CF

n2 � 3n� 4

�n� 1��n� 2�
;

��n�
qg � 3nf

n2 � 3n� 4

n�n� 1��n� 2��n� 3�
;

��n�
gg � CA

"
2

n�n� 1�
�

2

�n� 2��n� 3�
�

1

6
� 2

Xn�1

i�2

1

i

#

�
1

3
nf:

(27)

The RGE in Eq. (26) can be diagonalized through a
similarity transformation resulting in

�
d
d�

a�n� � �
	s���
5

�a�n�; (28)

where the matrix � is diagonal and has eigenvalues

��n�� �
1

2
���n�

gg � ��n�
q �q ��;

with � �
����������������������������������������������������
���n�

gg � ��n�
q �q �

2 � 4��n�
gq�

�n�
qg

q
:

(29)

The eigenvector a�n� is

a �n� �
a�n��

a�n��

 !
�

a�n�q �
�n�
qg � a�n�g ���n�� � ��n�

gg �

a�n�q �
�n�
qg � a�n�g ���n�� � ��n�

gg �

 !
: (30)

The diagonalized RGE is simple to solve, giving

a�n�� ��� �

	s�M�

	s���

�
�2��=*0

a�n�� �M�; (31)

where *0 � 11� 2nf=3. The equations above can be
inverted to obtain

a�n�g ��� �
1

�
�a�n�� ��� � a�n�� ���;

a�n�q ��� � a�n�� ���
��n�
� � ��n�

gg

���n�
qg

� a�n�� ���
��n�
gg � ��n�

�

���n�
qg

:
(32)
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We can now include the running of the coefficients to get
a result for the resummed gluon and quark coefficient:

a�n�g ��� �
1

�
a�n�� �M�


	s�M�

	s���

�
�2��n�� =*0

�
1

�
a�n�� �M�


	s�M�

	s���

�
�2��n�� =*0

;

a�n�q ��� � a�n�� �M�
��n�� � ��n�

gg

���n�
qg


	s�M�

	s���

�
�2��n�� =*0

�a�n�� �M�
��n�
gg � ��n��

���n�
qg


	s�M�

	s���

�
�2��n�� =*0

:

(33)

So far our results have been general, and can be used for
not only Upsilon decay, but any process with helicity-
zero, flavor- and color-singlet wave functions. The process
dependence will come in the boundary conditions. For
Upsilon decay, the matching coefficient for the quark
operator is zero at leading order, while the matching
coefficient for the gluon operator is a constant :. We
will normalize our matrix element so that : � 1.
Having expanded the matching coefficients in
Gegenbauer polynomials we determine

a�n�q �M� � 0; a�n�g �M� �
4

3f�n�5=2

; (34)

where

f�n�5=2 �
n�n� 1��n� 2��n� 3�

9�n� 3=2�
(35)

is the normalization of C5=2
n�1�x�.

Using the relations in Eq. (32) we determine the initial
conditions for the components of a:

a�n�� �M� � ���n�
gg � ��n�� �a�n�g �M�;

a�n�� �M� � ���n�
gg � ��n�� �a�n�g �M�:

(36)

These can be substituted into Eq. (33) to obtain the final
result:

a�n�q ��� �
��n�
gq

�

�
	s�M�

	s���

�
�2��n�� =*0

�


	s�M�

	s���

�
�2��n�� =*0

�
a�n�g �M�; (37)

a�n�g ��� �
�
��n�
�


	s�M�

	s���

�
�2��n�� =*0

� ��n�
�


	s�M�

	s���

�
�2��n�� =*0

�
a�n�g �M�; (38)

where

��n�
� �

��n�
gg � ��n��

�
: (39)
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FIG. 2. Feynman diagram for the leading order gluon jet
function.
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V. RESUMMED RATE

The decay rate is proportional to the imaginary part of
the forward scattering amplitude T. The expression for
this amplitude was derived and given in Eq. (59) of
Ref. [16],1

ImT�z� �
Z
dx

2M�

M2 H�x�
Z
d‘�S�‘�; ��ImJ�Mx; ‘�

�M�1� z�;�; (40)

where H is a hard coefficient, S�l�� is the color-singlet
shape function [26],

S�l�� �
Z dx�

45
e�il

�x�=2h�jT� y
�p-i �p�x

��

� � y
�p0-i p0 �0�j�i

� h�j y
�p-i �p"�in 
 @� l�� y

�p0-i p0 j�i;

(41)

and J�Mx; ‘� �M�1� z�;� is the imaginary part of the
jet function,

h0jTTr�B	?"�!� i �n 
D��B
?
	 �y�

Tr�B*?"�!
0 � i �n 
D��B

?
* j0i

� 2i"�!�!0�
Z d4k

�25�4
e�ik
yJ�!; k�;��; (42)

where the labels ! and !0 are continuous and i �n 
D �
�P � i �n 
 @ as discussed in Appendix A. Since Ref. [16]

did not consider mixing, this was the only jet function.We
now generalize this to

h0jT�Oa�!; y�Ob�!0; 0�j0i

� 2iM"�!�!0�
Z d4k

�25�4
e�ik
yJab�!; k

�;��; (43)
1Here we fix a typo in that equation.
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where a; b � g; q. The hard coefficient gets modified to be

Hab�x� �
4

3

�
4g2seeb
3M

�
2
�a�x��b�x�: (44)

If a � b, we get no contribution at this order in pertur-
bation theory. When a � b � g, we get exactly what was
considered in Ref. [16], pictured in Fig. 2. The imaginary
part of the jet function in this case is

ImJgg�!; k�;�� �
1

85
��k��: (45)

We now need the imaginary part of the quark jet func-
tion, picture in Fig. 3. The result is

I mJqq�!; k�;�� �
Nc

N2
c � 1

M2 �!2

M2

1

85
��k��: (46)

Expanding the matching coefficient in Gegenbauer
polynomials the integral over ! � Mx in Eq. (40) may
be carried out, giving
Z 1

�1
dx�2

g�x;�� �
X
n odd

�a�n�g ���2
Z 1

�1
dxC5=2

n�1�x�C
5=2
n�1�x��1� x2�2

�
16

9

X
n odd

1

f�n�5=2

���n�
� r���

2��n�� =*0 � ��n�
� r���2�

�n�
� =*02; (47)

for the gluon jet function, andZ 1

�1
dx�1� x2��2

q�x;�� �
X
n odd

�a�n�q ���2
Z 1

�1
dx�1� x2�C3=2

n �x�C3=2
n �x�

�
16

9

X
n odd

f�n�3=2

�f�n�5=2
2

��n�2
gq

�2 �r���2�
�n�
� =*0 � r���2�

�n�
� =*02; (48)

for the quark jet function, where we have defined

r��� �
	s���
	s�M�

; (49)

and
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f�n�3=2 �
�n� 1��n� 2�

n� 3=2
(50)

is the normalization of C3=2
n �x�. Using the results of Ref. [16], the differential decay rate is

1

�0

d�resum

dz
� ��M� �Mz�

8z
9

X
n odd

�
1

f�n�5=2

���n�
� r��c�

2��n�� =*0 � ��n�
� r��c�

2��n�� =*02

�
3f�n�3=2

8�f�n�5=2
2

��n�2
gq

�2 �r��c�
2��n�� =*0 � r��c�

2��n�� =*02
�
; (51)
0.6

0.8

1

/Γ
0 

dΓ
/d

z

where �c � M
������������
1� z

p
is the collinear scale. This result

differs from the result in Ref. [18].We agree with Ref. [18]
through Eq. (5) of that paper up to obvious typos.
However, following the method outlined in that paper,
we still arrive at the first term in the curly brackets of
Eq. (51). Both Eq. (51) and the result in Ref. [18] reduce to
the rate calculated in Ref. [16], when the mixing is turned
off. The second term in the curly brackets of Eq. (51)
comes from the quark jet function. This adds a small
contribution to the total resummed rate.

While the logarithms that are summed in Eq. (51) are
important at large z, this formula should not be trusted
away from the endpoint. In order to match our resummed
result onto the leading order result, we will interpolate
between the two using the formula

1

�0

d�int

dz
�

�
1

�0

d�dir
LO

dz
� z

�
�

1

�0

d�resum

dz
; (52)

where [27]

1

�0

d�LOdirect

dz
�

2� z
z

�
z�1� z�

�2� z�2
� 2

1� z

z2
ln�1� z�

�2
�1� z�2

�2� z�3
ln�1� z�; (53)

and

�0 �
32

27
		2

se2b
h�j y

p-i �p 
y
�p0-i p0 j�i

m2
b

: (54)

The term in brackets in Eq. (52) vanishes as z! 1,
leaving only the resummed contribution in that region.
FIG. 3. Feynman diagram for the leading order quark jet
function.
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Away from the endpoint the resummed contribution com-
bines with the �z to give higher order in 	s�M� correc-
tions. This is clear from Eq. (51). There are important
corrections to this result due to fragmentation at low z
[28]. However, since we are interested in the large z
region, we will neglect them in the following. There
may also be large color-octet corrections to the rate in
the endpoint region [15,17,29], which we will also neglect
for now. We also compare our result to the resummed
result where the mixing has been turned off, using

1

�0

d�no mix

dz
� ��M� �Mz�

8z
9

�
X
n odd

1

f�n�5=2


	s��c�

	s�M�

�
4��n�

gg =*0

; (55)

in place of the fully resummed result in Eq. (52).
In Fig. 4 we show the color-singlet, interpolated re-

summed rate, Eq. (52), shown as the solid line, compared
to the leading tree-level color-singlet result, Eq. (53),
shown as the dotted line. As can be seen, the resummed
0

0.2

0.4

0 0.2 0.4 0.6 0.8 1
z

1

FIG. 4 (color online). The color-singlet rate. The dotted line
is the tree-level direct rate. The solid line is the interpolated
resummed direct rate. The dashed line is the resummed rate
with the mixing turned off.
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rate turns over and decreases near the endpoint. Also
shown in Fig. 4 as the dashed line is the interpolated
resummed rate with the mixing turned off, Eq. (55). This
is the same as the results of Ref. [16]. The result without
mixing is a fairly good approximation to the full result.
We also show the contribution coming from the quark jet
alone as the dot-dashed line.

VI. CONCLUSIONS

Radiative Upsilon decay at maximal photon energy is
characterized by a photon recoiling against a jet of col-
linear particles. Thus SCET is the appropriate effective
field theory to study this kinematic situation. The lowest
order color-singlet QCD diagram for this process has the
Upsilon decaying to a photon and a pair of gluons. In a
previous pair of papers [16], we used SCET to investigate
the endpoint behavior, summing kinematic logarithms.
However, we neglected the possible mixing of the gluon
pair with a quark-antiquark pair. The full calculation,
including the operator mixing, had been presented in
the literature by Photiadis [18]. As pointed out in
Ref. [18], the radiative Upsilon decay at the endpoint
has the same evolution equations as the flavor-singlet,
light-cone, wave-function evolution.

Therefore, we have calculated the flavor- and color-
singlet, helicity-zero, light-cone amplitude evolution us-
ing SCET, with the goal in mind of studying the photon
endpoint spectrum in radiative Upsilon decay. We find
that SCET does reproduce the evolution equations for the
light-cone amplitudes presented previously in the litera-
ture [21]. When applying this to Upsilon decay, we how-
ever disagree with Ref. [18], although numerically the
results are similar.

With the inclusion of the operator mixing, we have a
complete, leading logarithm result for the color-singlet
contribution to radiative Upsilon decay at the endpoint.
Combining this with the leading logarithm result for the
color-octet contribution at the endoint [15,17], and the
photon fragmentation results at low z [28,29], we can
hope to obtain an accurate prediction for the photon
spectrum over the full kinematic range.
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APPENDIX A: OPERATORS
OF CONTINUOUS LABELS

In this Appendix we explain the relationship of SCET
operators defined using a discrete label to those defined
using a continuous label. As a concrete example we con-
sider the current in Eq. (12), which involves the gluon
094016
operator. The matrix element of the collinear operator in
the first line is

hXcjTr�B
	
?"!;P�

B?
	 �x�j0i; (A1)

where we have made explicit the space-time dependence.
The expression above is defined for a discrete label !.
However, we could write down an operator involving a
continuous label !c,

hXcjTr�B
	
?"�!c � i �n 
D��B

?
	 �x�j0i; (A2)

where i �n 
D� � P� � i �n 
 @� � i �n 
 ~@. Note that the sum
over ! in Eq. (12) is now replaced with an integral over
!c. The delta function must be understood as

"�!c � i �n 
D�� � "!;P�
"�k� i �n 
 @�� (A3)

where !c � !� k with !�M discrete, and k��QCD

continuous. The integral over !c must then be understood
as a sum over ! and an integral over k. The expression in
Eq. (A2) can be expanded in powers of i �n 
 @= �P �

�QCD=M, where the leading term is just the operator in
Eq. (A1). Thus the continuous operator is just the discrete
operator plus high order corrections. However, in an EFT
it is only sensible to include higher order corrections in a
leading order operator if all of the subleading terms run
the same way as the leading term (i.e., they all have the
same anomalous dimension). This is only true if there is a
symmetry which enforces this condition. In this case the
symmetry is a specific reparametrization invariance
known as RPI type (a) [24,25]. In essence this RPI is
the statement that there is no unique way to decompose
the large label momentum and the continuous residual
momentum. This implies that reparametrization invariant
operators must be built out of i �n 
D, and that such an
operator runs in a specific way. As a result any subleading
operators that are due to an expansion of i �n 
D in powers
of i �n 
 @= �P must have the same running.
APPENDIX B: FEYNMAN RULES

In this Appendix we give the Feynman rules derived
from the color-singlet operators given in Eq. (7), which
we repeat here:

Og�!1; !2� �
�PTr�B	?!1

B*?!2
g?	*;

Oq�!1; !2� � � n;!1

�n6
2
 n;!2

:
(B1)

The fields B	?;! and  n;! are built using the collinear
Wilson line in order to obtain gauge invariant objects. We
thus have an infinite number of Feynman rules encoded in
each operator of Eq. (B1). Here, we will give the corre-
sponding Feynman rules necessary for calculating the
anomalous dimension of the operators at one loop,
namely, the operators to order g0s and g1s . We will always
-9



= i Ag
(0)

g1, A, α

g2, B, β

= i Ag
(1)

g1, A, α

g2, B, β

g3, C, γ

= i A q
(0)

q1

q2

= i A q
(1)

q1

g, A, α

q2

FIG. 5. The Feynman rules corresponding to the color-singlet
operators of Eq. (B1).
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define our momentum to be incoming. The Feynman rules
are shown in Fig. 5.

We begin with the gluon operator. We have

Og�!1; !2� � 2 �PTr�B	?"�!� � P��

� "�!� � P��B
*
?g

?
	*; (B2)
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where P� � �P y � �P , and the factor of 2 will cancel the
Jacobian from changing the !1;2 to !�. The delta func-
tion "�!� � P�� will constrain the sum of the momenta
to be the total energy of the jet, which in our case is M�.
We are therefore only interested in the Feynman rule for

�Og�!�� �
�PTr�B	?"�!� � P��B

*
?g

?
	*: (B3)

Expanding out the B�? to leading order in gs, we get the
order g0s Feynman rule

iA�0�
g � �

i
2
M"AB�"�!� � �n 
 g1 � �n 
 g2�

�"�!� � �n 
 g1 � �n 
 g2�

�g?�%

�
g	�? �

g�1? �n	

�n 
 g1

��
g*%? �

g%2? �n*

�n 
 g2

�
: (B4)

At order g1s we get
iA�1�
g �

gs
2
MfABC�"�!� �n 
 g1 � �n 
 g2 � �n 
 g3� � "�!� �n 
 g1 � �n 
 g2 � �n 
 g3�g?�%

�
g	�? �

g�1? �n	

�n 
 g1

�

�

��
g�%? �

g%3? �n�

�n 
 �g2 � g3�

�
�n*

�n 
 g2
�

�
g*%? �

g%2? �n*

�n 
 �g2 � g3�

�
�n�

�n 
 g3

�
� ��1; 	� ! �2; *� ! �3; �� ! �1; 	�

� ��1; 	� ! �3; �� ! �2; *� ! �1; 	�: (B5)

We can similarly rewrite our quark operator as

Oq�!1; !2� � 2 ��n;p1

�n6
2
"�!� � P��"�!� � P���n;p2

���! �Oq�!�� � ��n;p1

�n6
2
"�!� � P���n;p2

: (B6)

This gives the order g0s Feynman rule

iA�0�
q � i ��n

�n6
2
�n"�!� � �n 
 q1 � �n 
 q2�; (B7)

where again, the momentum is defined to be incoming. The order g1s Feynman rule is

iA�1�
q � igs

�n	

�n 
 g
��n

�n6
2
TA�n�"�!� � �n 
 q1 � �n 
 q2 � �n 
 g� � "�!� � �n 
 q1 � �n 
 q2 � �n 
 g�: (B8)
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