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Adler function and hadronic contribution to the muon g� 2 in a nonlocal chiral quark model
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The behavior of the vector Adler function at spacelike momenta is studied in the framework of a
covariant chiral quark model with instantonlike quark-quark interaction. This function describes the
transition between the high-energy asymptotically free region of almost massless current quarks to the
low-energy hadronized regime with massive constituent quarks. The model reproduces the Adler
function and V � A correlator extracted from the ALEPH and OPAL data on hadronic � lepton decays,
transformed into the Euclidean domain via dispersion relations. The leading order contribution from the
hadronic part of the photon vacuum polarization to the anomalous magnetic moment of the muon,
ahvp�1�� , is estimated.
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I. INTRODUCTION

The transition from the perturbative regime of QCD to
the nonperturbative one has yet remained under discus-
sion. At high momenta the fundamental degrees of free-
dom are almost massless asymptotically free quarks. At
low momenta the nonperturbative regime is adequately
described in terms of constituent quarks with masses
dynamically generated by the spontaneous breaking of
chiral symmetry. The instanton model of QCD vacuum
[1] provides the mechanism of dynamical quark dressing
in the background of the instanton vacuum and leads to
the generation of the momentum-dependent quark mass
that interpolates these two extremes. Still it is not clear
how an intuitive picture of this transition may be tested at
the level of observables. In this paper we demonstrate that
the Adler function depending on spacelike momenta may
serve as the appropriate quantity. This function defined as
the logarithmic derivative of the current-current correla-
tor can be extracted from the experimental data of
ALEPH [2] and OPAL [3] Collaborations on inclusive
hadronic � decays. From a theoretical point of view it is
well known that in the high-energy asymptotically free
limit the Adler function calculated for massless quarks is
a nonzero constant. From the other side in the constituent
quark model (suitably regularized) this function is zero at
zero virtuality. Thus the transition of the Adler function
from its constant asymptotic behavior to zero is very
indicative concerning the nontrivial QCD dynamics at
intermediate momenta. In this paper we intend to show
that the instantonlike nonlocal chiral quark model
(N�QM) describes this transition correctly. In particular,
we analyze the correlator of the vector currents and the
corresponding Adler function in the framework of
N�QM that allows us to draw a precise and unambiguous
comparison of the experimental data with the model
calculations. The use in the calculations of a covariant
nonlocal low-energy quark model based on the self-
consistent approach to the dynamics of quarks has many
attractive features as it preserves the gauge invariance, is
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consistent with the low-energy theorems, as well as takes
into account the large-distance dynamics controlled by
the bound states. As an application we estimate the lead-
ing order hadronic vacuum polarization contribution to
the muon anomalous magnetic moment which is ex-
pressed as a convolution integral over spacelike momenta
of the Adler function and confront it with the recent
results of the measurements by the Muon �g� 2�
Collaboration [4].

The paper is organized as follows. In Sec. II, we briefly
recall the definition of the Adler function and how to
extract it from the experimental data. Then in Sec. III we
recall the definition of the leading order contribution of
hadronic vacuum polarization to the muon anomalous
magnetic moment and present its phenomenological esti-
mates. In Secs. IV and V we outline the gauged nonlocal
chiral quark model extended by the inclusion of the
vector and axial-vector mesons and derive the expres-
sions for the Adler function within the model considered.
Then, after fixing the model parameters in Sec. VI, we
confront the model results with available experimental
data on the Adler function and the V � A correlator in
Secs. VII and VIII, correspondingly. Section IX contains
our conclusions. In the Appendices we give necessary
information about the nonlocal vertices of quark interac-
tion with external currents, the phenomenology of vector
mesons, and the structure of nonchiral corrections to low-
energy observables.
II. THE ADLER FUNCTION

In the chiral limit, where the masses of u, d, and s light
quarks are set to zero, the vector (V) and nonsinglet axial-
vector (A) current-current correlation functions in the
momentum space (with �q2 � Q2 � 0) are defined as


J;ab
�� �q� � i

Z
d4xeiqx
J;ab

�� �x�

� �q�q� � g��q
2�
J�Q

2��ab; (1)
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FIG. 1. The isovector vector spectral function 1
4�2 �V�t� from

hadronic � decays [2]. The dashed line is the asymptotic free-
dom prediction, 1=�4�2�.

FIG. 2 (color online). The vector Adler function constructed
with use of leading order (dot-dashed line), next-to-leading
order (dotted line), and next-to-next-to-leading order (full line)
pQCD asymptotics. The dashed line is the asymptotic freedom
prediction, 1=4�2.
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J;ab
�� �x� � h0jTfJa��x�Jb��0�ygj0i;

where the QCD V and A currents are

Ja� � q��
�a���
2

p q; J5a� � q���5
�a���
2

p q; (2)

and �a are flavor Gell-Mann matrices �tr�a�b � 2�ab�.
The momentum-space two-point correlation functions
obey (suitably subtracted) dispersion relations,


J�Q
2� �

Z 1

0

ds

s�Q2

1

�
Im
J�s�; (3)

where the imaginary parts of the correlators determine
the spectral functions

�J�s� � 4�Im
J�s� i0�:

Instead of the correlation function it is more convenient
to work with the Adler function defined as

DJ�Q2� � �Q2 d
J�Q
2�

dQ2 �
1

4�2

Z 1

0
dt

Q2

�t�Q2�2
�J�t�:

(4)

Recently, the isovector V and A spectral functions have
been determined separately with high precision by the
ALEPH [2] and OPAL [3] Collaborations from the in-
clusive hadronic �-lepton decays (�! ��� hadrons) in
the interval of invariant masses up to the �mass, 0 � s �
m2
�. It is important to note that the experimental separa-

tion of the V and A spectral functions allows us to test
accurately the saturation of the chiral sum rules of the
Weinberg type in the measured interval. On the other
hand, at large s the correlators can be confronted with
perturbative QCD (pQCD) thanks to a sufficiently large
value of the � mass.

The vector spectral function and the corresponding
Adler function determined from the ALEPH data (see
below) are shown in Figs. 1 and 2. The behavior of the
correlators at low and high momenta is constrained by
QCD. In the regime of large momenta the Adler function
is dominated by the pQCD contribution supplemented by
small power corrections

DV�Q2 ! 1� �DpQCD
V �Q2� �

�s
4�3

�2

Q2 �
1

6

�s
�

h�Ga���2i

Q4

�
O6
D

Q6
�O

�
1

Q8

�
; (5)

where the pQCD contribution with three-loop accuracy is
given in the chiral limit in the MS renormalization
scheme by [5,6]
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DpQCD
V �Q2;�2� �

1

4�2

�
1�

�s��2�

�
�

�
F2 � #0 ln

Q2

�2

�

�

�
�s��

2�

�

�
2
�

�
F3 � �2F2#0

� #1� ln
Q2

�2 � #
2
0

�
�2

3
� ln2

Q2

�2

��

�

�
�s��

2�

�

�
3
�O��4

s�

�
; (6)
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FIG. 3 (color online). The integral, Eq. (11), versus the upper
integration limit, s0, for the V spectral density. The integral of
the experimental data corresponds to the solid line and the
pQCD prediction (12) is given by the dashed line.

FIG. 4 (color online). The integral, Eq. (11), versus the upper
integration limit, s0, for the V � A spectral density (second
Weinberg sum rule). The pQCD prediction is given by dashed
line, and the experimental function is given by the solid line.
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where

#0 �
1

4

�
11�

2

3
nf

�
; #1 �

1

8

�
51�

19

3
nf

�
;

F2 � 1:985 71� 0:115 295nf;

F3 � �6:636 94� 1:200 13nf � 0:005 18n2f;

with �s�Q2� being the solution of the equation

�

#0�s�Q
2�

�
#1

#2
0

ln
�

�

#0�s�Q2�
�
#1

#2
0

�
� ln

Q2

�2 : (7)

In (5) along with standard power corrections due to the
gluon and quark condensates [7] we include the unconven-
tional term suppressed as �1=Q2. Its appearance was
augmented in [8] and also found in the N�QM [9].

In the low-Q2 limit it is only rigorously known from
the theory that

DV�Q
2 ! 0� � Q2D0

V�0� �O�Q4�: (8)

It is clear (see also Fig. 2) that the Adler function is very
sensitive to the transition between the asymptotically free
(almost massless current quarks) region described by (5)
and (6) to the hadronic regime with almost constant
constituent quarks where one has (8).

To extract the Adler function from experimental data
supplemented by QCD asymptotics (5) and (6) we take
following [10] an ansatz for the hadronic spectral func-
tions in the form

�J�t� � �ALEPHJ �t�&�s0 � t� � �
pQCD
J �t�&�t� s0�; (9)

where

1

4�2
�pQCDV �t� � DpQCD

V �t� �
121�2

48

�
�s�t�
�

�
3
; (10)

and find the value of the continuum threshold s0 from the
global duality interval condition:Z s0

0
dt�ALEPHJ �t� �

Z s0

0
dt�pQCDJ �t�: (11)

Using the experimental input corresponding to the
�-decay data and the pQCD expressions

1

4�2

Z s0

0
dt�pQCDV �t� �

Nc
12�2 s0

�
1�

�s�s0�
�

� �F2 � #0�

�

�
�s�s0�
�

�
2
� �F3 � �2F2#0

� #1� � 2#2
0�

�
�s�s0�
�

�
3
�
;

(12)

�pQCDV�A �t� � 0; (13)

one finds (see Figs. 3 and 4) that matching between the
experimental data and theoretical predictions occurs ap-
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proximately at scale s0 � 2:5 GeV2. Note that the condi-
tion (13) in the V � A channel corresponds to matching
the second Weinberg chiral sum rule.

The vector Adler function (4) obtained from matching
the low momenta experimental data and high momenta
pQCD asymptotics by using the spectral density (9) is
shown in Fig. 2, where we use the pQCD asymptotics (10)
of the massless vector spectral function to four loops with

�
nf�3

MS
� 372 MeV and choose the matching parameter as

s0 � 2:5 GeV�1. Admittedly, in the Euclidean presenta-
tion of the data the detailed resonance structure corre-
sponding to the � and a1 mesons seen in the Minkowski
region (Fig. 1) is smoothed out, hence the verification of
-3
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the theory is not as stringent as would be directly in the
Minkowski space.

III. LEADING ORDER HADRONIC VACUUM
POLARIZATION CONTRIBUTIONS

The anomalous magnetic moment of the muon is
known to an unprecedented accuracy of the order of
1 ppm. The latest result from the measurements of the
Muon �g� 2� Collaboration at Brookhaven is [4]

a� � 1
2�g� � 2� � 11 659 208�6� � 10�10: (14)

Using e�e� annihilation data and data from hadronic �
decays the standard model predictions are [11–13]

aSM� �

�
11 659 181 �8� � 10�10 e�e�;
11 659 196 �7� � 10�10 �:

(15)

The differences between the experimental determina-
tion of a� and the standard model using the e�e� or �
data for the calculation of the hadronic vacuum polariza-
tion are 2:7) and 1:4), respectively.

The standard model prediction for a� consists of quan-
tum electrodynamics, weak, and hadronic contributions.
The QED and weak contributions to a� have been calcu-
lated with great accuracy [14]

aQED� � 11 658 471:935�0:203� � 10�10 (16)

and [15]

aEW� � 15:4�0:3� � 10�10: (17)

The uncertainties of the standard model values in (15)
are dominated by the uncertainties of the hadronic pho-
ton vacuum polarization. Thus, to confront usefully the
theory with the experiment requires a better determina-
tion of the hadronic contributions. In the last decade, a
substantial improvement in the accuracy of the contribu-
tion from the hadronic vacuum polarization was reached.
It uses, essentially, precise determination of the low-
energy tail of the total e�e� ! hadrons and � lepton
decay cross sections. The contributions of hadronic vac-
uum polarization at order �2 quoted in the most recent
articles on the subject are given in Table I.

The higher-order contributions at the O��3� level to
ahvp�2�� were estimated in [17]

ahvp�2�� � �10:1�0:6� � 10�10 (18)

by using analytical kernel functions and experimental
TABLE I. Phenomenological estimates and ref
vacuum polarization contribution to the muon a
and � data sets.

e�e� [11] � [11]

ahvp�1�� � 1010 696:3� 9:8 711:0� 8:6
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data on the e�e� ! hadrons cross section. In addition,
there exists the O��3� contribution to a� from the had-
ronic light-by-light scattering diagram, ah:L�L

� , that can-
not be expressed as a convolution of experimentally
accessible observables and needs to be estimated from
theory. The recent estimate of the hadronic light-by-light
scattering contribution reads [18]

ah:L�L
� � 8�4� � 10�10: (19)

The latest estimate of this term is given in [19], where
strong constraints on the light-by-light scattering ampli-
tude from the short-distance QCD have been imposed,
with the result ah:L�L

� � 13:6�2:5� � 10�10.
A phenomenological estimate of the total hadronic

contributions to ahvp� has to be compared with the value
deduced from the g� 2 experiment (14) and known
electroweak and QED corrections

ahvp� � 720:7�6:0� � 10�10: (20)

The agreement between the standard model prediction
and the present experimental value is rather good. There
is certain mismatch between the experimental and theo-
retical predictions for a�, but in view of the inconsisten-
cies between the evaluations based on e�e� and � data the
conclusion about the discrepancy of the experiment and
the standard model is certainly premature.

In this work we analyze the contribution of hadronic
photon vacuum polarization at order �2 to ahvp� (Fig. 5)
from the point of view of the nonlocal chiral quark model
of low-energy QCD and show that, within this frame-
work, it might be possible realistically to determine this
value to a sufficiently safe accuracy. We want to discuss
how well this model, which has been developed in Refs.
[9,20], does in calculating ahvp�1�� . This quantity is usually
expressed in the form of a spectral representation �e2 �
4���

ahvp�1�� �

�
�
�

�
2 Z 1

0
dt
1

t
K�t���H�V �t�; (21)

which is a convolution of the hadronic spectral function
��H�V �t�, related to the total e�e� ! �� ! hadrons cross
section )�t� by �me ! 0�

)�t� � 4��2 1

t
��H�V �t�; (22)

with the QED function
erences for the leading order hadronic photon
nomalous magnetic moment based on e�e�

e�e� [12] e�e� [16] � [16]

694:8� 8:6 693:5� 9:0 701:8� 8:9
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FIG. 5. The contribution of the hadronic photon vacuum
polarization to the anomalous magnetic moment.
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K�t� �
Z 1

0
dx

x2�1� x�

x2 � �1� x�t=m2
�
; (23)

where m� is the muon mass, which is sharply peaked at
low t and decreases monotonically with increasing t.

For our purposes, it is convenient to express ahvp�1��

using the integral representation [21] in terms of the
Adler function

ahvp�1�� �
4

3
�2

Z 1

0
dx

�1� x��2� x�
x

DV

�
x2

1� x
m2
�

�
;

(24)

where the charge factor
P
Q2
i � 2=3, i � u; d; s; is taken

into account. By using the Adler function determined
from experiment (4) and (9) one gets the estimate

ahvp�1�� � 722� 10�10 (25)

which is in reasonable agreement with the precise phe-
nomenological numbers quoted in Table I. In the follow-
ing we determine the Adler function and ahvp�1�� from the
effective quark model describing the dynamics of low-
and intermediate energy QCD.
IV. THE EXTENDED NONLOCAL CHIRAL
QUARK MODEL

The bulk of the integral in (24) is governed by the low-
energy behavior of the Adler function DV�Q2�. The typi-
cal momentum of the virtual photon in Fig. 5 isQ2 �m2

�.
These are momenta values much smaller than the char-
acteristic scales of the spontaneous chiral symmetry
breaking or confinement ( ’ 1 GeV). Therefore, the ap-
propriate way to look at this problem is within the frame-
work of the low-energy effective field model of QCD. In
the low momenta domain the effect of the nonperturba-
094011
tive structure of QCD vacuum becomes dominant. Since
the invention of the QCD sum rule method based on the
use of the standard operator product expansion (OPE) it is
common to parametrize the nonperturbative properties of
the QCD vacuum by using infinite towers of the vacuum
average values of the quark-gluon operators. From this
point of view the nonlocal properties of the QCD vacuum
result from the partial resummation of the infinite series
of power corrections, related to vacuum averages of
quark-gluon operators with growing dimension, and
may be conventionally described in terms of the nonlocal
vacuum condensates [22,23]. This reconstruction leads
effectively to nonlocal modifications of the propagators
and effective vertices of the quark and gluon fields. The
adequate model describing this general picture is the
instanton liquid model of QCD vacuum describing non-
perturbative nonlocal interactions in terms of the effec-
tive action [1]. Spontaneous breaking of the chiral
symmetry and dynamical generation of a momentum-
dependent quark mass are naturally explained within
the instanton liquid model. The V and A current-current
correlators have been calculated in [9] in the framework
of the effective chiral model with instantonlike nonlocal
quark-quark interactions [20] (N�QM). In the present
work we extend that analysis by the inclusion into the
consideration of the vector and axial-vector mesons gen-
erated from the resummation of quark loops.

Nonlocal effective models have an important feature
which makes them advantageous over the local models,
such as the well-known Nambu–Jona-Lasinio model
(NJL). At high virtualities the quark propagator and the
vertex functions of the quark coupled to external fields
reduce to the free quark propagator and to local, pointlike
couplings. This property allows us to straightforwardly
reproduce the leading (asymptotically free) terms of the
OPE. For instance, the second Weinberg sum rule is
reproduced in the model [9,24], which has not been the
case of the local approaches. In addition, the intrinsic
nonlocalities, inherent to the model, generate unconven-
tional power and exponential corrections which have the
same character as found in [8]. The nonlocal effective
model was successively applied to the description of the
data from the CLEO Collaboration on the pion transition
form factor in the interval of the spacelike momentum
transfer squared up to 8 GeV2 [25]. There are several
further advantages in using the nonlocal models com-
pared to the local approaches, in particular, the model is
made consistent with the gauge invariance. As we shell
see below the N�QM correctly reproduces leading large
Q2 behavior of the Adler function, while the local con-
stituent quark model fails to describe data starting from
rather low Q2.

We start with the nonlocal chirally invariant
action which describes the interaction of soft quark
fields. The gluon fields have been integrated out. The
-5
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corresponding gauge-invariant action for quarks interact-
ing through nonperturbative exchanges can be expressed
as [20]

S �
Z
d4xq�x����i@� � V��x� � �5A��x��q�x�

�
1

2

X
i�P;V;A

Gi
Z
d4X

Z Y4
n�1

d4xnfi�xn��Q�X

� x1; X�(iQ�X;X� x3�Q�X� x2; X�(iQ�X;X

� x4��; (26)

where in the extended version of the model the spin-flavor
structure of the interaction is given by matrix products

Gi�(i � (i� : GP�1 � 1� i�5�a � i�5�a�;

GV�� � ��;�GAi���5�
a � i���5�

a:
(27)

In Eq. (26) q � �u; d� denotes the quark flavor doublet
field,Gi are the four-quark coupling constants, and �a are
the Pauli isospin matrices. The separable nonlocal kernel
of the interaction determined in terms of form factors
fi�x�, with normalization fi�0� � 1, is motivated by the
instanton model of QCD vacuum. The instanton model
predicts the hierarchy of interactions in different chan-
nels. It is stronger in the pseudoscalar and scalar channels
providing the spontaneous breaking of chiral symmetry.
At the same time it is highly suppressed in the vector and
axial-vector channels. In these channels the confinement
force has to be taken into account in addition. Thus, in
general we treat differently the shape of form factors fi�x�
in different channels.

In order to make a gauge-invariant form of the non-
local action with respect to external gauge fields Va��x�,
we define in (26) the delocalized quark field, Q�x�, by
using the Schwinger gauge phase factor

Q�x; y� � P exp
�
i
Z y

x
dz�Va��z�Ta

�
q�y�;

Q�x; y� � Qy�x; y��0;
(28)

where P is the operator of ordering along the integration
path, with y denoting the position of the quark and x
being an arbitrary reference point. The conserved vector
and axial-vector currents in the scalar sector of the model
have been derived earlier in [9,20]. The extension of these
results onto the vector sector of the model is given in
Appendix A.

The dressed quark propagator, S�p�, is defined as

S�1�p� � p̂�M�p�; (29)

with the momentum-dependent quark mass found as the
solution of the gap equation

M�p� � Mqf
2
P�p�; (30)

where fP�p� is the normalized four dimensional Fourier
transform of the fP�x�. The important property of the
094011
dynamical mass is that at low virtualities passing
through the quark its mass is close to the constituent
mass, while at large virtualities it goes to current mass
value.

The quark-antiquark scattering matrix in different
channels is found from the Bethe-Salpeter equation as

T̂ i�q
2� �

Gi
1�GiJi�q

2�
; (31)

with the polarization operator

Ji�q2��ab � �i
Z d4k

�2��4
f2i �k�f

2
i �k� q�Tr�S�k�(

a
i S�k

� q�(bi �:

(32)

The positions of mesonic bound states are determined as
the poles of the scattering matrix

det�1�GiJi�q
2��jq2�m2

M
� 0: (33)

The quark-meson vertices in the pseudoscalar, vector, and
axial-vector channels found from the residues of the
scattering matrix are �k0 � k� q�

(a�;s�k; k
0� � g�qq��4

�
s fV�k�fV�k0��a;

(!;s�k; k
0� � g!qq��4

�
s fV�k�fV�k0�;

(34)

(aa1;s�k; k
0� � ga1qq���54

�
s fV�k�fV�k0��a;

(a��k; k0� � �g�qq � ~g�qqq̂=m��i�5fP�k�fP�k0��a

with the quark-meson couplings found from

g�2
Mqq � �

dJi�q2�

dq2
jq2�m2

M
; (35)

wheremM are physical masses of the ��!� and a1 mesons.
Note that the quark-pion vertex in (34) takes into account
the effect of the �� a1 mixing.
V. ADLER FUNCTION WITHIN THE NONLOCAL
CHIRAL QUARK MODEL

Our goal is to obtain the vector current-current corre-
lator and corresponding Adler function by using the
effective instantonlike model (26) and then to estimate
the leading order hadron vacuum polarization correction
to muon anomalous magnetic moment a�. In N�QM in
the chiral limit the (axial-)vector correlators have trans-
verse character


J
���Q2� �

�
g�� �

q�q�

q2

�

N�QM
J �Q2�; (36)

where the polarization functions are given by the sum of
the dynamical quark loop, the intermediate (axial-
)vector mesons and the higher-order mesonic loops con-
-6



FIG. 7. The dynamical quark-loop contribution is the sum of dispersive and contact terms. In the dispersive diagram ~( is the bare
vertex and ( is the total one.

FIG. 6. Schematic representation of the vector polarization function (37).
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tributions (see Fig. 6)


N�QM
J �Q2� � 
QLoop

J �Q2� �
mesons
J �Q2�

�
�Loop
J �Q2�: (37)

The spectral representation of the polarization func-
tion consists of zero width (axial-)vector resonances
[
mesons

J �Q2�] and two-meson states [
�Loop
J �Q2�]. The

dynamical quark loop under the condition of analytical
confinement has no singularities in the physical space of
momenta.

The dominant contribution to the vector current corre-
lator at spacelike momentum transfer is given by the
dynamical quark loop which was found in [9] with the
result1


QLoop
V �Q2� �

4Nc
Q2

Z d4k

�2��4
1

D�D�

�
M�M�

�

�
k�k� �

2

3
k2?

�
ren

�
4

3
k2?��M

�1��k�; k���2�k�k� �M�M��

� �M2�k�; k����1��
�
�
8Nc
Q2

Z d4k

�2��4
M�k�
D�k�

�

�
M0�k� �

4

3
k2?M

�2��k; k�Q; k�
�
; (38)

where the notations

k� � k�Q=2; k2? � k�k� �
�k�q��k�q�

q2
;

D�k� � k2 �M2�k�;
1Furthermore, the integrals over the momentum are calcu-
lated by transforming the integration variables into the
Euclidean space, (k0 ! ik4, k2 ! �k2).
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M� � M�k��; D� � D�k��; (39)

are used. We also introduce the finite-difference deriva-
tives defined for an arbitrary function F�k� as

F�1��k; k0� �
F�k0� � F�k�

k02 � k2
;

F�2��k; k0; k00� �
F�1��k; k00� � F�1��k; k0�

k002 � k02
:

(40)

In (38) the first integral represents the contribution of
the dispersive diagrams and the second integral corre-
sponds to the contact diagrams (see Fig. 7 and Ref. [9] for
details). The expression for 
QLoop

V �Q2� is formally diver-
gent and needs proper regularization and renormalization
procedures which are symbolically noted by �� � ��ren for
the divergent term. At the same time the corresponding
Adler function is well defined and finite.

Also we have checked that there is no pole in the vector
correlator as Q2 ! 0, which simply means that photon
remains massless with the inclusion of strong interaction.
In the limiting cases the Adler function derived from
Eq. (38) in accordance with the first equality of Eq. (4)
satisfies general requirements of QCD [see leading terms
in (5), (6), and (8)]

AN�QMV �Q2 ! 0� � O�Q2�;

AN�QMV �Q2 ! 1� �
Nc
12�2 �

OV2
Q2 �O�Q�4�:

(41)

The leading high Q2 asymptotics comes from the
�k�k� � 2

3 k
2
?�ren term in (38), while the subleading

asymptotics is driven by the ‘‘tachionic’’ term with coef-
ficient [9]

OV2 � �
Nc
2�2

Z 1

0
du
uM�u�M0�u�

D�u�
: (42)
-7
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In (42) and below we use the notations u � k2 and
M0�u� � dM�u�=du.

In the extended by vector interaction model (26) one
gets the corrections due to the inclusion of � and !
mesons which appear as a result of quark-antiquark re-
scattering in these channels:


mesons
V �Q2� �

1

2Q2

GVB
2
V�Q

2�

1�GVJTV�Q
2�
; (43)

where BV�q2� is the vector meson contribution to the
quark-photon transition form factor

BV�Q2� � 8Nci
Z d4k

�2��4
fV�f

V
�

D�D�

�
M�M� � k�k�

�
2

3
k2?�1�M

2�1��k�; k���

�
4

3
k2?
f�f�1��k�; k��

D�

�
; (44)

and JTV�q
2� is the vector meson polarization function

defined in (32) with (T� � �g�� � q�q�=q2���. As a con-
sequence of theWard-Takahashi identity one has BV�0� �
0 as it should be.

To estimate the ���� and K�K� vacuum polarization
insertions (chiral loops corrections) one may use the
effective meson vertices generated by the Lagrangian

�ieA����@
$
��� � K�@

$
�K��: (45)

By using the spectral density calculated from this inter-
action:

��LoopV �t� �
1

12

�
1�

4m2
�

t

�
3=2
0�t� 4m2

�� � ��! K�;

(46)

one finds the contribution to the Adler function as

D�LoopV �Q2� �
1

48�2

�
a
�
Q2

4m2
�

�
� a

�
Q2

4m2
K

��
; (47)

where

a�t� �
1

t

�
3� t�

3

2

�����������
t� 1

t

s �
arctanh

�
1� 2t

2
����������������
t�t� 1�

p �
� i

�
2

��
:

(48)

The estimate (47) of the chiral loop corrections corre-
sponds to the pointlike mesons which becomes unreliable
at large t, where the meson form factors have to be taken
into account. This contribution corresponds to the lowest
order, O�p4�, calculations in chiral perturbation theory
(�PT), is nonleading in the formal 1=Nc expansion, and
provides a numerically small addition. We avoid the use
literally of the known two loop, O�p6�, �PT result for the
chiral spectral function [26,27], since, as it was shown
there, the validity of the next-to-leading order in p2

calculations is justified only in the short interval of in-
094011
variant masses 4m2
� � t & 0:15 GeV2. The higher-loop

effects become important at higher momenta.
The resulting Adler function in N�QM is given by the

sum of the above contributions

DV�Q
2� � DQLoopV �Q2� �Dmesons

V �Q2� �D�LoopV �Q2�:

(49)
VI. PARAMETERS OF THE EXTENDED MODEL

First of all we need to determine the shape of the
nonlocal form factors in the kernel of the four-fermion
interaction in (45).Within the instanton model in the zero
mode approximation the function fp�p2� is expressed in
terms of the modified Bessel functions. However, the
screening effect modifies the instanton shape at large
distances leading to the constraint instantons [28]. To
take into account screening and to have also simpler
analytical form for fp�p2� we shall use further the
Gaussian form for the instanton profile function

fP�p� � exp��p2=�2
P�: (50)

Moreover, it is possible to show that for practical calcu-
lations of the quantities that are defined in the spacelike
region the exact form of nonlocality is not very
important.

At the same time the profile in the (axial-)vector
channels is not the same as in the scalar channels.
Indeed, in the instanton model in the zero mode approxi-
mation there is strong interaction in the (pseudo-)scalar
channels, but there is no interaction at all in the (axial-
)vector channels. It means that the mechanism that binds
quarks in these states is different from the one binding the
light pseudoscalar mesons. The model also predicts that
while in the scalar channels the correlation length for
nonlocality is given by an instanton size, � � 0:3 fm, the
correlation length in the vector channels is related to the
distance between instanton and anti-instanton, R �
1 fm. Thus, it follows the expectation for the widths of
nonlocalities in momentum space in scalar and vector
channels as �2

P � �2
V . In the present work we take the

function with the property of analytical confinement as
the nonlocal form factor in the vector channels [29,30]

f2V�u� �
LV�u�D�u�

M2
q�u� L

2
V�u��

; fV�0� � 1; (51)

where

LV�u� �
�

u=�2
V

exp�u=�2
V� � 1

�
1=4

and �V is the momentum-space width of nonlocality in
the vector channel. The function (51) has the property that
it tends to zero at large positive values of u and has no
poles.
-8
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FIG. 8 (color online). The Adler function from the N�QM
contributions: dynamical quark-loop (short dashed line), quark
� chiral loops � vector mesons (full line) versus the ALEPH
data (dashed line). The dash-dotted line is the prediction of the
constituent quark model (ENJL) and the dotted line is the
asymptotic freedom prediction, 1=4�2.
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The N�QM can be viewed as an approximation of
large-Nc QCD where the only new interaction terms,
retained after integration of the high frequency modes
of the quark and gluon fields down to a nonlocality scale
� at which spontaneous chiral symmetry breaking oc-
curs, are those which can be cast in the form of four-
fermion operators (26) and (47). The parameters of the
model are then the nonlocality scales � and the four-
fermion coupling constants G.

The parameters of the model are fixed in a way typical
for effective low-energy quark models. In quark models
one usually fits the pion decay constant, f�, to its experi-
mental value, which in the chiral limit reduces to 86 MeV
[31]. In N�QM extended by vector interactions the con-
stant, f�, is determined by

f2� �
Nc
4�2

Z 1

0
duu

M2�u� � uM�u�M0�u� � u2M0�u�2

D2�u�

�
GAj2AP�0�

1�GAJLA�0�
; (52)

where

JLA�0� �
Nc
2�2

Z 1

0
duuf4V�u�

M2�u� � u=2

D2�u�
;

jAP�0� � �
Nc
2�2

Z 1

0
duuf4V�u�

M�u� � uM0�u�=2

D2�u�
:

(53)

The second term in (52) arises due to the �� a1 mixing
effect. In the local NJL model the�� a1 mixing plays an
important role and leads to large corrections to observ-
ables of the order of �30%. However, in the nonlocal
models the mixing becomes a small effect and this is a
general property of such models. For example, it corrects
the value of f� at the level of �1%.

The couplings G�;!V and Ga1A are fixed by requiring that
poles of the scattering matrix (33) coincide with physical
meson masses (m� � 770 MeV, m! � 783 MeV, ma1 �
1230 MeV). The parameter �V is chosen to fit the widths
of the �! �� and �! e�e� decays (see details in
Appendix B). One gets the values of the model parameters

Mq � 0:24 GeV; �P � 1:11 GeV;

�V � 0:3 GeV;
(54)

G�P � 27:4 GeV�2; G�V � �1:96 GeV�2;

G!V � �1:78 GeV�2; Ga1A � �0:03 GeV�2:
(55)

It is important to note that within the N�QM one gets
the ratio GP � jGV;Aj. This is opposite to the local NJL
model where one has GP � 5 GeV�2 and jGV j �
10 GeV�2. In [32] it was noted that the large value of
jGV j leads to a strong contradiction with QCD sum rule
results in the � channel. Moreover, in [10] it was noted
that there is no overlap between applicability regions of
NJL and OPE QCD. It is clear from (55) that within the
094011
N�QM the vector meson corrections become much
smaller thus resolving the problem. Note also that the
ratio of the widths �P and �V is in accordance with the
instanton liquid model prediction.

With the above set of parameters the Adler function in
the vector channel calculated in N�QM (49) is presented
in Fig. 8 and the model estimate for the hadronic vacuum
polarization to a� given by (24) is

ahvp�1�;N�QM� � 623�40� � 10�10; (56)

where the various contributions to ahvp�1�;N�QM� are

ahvp�1�;Qloop� � 533� 10�10;

ahvp�1�;Vmesons� � 13� 10�10;

ahvp�1�;�Loop� � 44� 10�10;

(57)

and the error in (56) is due to incomplete knowledge of
the higher-order effects in nonchiral corrections. One
may conclude that the agreement of the N�QM estimate
with the phenomenological determinations is rather good.
With the same model parameters one gets the estimate for
the �2 hadronic contribution to the �-lepton anomalous
magnetic moments

ahvp�1�;N�QM� � 3:1�0:2� � 10�6; (58)

which is in agreement with phenomenological determi-
nation (Refs. [33,34])

ahvp�1�;exp� �

�
3:383�0:111� � 10�6 �33�;
3:536�0:038� � 10�6 �34�:

(59)
-9
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VII. OTHER MODEL APPROACHES TO ADLER
FUNCTION AND ahvp�1�

�

In [35] the vector two-point function has been calcu-
lated in the extended Nambu–Jona-Lasinio (ENJL)
model with the result


ENJL
V �Q2� �


V�Q
2�

1�Q2 8�2GV
3�2

r

V�Q

2�
; (60)

where 
V�Q
2� is given by a loop of constituent massive

quarks as


 V�Q2� �
3

2�2

Z 1

0
dxx�1� x�(�0; xQ�; (61)

with xQ � �M2
Q �Q2x�1� x��=�2

r and (�n; x� is the in-
complete gamma function. The parameters of the model
are the constituent quark mass MQ � 265 MeV and the
ultraviolet regulator of the model �r � 1:165 GeV. The
Adler function predicted by the ENJL model is presented
in Fig. 8. It is clear from the figure that the ENJL model
with constituent quarks does not interpolate correctly the
transition from low to high momenta and fails to describe
the hadronic data starting already at low momenta.
Within ENJL the estimate of ahvp�1�� was found as [36]

�ahvp�1�� �ENJL ’ 7:5� 10�8: (62)

An attempt to improve the situation has been done in
[10] by introducing into the model an infinite set of
higher dimension terms. Effectively this procedure re-
duces to delocalization of the quark-quark interaction,
the property inherent to the instantonlike models. An
improved version of the ENJL is close to the predictions
of the minimal hadronic approximation model (MHA)
[10] based on the local duality. Assuming that the spec-
tral density �V�t� is given by a sum ansatz of a single, zero
width vector meson resonance and the QCD perturbative
continuum contribution one has

1

4�2
�MHA
V �t� � 2f2VM

2
V��t�M

2
V� �

Nc
12�2 &�t� s0�;

(63)

and the Adler function in the Euclidean region is given by

AMHA
V �Q2� � 2f2VM

2
V

Q2

�Q2 �M2
V�

2 �
Nc
12�2

Q2

Q2 � s0
;

(64)

with s0 � 1–1:5 GeV2 being the continuum threshold.
This model predicts the correct asymptotic behavior of
the Adler function. By taking the model parameters
MV � 0:750 GeV, f2V � 2f2�M

2
V , and s0 � 1:35 GeV

one finds an estimate for ahvp�1�� as [37]

�ahvp�1�� �MHA � �5:7� 1:7� � 10�8: (65)
094011
We also wish to recall that some time ago the hadronic
contribution to the photon vacuum polarization to ahvp�1��

has been estimated in the gauged nonlocal constituent
quark model (GNC), the approach which is quite similar
to the present model, with the result [27]
�ahvp�1�� �GNC � �6:3� 0:5� � 10�8: (66)
It was also found that the model with momentum-
dependent quark mass gives more favorable results with
respect to the constituent quark model with constant
masses. The GNC result is a sum of the dynamical
quark-loop contribution and of the one- and two-meson
loop contributions. We think, however, that the two-loop
contribution found in [27], which is almost the same as
the one-loop result, is overestimated in the model calcu-
lations. As we already noted above the two-loop results
have a very narrow region of applicability.

Good agreement with the vector Adler function ex-
tracted from the experiment has been reached in [38]
by using the analytic perturbative (AP) approach [39].
Within this model the perturbative expansion of the Adler
function valid at high energy analytically continued to
the infrared region where regular behavior is predicted.
There are two parameters in this model: the QCD pa-
rameter �QCD � 420 MeV and the light quark masses
mu;d � 250 MeV. Note that similar to N�QM consider-
ations the AP approach prefers to use rather low values of
the quark masses to describe quantitatively the Adler
function.

Finally we note that first evaluations of ahvp� on the
lattice appeared recently [40]
�ahvp� �Lattice � �4:46� 0:23� � 10�8: (67)
Still this calculation contains rather big uncertainties and
the above error does not take into account large system-
atical errors from the quenching approximation, unphysi-
cally large quark masses, and finite volume effects.
VIII. V �A CORRELATOR

For consistency we also give the expressions for the
difference of the V and A correlators (37) in the extended
N�QM and discuss the related chiral sum rules. The axial
currents correlator is given by the sum of the dynamical
quark loop, the intermediate axial-vector meson propa-
gators, and the meson chiral loops (see some details in
Appendix C). The dynamical quark-loop contribution to
the V � A correlator has been found earlier in [9] and
reads
-10
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Loop
V�A�Q

2� � �
4Nc
Q2

Z d4k

�2��4
1

D�D�

�
M�M�

�
4

3
k2?��

����������������
M�M�

p
M�1��k�; k��

� �
�����
M

p
�k�; k���

2�
��������
M�

p
k� �

��������
M�

p
k��

2�

�
:

(68)

The integrand of the above expression is positive definite
in accordance with the Witten inequality.

In the extended model one gets the corrections from the
vector and axial-vector intermediate mesons generated
via the quark-quark rescattering to the V � A polariza-
tion function


meson
V�A �Q2� � 
meson

V �Q2� �
meson
A �Q2�; (69)

where 
meson
V �Q2� is defined in (43) and the axial-vector

polarization function due to the a1 meson is


meson
A �Q2� � �

1

2

GAB2A�Q
2�

1�GAJTA�Q
2�
; (70)

where BA�q2� is the transition form factor of the axial-
vector current to the quark-antiquark pair

BA�Q
2� � 8Nci

Z d4k

�2��4
fV�f

V
�

D�D�

�
�M�M� � k�k�

�
2

3
k2?�1�M

�1��k�; k���
��������
M�

p
�

��������
M�

p
�2�

�
4

3
k2?
f�f

�1��k�; k��
D�

�
; (71)

and JTA�Q
2� is defined in (32). At zero momentum BA�0� �

0 in accordance with the effect of the �� a1 meson
mixing effect. As a consequence the total V � A correla-
tor is consistent with the first Weinberg sum rule:
limQ2!0Q

2
T
V�A�Q

2� � �f2�, where f2� is defined in
(52). Because of the very small value of GA the effect
of the a1 meson on the axial-vector correlator is very tiny.

Let us now consider the low-energy region where the
effective model (26) should be fully predictive. From (68)
and the Das-Guralnik-Mathur-Low-Young sum rule [41],
�7m2

� � m2
�� �m2

�0�

�
1

4�2

Z s0!1

0
dss ln

s

�2 ��V�s� � �A�s��

�
Z 1

0
dQ2��Q2
T

V�A�Q
2�� �

4�f2�
3�

7m2
�; (72)
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we estimate the electromagnetic pion mass difference to
be �7m� � m�� �m�0�

�7m��N�QM � 4:44 MeV; (73)

which is in remarkable agreement with the experimental
value (after subtracting the md �mu effect) [42]

�7m��exp � 4:43� 0:03 MeV: (74)

The �� � �0 electromagnetic mass difference is another
observable which offers the possibility to test the quality
of the matching between long-distance and short-
distance behaviors.

With the help of the Das-Mathur-Okubo (DMO) sum
rule [43],

IDMO�s0 ! 1� �
1

4�2

Z s0!1

0

ds
s
��V�s� � �A�s��

�
@

@Q2 �Q
2
T

V�A�Q
2��jQ2!0 �

1

3
f2�hr

2
�i � FA;

(75)

where FA is the pion axial-vector form factor and hr2�i is
the electromagnetic pion radius squared, we estimate the
electric polarizability of the charged pions [44] by using
[45]

�E�� �
�
m�

�
hr2�i
3

�
IDMO

f2�

�
: (76)

With the experimental value for the pion mean squared
radius hr2�i � �0:439� 0:008� fm2 [46] and the value of
the IDMO integral estimated from the OPAL data [3]

�IDMO�s0 � m2
���exp � �26:3� 1:8� � 10�3 (77)

one gets from Eq. (76) the result [3]

��E���OPALexp � �2:71� 0:88� � 10�4 fm3: (78)

Another experimental estimate of the pion polarizability
follows from recent measurements by the PIBETA
Collaboration [47] of the pion axial-vector form factor
FA with a result FA � 0:443�15� � FV (full data set) and
FA � 0:480�16� � FV (kinematically restricted data set).
Then using the Terentev relation [48]

�E�� �
�FA

8�2m�f
2
�
: (79)

one yields [49]
��E���PIBETAexp �

�
2:68�9� � 10�4 fm3 full data set;
2:90�9� � 10�4 fm3 kinematically restricted data set:

(80)

Within N�QM one obtains the estimates of the low-energy constants

�IDMO�N�QM � 23� 10�3; �hr2�i�N�QM � 0:435 fm2; (81)

where these values are derived by calculating the derivatives of 
V�A�Q2� and the electromagnetic pion form factor at
-11



FIG. 9 (color online). Normalized V � A correlation function
constructed in the N�QM (solid line) and reconstructed from
the ALEPH experimental spectral function (dashed line).
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zero momentum, with vector meson [30] and chiral loop
corrections being included (see Appendix C). By using
the values given in Eqs. (81) we find from (76) the value

��E���N�QM � 2:9� 10�4 fm3; (82)

which is in a very reasonable agreement with the experi-
mental numbers (78) and (80).

Next, we compare the V � A correlator predicted in
N�QM with the ALEPH data. As above, we use s0 �
2:5 GeV2 as an upper integration limit, the value at which
all chiral sum rules are satisfied assuming that �V�A�s� �
0 at s � s0, (13). Finally, a kinematic pole at q2 � 0 is
added to the axial-vector spectral function. The resulting
unsubtracted dispersion relation between the measured
spectral densities and the correlation functions becomes


T
V�A�Q

2� �
1

4�2

Z s0

0
ds
�V�s� � �A�s�

s�Q2 �
f2�
Q2 ; (83)

where f2� is given by the first Weinberg sum rule

f2� �
1

4�2

Z s0

0
ds�v1�s� � a1�s��: (84)

Having transformed the data into the Euclidean space, we
may now proceed with the comparison to the model,
which obviously applies to the Euclidean domain only.
The resulting normalized V � A correlation functions
corresponding to the experimental data and the N�QM
prediction are shown in Fig. 9.
IX. CONCLUSIONS

In this work we have analyzed the vector Adler func-
tion for Euclidean (spacelike) momenta within an effec-
tive nonlocal chiral quark model motivated by the
instanton model of QCD vacuum. To this end, we have
derived the conserved vector and axial-vector currents
and have constructed the Euclidean-momentum correla-
094011
tion functions of the vector and axial-vector currents in
the extended by inclusion of vector mesons degrees of
freedom model. The dominant contributions to the polar-
ization functions and to the corresponding Adler func-
tions come from the loop contributions of the light
dynamical quarks. It is this contribution that provides
the matching between the low-energy hadronized phase
and the high-energy QCD which is clearly seen in the
behavior of the vector Adler function (Figs. 2 and 8). The
results obtained are close to the estimates of the empirical
Adler function and the V � A correlator extracted di-
rectly from the ALEPH data on hadronic inclusive �
decays and transformed by dispersion relations to the
spacelike region.

We further use the vector Adler function to calculate
the �2 hadronic contribution to the muon anomalous
magnetic moment, ahvp�1�� , and found the value which is
in reasonable agreement with the latest precise phenome-
nological numbers. The main reason why we discuss the
N�QM is that it offers the possibility to go beyond the
leadingO�p6� contribution of �PT. This will appear to be
a crucial issue in consideration of the hadronic light-by--
light contribution. Reproducing the phenomenological
determination of ahvp�1�� , it becomes possible to make in
future reliable estimates of ahvp�2�� and ah:L�L

� :
In the N�QM extended by inclusion of vector and

axial-vector mesons we show that the influence of these
states on the Adler function and some low-energy observ-
ables is very small, at the level of a few percent. This is
because the physical states corresponding to these chan-
nels are rather heavy and, as a consequence, have the
couplings of quark-quark interactions much smaller
than in the (pseudo-)scalar channels.

We also estimated the contributions to the correlators
and the low-energy observables of the nonchiral correc-
tions, formally suppressed in 1=Nc expansion, by using
the one-loop results of the chiral perturbative theory.
These corrections are typically of the order of 10%–
20% compared to the dynamical quark contributions. In
this way the form factor dependence of the currents with
mesons is not taken into account and predictions become
untrustworthy at higher momenta. In perspective we plan
to cure this disease and also take into account effectively
the perturbative gluon corrections which become impor-
tant at higher momenta.

From the properties of the V � A correlator we have
shown the fulfillment of the low-energy relations. The
values of the �� � �0 electromagnetic mass difference
and the electric pion polarizability are estimated and
found to be close to the experimental values.We stress that
the momentum dependence of the dynamical quark mass
is crucial for reproducing the empirical Adler function and
V � A correlator. The V � A combination receives no
contribution from perturbative effects and provides a
clean probe for chiral symmetry breaking and a test
ground for model verification.
-12
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Finally, we would like to note that the effective models
based on the underlying symmetries of strong interactions
are usually operative at low energies and fail in descrip-
tion of the high and even intermediate energy regions. An
essential advantage of the nonlocal models is that they
provide a correct interpolation between the high-energy
behavior where they are reduced to an asymptotically free
model and the low-energy behavior where they share the
chiral symmetry and its spontaneous breaking. This is
because the main elements of the diagram technics, the
quark propagator and the quark couplings with currents,
become local at high virtualities. This property allows us
to straightforwardly reproduce the leading terms of the
operator product expansion. For instance, the correct
high-energy asymptotics are derived for the V � A cor-
relator (second Weinberg sum rule) [9,24], the Adler
function (this work), the topological susceptibility [9],
the pion transition form factor [25], and some other
quantities [50], while in all these cases the constituent
quark model, with massive momentum independent
quark masses, fails to explain the asymptotics. The non-
locality originated from the quark-quark interactions due
to the exchange of instantons also is of great importance
in describing the hadronic distribution functions in order
to produce the correct end-point behavior as was shown
for the case of the pion distribution amplitude [25,51] and
structure function [50].

APPENDIX A: CONSERVED VECTOR AND
AXIAL-VECTOR CURRENTS

The Noether currents and the corresponding vertices
are formally obtained as functional derivatives of the
action (26) with respect to the external fields at zero value
of the fields. For our purpose, it is necessary to construct
the quark-current vertices that involve one or two cur-
rents (contact terms). In the presence of the nonlocal
interaction the conserved currents include both local
and nonlocal terms. The technique of expansion of the
path-ordered exponent in the external fields and deriva-
tion of the conserved currents has been reviewed in
[9,20]. Here we present the extension of the previous
results for the model (26) that includes in addition the
vector and axial-vector meson degrees of freedom.

The (axial-)vector meson contribution to the bare
(axial-)vector vertex obtained by the differentiation of
the action (26) with respect to the external (axial-)vector
field is given by the formula

7~(�5�a
� �p; q; p0 � p� q�

� Ta
�
�GJf

V�p0�fV�p�
��
g��

�
q�q�

q2

�
�� ~B�q

2� �
q�q̂

q2
~C�q2�

��
��5�;

(A1)

where q is the momentum corresponding to the current,
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and p �p0� is the incoming (outgoing) momentum of the
quark,

~B�q2� � 16Nci
Z d4k

�2��4
2

3
k2?
fV�k�fV�1��k; k� q�

D�k�
;

(A2)

~C�q2� � 16Nci
Z d4k

�2��4
�kq�

fV�k�fV�k� q�
D�k�

: (A3)

In order to obtain the full vertex corresponding to the
conserved (axial-)vector current it is necessary to add the
term which contains the (axial-)vector meson propagator.
The addition of this term to the full conserved vertex
acquires the form

7(�5�a
� �p; q; p0 � p� q�

� Ta
�
�

�
g�� �

q�q�

q2

�
��

GJBJ�q2�

1�GJJ
T
J �q

2�

� fV�p�fV�p0�
�
��5�; (A4)

where the factors BJ�q2� define the virtual transition of
the meson to the (axial-)vector current and are given
above in (44) and (71).
APPENDIX B: VECTOR AND AXIAL-VECTOR
MESON PROPERTIES

To fit the parameters of the extended model (54) and
(55), we consider the main decay modes of (axial-) vector
mesons. The quark-meson couplings are fixed by the �;
!, and a1 masses from the condition (35) and equal to

g�q � 0:61; g!q � 0:59; ga1q � 0:08: (B1)

The decay �! �� is described by the amplitude

h�a�p1��b�p2� j �c�P�i � i"abcg����p2 � p1��4�;

(B2)

where pi are momenta of pions, and 4� is the �-meson
polarization vector. With parameters given in Sec. VI we
obtain g��� � 6:1 and the decay width (��� � 154 MeV
which agrees reasonably well with the experimental value
�(����exp � 149:2� 0:7 MeV [46].

The decays of vector mesons to the e�e� pair and the
transition of the a1 meson to the axial-vector current are
described by the amplitudes

h0jJ�aj�bs i � �g���
ab4�s ;

h0jJ�j!si � �g!��ab4
�
s ;

h0jJ�5jab1si � �ga1�
ab4�s :

(B3)

We have obtained the values for the photon-vector meson
couplings g�� � 0:114 GeV2, g!� � 0:039 GeV2 and the
axial coupling ga1 � 0:082 GeV2 which have to be com-
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TABLE II. Model estimates and experimental values for the electromagnetic pion mass
difference, integral of the DMO sum rule, and charged pion radius squared.

Quark loop Intermediate mesons Chiral loop Total Experiment

7m� �MeV� 3.95 0.13 0.36 4.44 4.43
IDMO � 103 16.72 0.008 6.16 22.89 26.30
hr2�i �fm

2� 0.334 0.013 0.087 0.435 0.439
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pared with the empirical values gexp�� � 0:1177 GeV2,
gexp!� � 0:0359 GeV2 [46].

APPENDIX C: NONCHIRAL CORRECTIONS

Here we give the expressions for nonchiral corrections.
Hadronic spectral functions for the processes �! ��!
� and a1 ! )�! a1 are given by the general expression:

1

t
1

�
Im
�t� �

1

48�2

��
1�

m2
1 �m

2
2

t

�
2

�
4m2

1m
2
2

t2

�
3=2
0�t� �m1 �m2�

2�; (C1)

where m1;2 are meson masses in the intermediate state.
One has m1 � m2 � m� for the first process and m1 �
m�, m2 � m) for the second one. The contribution of
chiral loops to the vector polarization function reads as


V
�Loop�Q

2� �
1

48�2

�
p
�
Q2

4m2
�

�
� p

�
Q2

4m2
K

��
; (C2)

where

p�z� � �

�
2

3

3� 4z
z

�

�
z� 1

z

�
3=2

�
arctanh

�
1� 2z

2
�����������������
z�z� 1�

p �

� i
�
2

��
:

The leading order corrections to the low-energy con-
stants and to the electromagnetic pion mass difference are
094011
correspondingly [52,53]

�IDMO���loops � �
1

48�2 ln
m2
�

m2
)
;

�hr2�i���loops �
3

f2�
�IDMO���loops;
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m2
�
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;

(C3)

with chiral logarithm being approximately

ln
m2
�

m2
)
� �3: (C4)

The above estimate corresponds to the )-pole position in
�� S-wave isoscalar scattering around 600 MeV. In
Table II we present separately different terms contribut-
ing to the physical constants.
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