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Scaling of power corrections for angularities from dressed gluon exponentiation
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We study power corrections to a recently introduced family of event shapes, the class of angularities,
within the formalism of dressed gluon exponentiation (DGE). We find that the universal scaling rule for
the leading power corrections deduced from resummation also holds when taking renormalon enhance-
ments into account. The scaling is due to boost invariance of eikonal dynamics in the two-jet limit,
which we recover in the context of DGE. Furthermore, dressed gluon exponentiation provides an ansatz
for nonleading power corrections that violate the scaling. These nonleading corrections are further
suppressed by noninteger powers of the hard scale.
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I. INTRODUCTION

Event shapes [1–3] are infrared-safe generalizations of
jet cross sections, and they are among the best suited
observables to test our understanding of QCD. Event
shape distributions, in particular, describe the behavior
of colored radiation in the final state of hard collisions in
all of phase space. Thus, although infrared-safe, they are
sensitive to emission at all scales, and provide a unique
tool to probe the interface between perturbative and non-
perturbative QCD.

A consequence of the sensitivity of event shapes to
long-distance effects is that perturbative calculations
are far from straightforward even at high energies, where
the strong coupling is sufficiently small. Specifically, in
the narrow-jet limit, radiation is dominated by secondary
partons which are either soft or collinear to the primary
quarks emitted at the hard scattering. As a consequence,
fixed order computations receive large logarithmic cor-
rections, which need to be resummed to all orders to
obtain reliable quantitative predictions [4–8].

In addition to these large perturbative corrections,
there are corrections due to confinement that cannot be
treated within the perturbative expansion, and are sup-
pressed by powers of the hard scale. Their main effect is
to widen the distribution of radiation in the final state,
shifting the peak away from the narrow-jet limit.
Although long-distance effects are intrinsically nonper-
turbative, the study of resummed perturbation theory can
give valuable information about the size of their contri-
butions to the cross section, as we will illustrate below.

In the following we will consider event shapes in e�e�

annihilation. Power corrections to these observables have
been the focus of intense research during the past several
years (for recent reviews see for example [8,9]). It turns
out that for mean values of such event shapes the effects of
power corrections can be efficiently summarized in terms
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of a single parameter, essentially a shift of the perturba-
tive distribution by an amount proportional to an integer
power of 1=Q, where Q is the overall center-of-mass
energy [10–13]. It was found that these additive correc-
tions are to a certain degree universal. This universality
property can be used phenomenologically for precise
measurements of the strong coupling from event shapes
[14].

The case of differential distributions, however, is more
complicated. Distributions probe scales that are even
smaller than those which dominate mean values, thus
subleading power corrections also need to be taken into
account. For a large class of such corrections this can be
done by introducing a nonperturbative shape function
[15]. Resummed perturbation theory, which displays
sensitivity to soft emission at power accuracy, im-
poses constraints on models for these shape functions.
Phenomenologically, the models are quite successful in
describing the data, again with only a small set of non-
perturbative parameters. Universality, however, is generi-
cally lost at the level of subleading power corrections,
although certain classes of event shapes turn out to have
closely related nonperturbative behavior [16–19].

A class of event shapes of this type depending on a real
parameter a was introduced in [20]. These observables
provide an interpolation between the thrust [1], corre-
sponding to a � 0, and the jet broadening [3], a � 1. In
this paper, we will refer to event shapes in this class as
angularities. As shown in [20–23], these event shapes
can be studied analytically, as functions of a, both at the
perturbative level, performing an all-order resummation
of Sudakov logarithms, and at the level of long-distance
effects. Using factorization arguments, it was found that
leading power corrections to all the observables in the
class of angularities are described by the same shape
function, up to an overall scaling factor [23]. This re-
markable property is closely related to the boost invari-
ance of the soft radiation emitted in the two-jet limit.

We will study power corrections to the distributions of
angularities by using renormalon methods. Specifically,
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we will use Dressed Gluon Exponentiation (DGE) [24] to
build a model of the shape function. We will recover the
scaling property discovered in [23], and we will study the
pattern of violations of scaling due to the contributions of
collinear radiation.

Dressed gluon exponentiation combines renormalon
calculus with Sudakov resummation. On the one hand,
taking into account single (dressed) gluon emission in the
large-�0 limit, it identifies the leading source of factori-
ally divergent behavior, characteristic of the asymptotic
nature of the perturbative expansion. This is then up-
graded to multigluon emission in the Sudakov limit by
exponentiation of the single gluon result, employing as
usual a Laplace transform to enforce momentum conser-
vation. In the conventional resummed expressions, the
asymptotic behavior manifests itself as a singularity in
the perturbative running coupling at small scales, which
introduces an ambiguity in the form of power corrections.
The DGE formalism provides a definite prescription to
deal with these ambiguities, and thus strongly constrains
the form of nonperturbative shape functions. Dressed
gluon exponentiation has been previously applied to sev-
eral other event shapes, including the thrust and the C-
parameter [17–19,25], as well as to processes involving
heavy quarks [26], and inclusive hadronic cross sections
such as DIS and Drell-Yan [25,27]. Here we will apply it
to study power corrections to angularities.

An interesting aspect of the study of angularities with
this method is the fact that the scaling rule found in
Ref. [23] was shown to be closely related to the boost
invariance properties of the eikonal cross section describ-
ing soft emission in the two-jet limit. This property is not
at all apparent in DGE, where in practice the single gluon
cross section is computed with a ‘‘massive’’ gluon, along
the lines of the dispersive approach. Since the introduc-
tion of gluon virtuality, which is necessary in order to
account for subleading logarithms at large nf, breaks
boost invariance, it is not a priori clear whether the
scaling will survive. Here we will show how the effects
of boost invariance are recovered in the Sudakov region.
In the two-jet limit, only the logarithmically divergent
bremsstrahlung spectrum contributes to the dressed gluon
cross section, and the gluon mass acts as an effective
cutoff, with precisely the weight required to reconstruct
an unweighted rapidity integral.

We start by briefly reviewing the definition of the class
of angularities, and the scaling rule for nonperturbative
corrections found by analyzing the resummed expression.
In Sections III and IV we will then construct a model of
the shape function for angularities by means of DGE.
Concentrating on soft radiation, we will recover the
scaling of leading power corrections, and study how it
arises in the context of a massive gluon calculation.
Finally, we will observe that DGE suggests an intricate,
nonuniversal pattern of subleading power corrections
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arising from collinear radiation. All such corrections
are however suppressed by noninteger powers of the
hard scale, with a degree of suppression growing as the
parameter a becomes large and negative, where the event
shape becomes correspondingly more inclusive. Technical
details are given in the Appendix.

Although detailed phenomenological studies will have
to be deferred to future work, when and if experimental
data become available, we emphasize that such studies
would be of considerable interest, and should be quite easy
to perform for experimental collaborations. The scaling
rule found in [23] and recovered here is in fact a clean and
significant test of the behavior of soft radiation in QCD,
and of the theoretical models employed in recent years to
study power suppressed effects.
II. THE CLASS OF ANGULARITIES

We consider an e�e� annihilation event with center-
of-mass energy Q, generating a final state N, which we
will take for now to consist of massless particles. The
angularity, with weight a, of the stateN, is defined as [20]

	a�N� �
1

Q

X
i�N

pi?e
�jij�1�a�

�
1

Q

X
i�N

!i�sin�i�
a�1� j cos�ij�

1�a; (1)

where pi? is the transverse momentum of particle i
relative to the thrust axis, i is the corresponding pseu-
dorapidity, i � ln�cot��i=2��, with �i the angle with
respect to the thrust axis, and !i is the energy of particle
i. The two definitions in Eq. (1) are equivalent for mass-
less particles.

The angularity distribution is defined as usual by sum-
ming over all final states, each weighed by its probability,
according to

d�
d	a

�
1

2Q2

X
N

jM�N�j2��	a � 	a�N�	; (2)

where M�N� is the amplitude for the production of final
state N.

The thrust axis can be defined as the axis with respect
to which Eq. (1) is minimized at a � 0. The parameter a
is adjustable in the range �1< a< 2, with the upper
limit set by infrared safety. Angularity with a � 0 is
essentially 1� T, with T the thrust [1], while angularity
with a � 1 corresponds to the jet broadening [3]. As
discussed in [20], for a � 1 recoil effects become impor-
tant, so that the resummation of Sudakov logarithms must
be modified, and consequently the pattern of power cor-
rections changes, as pointed out for the broadening �a �
1� in [7]. In this paper we will be mostly concerned with
the case a � 0, where power corrections are under good
control.
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In the two-jet limit, 	a ! 0, the distribution in Eq. (2)
has large perturbative corrections containing powers of
ln�	a�, which have been resummed to all logarithmic
orders, at leading power and for a < 1, in [20]. As usual,
the resummation is performed at the level of the Laplace
transform of the distribution,

~���; a� �
Z 1

0
d	ae��	a

d�
d	a

: (3)

At next-to-leading logarithmic (NLL) level, the resum-
mation displays a nontrivial dependence on a,

1

�tot
~���; a� � exp

 
2
Z 1

0

du
u

(Z uQ2

u2Q2

dp2?
p2?

A��s�p?�	

� �e�u
1�a��p?=Q�a � 1�

�
1

2
B
�
�s

� ���
u

p
Q
�	

�e�u��=2�
2=�2�a�

� 1�

)!
;

(4)

where A��s� and B��s� are well-known anomalous di-
mensions acting as kernels of Sudakov exponentiation.
The intricate a dependence of Eq. (4) simplifies at the
level of leading logarithms, where one can easily invert
the Laplace transform to find

1

�tot

d�
d	a

� �
2

1� a=2
�s
 
CF

ln�	a�
	a

� exp
�
�

1

1� a=2
�s
 
CFln

2�	a�
	
; (5)

which displays a simple scaling with 1� a=2. This scal-
ing of the perturbatively resummed cross section is how-
ever only approximate, and breaks down at NLL level, as
can be seen in the explicit expressions given in the
Appendix of Ref. [23].

Remarkably, the approximate scaling of the perturba-
tive contribution with 1� a=2 is replaced at the level of
leading power corrections by an exact scaling with 1� a.
To see this, one notes that the perturbative expression for
the cross section given in Eq. (4) is ambiguous, due to the
fact that the scale of the running coupling can vanish. As
a consequence, at values of 	a ��QCD=Q nonperturba-
tive corrections must become dominant, and the pertur-
bative expression needs to be supplemented by
nonperturbative input to give a well-defined result. The
structure of this nonperturbative correction can be de-
duced, following [15,23], by introducing an infrared
factorization scale # to cut off the transverse momentum
integration in Eq. (4). The leading nonperturbative con-
tribution arising from small transverse momenta can be
evaluated by performing the integral over the Laplace
variable �, keeping only terms scaling as powers of �=Q,
while discarding terms suppressed by higher powers of
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the hard scale. The result can finally be written as a
convolution of a perturbative contribution and a nonper-
turbative shape function, which in moment space is just a
product,

~���; a� � ~�PT��; #; a�~fa;NP

�
�
Q
; #
�

�

�
1�O

�
�

Q2�a ;
�2=�2�a�

Q2

�	
; (6)

ln
�
~fa;NP

�
�
Q
; #
�	

�
1

1� a

X1
n�1

%n�#�
�
�
�
Q

�
n
: (7)

The shape function ~fa;NP sums all power corrections of
the form ��=Q�n, with unknown nonperturbative coeffi-
cients %n�#�, which can be formally expressed in terms of
infrared moments of the cusp anomalous dimension
A��s� as

%n�#� �
2

nn!

Z #2

0

dp2?
p2?

�p2?�
n=2A��s�p

2
?�	: (8)

As explicitly indicated in Eq. (6), terms of order �=Q2�a

and of order �2=�2�a�=Q2 have been neglected. At this
level of accuracy, one finds that the only a dependence
of the shape function is through an overall factor 1=�1�
a�, which leads to the scaling rule [21–23]

~f a;NP

�
�
Q
; #
�
�

�
~f0;NP

�
�
Q
; #
�	

1=�1�a�
: (9)

The derivation of the scaling rule in Eq. (9) relies on two
main assumptions. First, contributions from correlations
between hemispheres are neglected, because the starting
point is the NLL resummed cross section, which de-
scribes logarithmic corrections due to independent radia-
tion off two back-to-back jets. In the more general
resummed formula valid to all logarithmic orders [20],
such correlations are present, but they contribute only
starting at NNLL order. In addition, numerical studies
indicate that inter-hemisphere correlations do not play an
important role [16,18]. One can furthermore argue that
correlations between hemispheres due to particles whose
decay products enter both hemispheres become non-
negligible in the same range of the parameter a where
recoil effects also need to be taken into account. The
neglect of inter-hemisphere correlations is thus consistent
with the resummation. The second assumption entering
the derivation of Eq. (9) is that nonperturbative soft
radiation has the same properties under boosts as the
relatively harder perturbative component. A success of
experimental tests of the scaling rule would thus show
that boost invariant dynamics dominates the differential
distributions at all scales and that coherent interjet radia-
tion is nondominant in the relevant range of the parame-
ter a.
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Of course, even if the above assumptions hold, there
are further corrections present, suppressed relative to the
dominant ones, as indicated in Eq. (6). These corrections,
which for thrust behave like �=Q2, become important
only in the extreme nonperturbative region 1� T �

��QCD=Q�2, and are unlikely to play a role for phenome-
nology. From a theoretical point of view, it may, however,
be of some interest to compare the predictions of different
models also for these subleading corrections. Considering
the resummation, for example, one can keep terms ne-
glected in Eq. (9), and parametrize them in terms of
different integrals of the anomalous dimensions A��s�
and B��s� in the infrared region. One finds that the
pattern of subleading corrections can be characterized
in terms of a subleading shape function as follows,

~���; a� � ~�PT��; #; a�~fa;NP

�
�
Q
; #
�
~ga;NP

�
�

Q2�a ; #
�
;

(10)

where

ln
�
~ga;NP

�
�

Q2�a ; #
�	

�
1

1� a

X1
n�1

�%An �#; a�
�
�

�

Q2�a

�
n

�
X1
n�1

�%Bn �#�
�
�
��=2�2=�2�a�

Q2

�
n
:

(11)

The new nonperturbative parameters defining the sub-
leading shape function ~g are given by expressions similar
to Eq. (8),

�%An �#; a� � �
2

nn!

Z #2

0

dp2?
p2?

�p2?�
�2�a�n=2A��s�p

2
?�	;

�%Bn �#� �
1

n!

Z #2

0

dp2?
p2?

�p2?�
n=2B��s�p

2
?�	:

(12)

We notice that for both kinds of subleading contributions
there is no simple scaling behavior with a. Furthermore,
both contributions are suppressed at large � (that is, small
	a), with an increasing degree of suppression as a grows
large and negative: specifically, subleading power correc-
tions appear as functions only of the combination
�=Q2�a, a feature that will also be found in the DGE
formalism.

In the following, we will study leading and subleading
power corrections by means of DGE, and we will com-
pare the results obtained with those arising directly from
the resummation described above.
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III. DRESSED GLUON EXPONENTIATION
FOR ANGULARITIES

Dressed gluon exponentiation begins with a conven-
tional renormalon analysis of the given event shape. One
computes the characteristic function of the dispersive
approach [12], that is, the contribution to the cross section
of a single gluon dressed with an arbitrary number of
quark bubbles. This is referred to as the ‘‘single dressed
gluon’’ (SDG) cross section. One proceeds by identifying
the terms in the characteristic function which contribute
to logarithmic behavior in the two-jet limit. These terms
can be exponentiated, resumming all contributions where
any number of dressed gluons is emitted without interfer-
ing. DGE reproduces resummation at NLL, provided the
running coupling is defined in the bremsstrahlung
scheme. Furthermore, all subleading logs are accounted
for in the large-�0 (large-nf) limit. This way, DGE can
detect the factorial growth of the coefficients of sub-
leading logarithms, and provide methods to gauge the
range of applicability of conventional Sudakov resumma-
tions. Furthermore, given an explicit representation of
the singular behavior of perturbation theory, one may
pick a definite prescription to deal with the resulting
ambiguities.

A. Angularities With A Single Dressed Gluon

Summing up infinitely many bubbles in the gluon
propagator in the inclusive approximation is equivalent
to performing a calculation with an off-shell gluon with
virtuality k2, and replacing the coupling with an effec-
tive, ‘‘timelike coupling’’ [28]. One then expresses the
SDG cross section by

1

�tot

d�
d	a

��������SDG
�
CF
2�0

Z 1

0

d�
�
�Aeff��Q2� _F �	a; ��: (13)

Here _F is the derivative with respect to the gluon vir-
tuality � � k2=Q2 of the ‘‘characteristic function’’ F ,

_F �	a; �� � ��
@
@�

F �	a; ��;

F �	a; �� �
Z
dx1dx2jM�x1; x2; ��j

2��	a � 	a�x1; x2; ��	:

(14)

The squared matrix element jMj2 for the emission of a
gluon of virtuality k2 in the process *� ! q �qg, without
coupling and color prefactors, is given by

jM�x1; x2; ��j
2 �

�x1 � ��2 � �x2 � ��2

�1� x1��1� x2�
�

�

�1� x1�
2

�
�

�1� x2�
2 : (15)

x1and x2, as usual, are the energy fractions of the quark
and antiquark in the center-of-mass frame, and one can
-4



SCALING OF POWER CORRECTIONS FOR. . . PHYSICAL REVIEW D 70 094010
define x3 � 2� x1 � x2, the gluon energy fraction. When
the gluon is massive, the limits of phase space are given
by

x1 � x2 � 1� � �1� x1��1� x2� � �: (16)

The final ingredient in Eq. (13) is the ‘‘timelike cou-
pling’’ �Aeff , which is typically expressed in terms of a
Borel representation as

�Aeff�Q2� �
Z 1

0
du
�
Q2

�2
QCD

�
�u sin u

 u
�AB�u�: (17)

We now need to specify a suitable generalization of the
massless definition of the event shape, Eq. (1), for the
case in which the emitted gluon has nonvanishing vir-
tuality. Several observations are helpful in deciding how
to perform this generalization. First, all logarithmic con-
tributions to the SDG cross sections stem from the region
where the gluon is either soft or collinear. Contributions
from the region where the gluon is relatively hard do not
give logarithmic enhancements, and the exact location of
the boundary between the region of phase space where one
of the quarks is dominant and the region where the gluon
dominates is unimportant. We can thus concentrate on the
phase space region where the thrust axis is the quark
momentum, and x1 the largest energy fraction.
Contributions in which the antiquark momentum domi-
nates can be obtained by symmetry. Recall the expression
for 	a in the case of massless partons, in the region where
the quark has the largest energy,

	a�x1; x2� �
�1� x1�

1�a=2

x1

� ��1� x2�
1�a=2�x1� x2� 1�a=2

��x1 $ x2�	: (18)

Z ��
�

p Z �,=���1
�

094010
We would like our definition to reduce to Eq. (18) as
�! 0. Furthermore, we require that for a � 0 the defi-
nition should reduce to the massive definition of the
thrust, as used, for example, in [13,17,18,25]. In the phase
space at hand, this is simply 	0�x1; x2; �� � 1� x1.
Finally, as we will see, working analytically for generic
a and with a massive gluon generates rather intricate
expressions, so we must keep the definition as simple as
possible in order to be able to perform the necessary
integrations.

Keeping these criteria in mind, we define the angular-
ity with an off-shell gluon, in the region where the thrust
axis is given by the quark momentum, as

	a�x1; x2; �� �
�1� x1�1�a=2

x1
��1� x2 � ��1�a=2

� �x1 � x2 � 1� ��a=2 � �x1 � x2
�1� ��1�a=2�1� x2 � ��a=2	: (19)

Of course, other choices satisfying our criteria are pos-
sible. It can be shown, however, that different treatments
of the gluon mass alter the value of 	a by terms that are
suppressed by higher powers of the weight, roughly by a
factor of 	1�aa . Thus, they do not change logarithmically
enhanced contributions. Once a definite prescription to
include massive partons is chosen, the predictions within
the DGE formalism are unambiguous. It should be kept in
mind, in any case, that a comparison to experiment
requires a detailed analysis along the lines of Ref. [29]
for the inclusion of hadron mass effects.

To proceed, it is useful to change integration variables
from x1; x2 to

, � 1� x1; - �
x1 � x2 � 1� �
1� x2 � �

: (20)

In terms of these variables, the characteristic function can
be written as
F �	a; �� �
�
d,

,=�1�2,�
d-

�1� , � ��2�1� ,�
,�1� , � ��1� -���1� -�

�
�-� ,�2�1� ,�

,�1� , � ��1� -���1� -�3
�

��1� ,�

�1� , � ��1� -��2

�
��1� ,�

,2�1� -�2

	
�
�
	a �

,1�a=2

1� -
-a=2�1� -1�a�

�
: (21)
Two comments are in order. First, the limits of integration
do not correspond to the full phase space, but only to the
region which generates logarithmically enhanced contri-
bution, that is, the region in which the gluon is either soft
or collinear to the quark. With a massive gluon, the col-
linear limit corresponds to x1 � 1� �, x2 � 0, whereas
the soft limit is given by x1 � x2 � 1�

���
�

p
. These two

values set the limits of the , integration. The soft bound-
ary of phase space for intermediate values of , is given by
x2 � 1� �=�1� x1�, corresponding to the upper limit of
the - integration. The Sudakov region thus corresponds to
values of - close to the upper boundary of integration.
The second observation is that, with this choice for angu-
larity in the presence of a massive gluon, and in these
variables, the �-function defining the curves of constant
angularity in Eq. (21) does not depend on �, a feature that
will be exploited below.
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B. Exponentiation and Borel Representation

The SDG cross section summarizes the probability that
one dressed gluon is emitted. Upon summing over prob-
abilities that many such dressed gluons are emitted inde-
pendently, one obtains the exponentiated expression
[17,18]

1

�tot
~���; a�

��������DGE
� exp

"Z 1

0
d	a�e

��	a � 1�

�

�
1

�tot

d�
d	a

��������SDG

�#
: (22)

Here we have extended the integration region beyond the
support of the SDG cross section. This, however, does not
change the result in the region of interest, at small 	a or
equivalently at large �. Inserting Eqs. (13) and (17) into
Eq. (22), one may write down an explicit Borel represen-
tation for the exponent, although at this point one is still
dealing with a five-fold integral. One finds

ln
�
1

�tot
~���; a�

	
DGE

�
CF
2�0

Z 1

0
du
�
Q2

�2
QCD

�
�u

�
sin u
 u

�AB�u�
Z 1

0

d�
�
��u

�
Z 	sa

	coa
d	a�e��	a � 1� _F �	a; ��:

(23)

To exchange the order of integration, as done in Eq. (23),
it has been necessary to evaluate the limiting values of
angularity in the phase space region of interest, for a fixed
gluon virtuality �. One finds that for any value of a the
collinear limit of angularity is given by 	coa � ��O��2�,
while the soft limit is 	sa �

���
�

p
�O��� (notice that the

corrections neglected here vanish for a � 0). As shown
below, however, the exact form of these limits is not
important: only the values of the energy fractions of the
quark and of the gluon at the soft and collinear bounda-
ries of phase space are relevant, and they are independent
of the weight 	a, and solely dependent on the kinematics.

The advantage of writing the exponent as in Eq. (23) is
that it is now possible, before performing phase space
integrals, to take the derivative with respect to � of
Eq. (21), thanks to the fact that the �-function defining
	a does not depend on � with our choice of variables. One
may then use the �-function to perform trivially the 	a
integral. Discarding terms that do not contribute to
Sudakov logarithms, we can write the Borel representa-
tion of the exponent as

ln
�
1

�tot
~���; a�

	
DGE

�
CF
2�0

Z 1

0
du
�
Q2

�2QCD

�
�u

�
sin u
 u

�AB�u�B�u; �; a�; (24)
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with the Borel function B�u; �; a� given by

B�u; �; a� �
Z 1

0
d���u

Z ��
�

p

�
d,

(Z ,=��1

0
d-

1

,2�1� -�2

�

�
exp

�
��, �2�a�=2

-a=2

1� -
�1� -1�a�

�
� 1

	

�

�
2

�,
�

2

,2

��
exp

�
���,�a=2

�
,
�
� 1

�
a=2

�

�
1�

�
,
�
� 1

�
1�a

��
� 1

	)
: (25)

The factors of �1 in Eq. (25) are due to virtual correc-
tions. They contribute terms independent of a, and are
thus identical to the thrust [17,18]. They do not need to be
considered anew. We will now concentrate on the contri-
butions associated with real gluon emission, labelled in
the following by an additional subscript, BR�u; �; a�.

It is possible to arrive at a one-dimensional integral
representation of BR�u; �; a�. First we perform the inte-
gration over , in the first term of Eq. (25), and change
variables from , to - � ,=�� 1 in the second term.
Finally, integrating over � results in the following expres-
sion

BR�u;�;a� ��
1

u

Z 1

0
d-�1�-�2u

�
2

1�-
�

2

�1�-�2

�
1

1� u
1

�1�-�3

	
1F1

�
�

2u
2� a

; 1�
2u
2�a

;

��-a=2
1�-1�a

�1�-�2�a=2

	
�O

�
1

�

�
; (26)

where 1F1 is the confluent hypergeometric function, also
known as Kummer’s function of the first kind, defined by
[31]

1F1��; �; z� �
X1
k�0

���k
���k

zk

k!
; (27)

where the Pochhammer symbol is defined as

���k � ���� 1� . . . ��� k� 1� �
 ��� k�
 ���

: (28)

Clearly, Eq. (26) cannot be evaluated directly.
Nevertheless, in the physically interesting limits, the
soft and collinear region of phase space, results in closed
form can be obtained, and from these results the form of
power corrections can be inferred. Before discussing the
results for general a, however, we pause to note that we
can test Eq. (26) by considering the case of the thrust,
a � 0, where the answer is known [17,18]. For a � 0,
indeed, Eq. (26) can be explicitly integrated. From the
resulting expressions one can see that only the factor
2=�1� -� in the square bracket of Eq. (26) contributes
in the soft limit, whereas the remaining contributions are
-6
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of purely collinear origin. The final result for BR�u; �; 0�
is

BR�u; �; 0� � �2u ��2u�
2

u
� �u ��u�

�

�
2

u
�

1

1� u
�

1

2� u

�
; (29)

up to corrections of order 1=�. Our result is in complete
agreement with Refs. [17,18]. Soft contributions produce
singularities at half-integer values of u, corresponding to
power corrections of the form ��QCD�=Q�

p; collinear
contributions have poles at integer u, giving power cor-
rections behaving as ��2

QCD�=Q
2�p. We also note that the

result in Eq. (29) is infrared safe at leading power. In
other words, the poles at u � 0 (corresponding to Q0)
cancel between the soft and the collinear contributions.
We will verify this key property of infrared safety also
for general a.
IV. THE PATTERN OF EXPONENTIATED
POWER CORRECTIONS

A. Power Corrections From Soft Radiation

We now turn to the soft contribution for general a,
which is the source of the scaling in Eq. (9). In the region
of phase space corresponding to soft emission one has
, �

���
�

p
, so that - is large, behaving as 1=

���
�

p
. In this

region, we will first evaluate Eq. (26) by making use of
an asymptotic expansion for the Kummer function. Then
we will go back to the characteristic function F �	a; ��
and evaluate it in the same limit, to trace the contribu-
tions that display scaling back to the matrix element.

To treat the soft limit, we can use the following integral
representation of the confluent Kummer function [30],

1F1��;�;z� �
 ���

 ��� �����

Z 1

0
dteztt��1�1� t������1:

(30)

We then see that the complicated argument of the
Kummer function in Eq. (26) appears only in the expo-
nent, and can be expanded for large - and �, with �=-
held fixed. One finds

exp
�
��t-a=2

1� -1�a

�1� -�2�a=2

	
� exp

�
�
�t
-

	
� . . . : (31)

The soft contribution then simplifies considerably, and
becomes
094010
BsoftR �u; �; a� �
2

2� a

Z 1

0
d-

Z 1

0
dt e��t=-t�2u=�2�a��1

� �1� -�2u
�

2

1� -
�

2

�1� -�2

�
1

1� u
1

�1� -�3

	
�O

�
1

�

�
: (32)

Since we are interested in the large - limit, clearly at
leading power only the first term in the bracket of Eq. (32)
contributes, while the remaining two terms are sup-
pressed by powers of 1=�. The integral can be performed,
and one finds that the final answer for the soft contribu-
tion is

BsoftR �u; �; a� �
1

1� a
�2u ��2u�

2

u
�O

�
1

�

�
: (33)

Comparing this with the case for a � 0, Eq. (29), we see
that we recover exactly the prediction of Eq. (9). We have
thus confirmed the result of [23], obtained there by ana-
lyzing the resummed expression.

B. An Alternative Derivation Of The Scaling Rule

To perform the integrations leading to Eq. (33) for
generic a, it has been necessary to make use of some
special function technology. This technology may ob-
scure the physics underlying the simple scaling, and in-
deed the result of Eq. (33) may appear somewhat
surprising, in view of the fact that, for example,
Eq. (32) still has an overall factor of 2=�2� a�, corre-
sponding to the scaling of leading logarithms but not to
the scaling power corrections. It is thus instructive to
recover the result by going back to the characteristic
function, Eq. (21), and identifying the origin of the terms
responsible for the leading soft contribution.

The first observation to simplify Eq. (21) concerns
phase space. As observed before, the Sudakov region
corresponds to a neighborhood of the upper limit of the
- integration range, whereas the lower limit does not
contribute to logarithmic enhancements and can be
changed. To simplify the calculation, we can, for ex-
ample, take as a lower limit - � 0, as was already done
in Eq. (25). The expression for F becomes then slightly
more manageable by changing variable from - to ! �
1� -. One finds

F �	a; �� �
Z 1=

��
�

p

1
d!

Z ��
�

p

�!
d,

1� ,
,

�
�1� , � ��2

!�1� , � �!�

�
�, �!� 1�2

!3�1� , � �!�
�

�

,!2

�
�,

�1� , � �!�2

	
��	a � ,1�a=2fa�!�	; (34)
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where we define

fa�!� � �!� 1�a=2
1� �!� 1�1�a

!
: (35)

Notice that f0�!� � 1, which of course simplifies things
considerably for the thrust. For any a, the , dependence
in the �-function is sufficiently simple to be used to
perform the , integration, yielding a rather cumbersome
expression, which however has some interesting features.
One finds

F �	a;�� �
2

2�a
1

	a

Z 1=
��
�

p

1

d!
!

�1� �,a�
�
�1� �,a� ��

2

�1� �,a� �!�

�
� �,a�!� 1�2

!2�1� �,a� �!�
�

�
�,a!

�
� �,a!

�1� �,a� �!�
2

	

� �� �,a� �!��
� ���
�

p
� �,a

�
; (36)

where

�, a �
�
	a

fa�!�

�
2=�2�a�

�
�!	a�2=�2�a��!� 1���a=�2�a��

�1� �!� 1�1�a	2=�2�a�
:

(37)

Several observations help disentangle Eq. (36). First, the
second �-function is not relevant to the logarithmic be-
havior and can be neglected. Its effect would be to split
the integration range for ! in two subintervals, however
all leading contributions come from neighborhoods of the
upper and lower limits of integration. A second important
point is the fact that the leading singularity in 	a is now
explicitly factored out. One can then evaluate the integral
to leading power in 	a. The constraint imposed by the
first �-function can also be considerably simplified. The
integral, in fact, has support on the region defined by

	a
�1�a=2

�

�
!

!� 1

�
�a=2

�1� �!� 1�1�a	: (38)

This constraint cannot be solved exactly for !. One
notices, however, that in the physical region, � � 	a ����
�

p
, and for a � 0, the left hand side of Eq. (38) is a

parametrically large number. Within the integration
range, on the other hand, the right hand side becomes
large only near the boundaries, as !! 1 or as !! 1.
One can then solve the �-function constraint in these two
limits, obtaining respectively

!<!� �

�
	a

�1�a=2

�
1=�1�a�

; !! 1 : (39)

and

!>!� � 1�
�1�2=a

	�2=aa

; !! 1: (40)

The result of these manipulations is that the integration
region in Eq. (36) shrinks at both boundaries, with both
094010
integration limits now dependent on 	a. Since soft con-
tributions arise from the region of large !, we will
concentrate on Eq. (39), although similar arguments
could be used with Eq. (40). This will be sufficient to
recover the scaling rule.

To complete the calculation, we must now approximate
the matrix element. To this end, note that for large ! one
can approximate Eq. (37) by

�, a � 	2=�2�a�a !a=�2�a� � 1: (41)

One sees that �,a is a small number in the relevant range of
a, and we can expand the integrand of Eq. (36) around
�,a � 0. The resulting soft approximation of the charac-
teristic function is

F �	a; ��jsoft �
2

2� a
1

	a

�
Z !� d!

!

�
2�

2

!
�

1

!2 �
�

�	a!�
2=�2�a�

	
:

(42)

The integration can now be performed and compared
with the result for the thrust. At large ! the dominant
contribution clearly comes from the first term in the
square bracket. Comparing with the case a � 0, we see
in fact that, while all terms contribute to the Sudakov
limit, the last three terms give subleading corrections
associated with collinear radiation. This remains true
for generic a, as noted in the following subsection.
Concentrating on the first term, we can finally see how
the scaling rule arises in the context of DGE. The only
term in the cross section contributing in the soft limit is,
as might be expected, the logarithmic integral over the
bremsstrahlung gluon spectrum. The gluon mass then acts
as an infrared cutoff on this integral. The power of � in
the upper limit of integration !� is precisely the one
required to cancel the overall factor of 2=�2� a�, and to
replace it with the scaling factor of Eq. (9). This precise
power arises uniquely from the definition of angularity, as
expressed by the �-function in Eq. (34), and can easily be
traced backto the exponential weight given to pseudora-
pidity in Eq. (1). The final result in the soft limit is simply

F �	a; ��jsoft � �
1

1� a
2

	a
ln���; (43)

where subleading collinear contributions and terms inde-
pendent of �, which do not contribute to the logarithmic
behavior, have been omitted. Power corrections of col-
linear origin can be treated similarly, giving results con-
sistent with the ones outlined in the following subsection.
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C. Power Corrections From Collinear Radiation

At this point we have various methods at our disposal
to analyze power corrections of collinear origin. We can,
for example, complete the analysis of Section IVB, in-
cluding the effects of the lower limit of integration, and
then inserting the results in the Borel exponent.
Alternatively, we can go back to Eq. (26) and study it in
this limit. Collinear power corrections arise at large �,
but small -. In this limit, Eq. (26) yields

Bcoll:R �u; �; a� �
2

2� a
 
�
�

2u
2� a

�
�2u=�2�a�

�
Z 1

0
d--�a=�2�a�	u�1� -���a=�2�a�	u

� �1� -1�a�2u=�2�a�
�

2

1� -
�

2

�1� -�2

�
1

1� u
1

�1� -�3

	
�O

�
1

�

�
: (44)

We see immediately that collinear contributions are sup-
pressed by noninteger powers compared to the leading
soft piece, as found above in the derivation of Eq. (9). This
noninteger power behavior can also be seen from
Eq. (44), which has singularities at noninteger u due to
the  -function, and further singularities due to the inte-
gration over -, which can be readily performed for any
specific value of a. For generic a, the leading poles on the
positive real u axis can also be determined by studying
the integrand of Eq. (44) in the limits of large and small
-. Determining the full analytic structure of Eq. (44) as a
function of a is, however, considerably more difficult. In
the case when a is a rational number, we have been able to
obtain a closed expression in terms of generalized hyper-
geometric functions pFq. The detailed expressions are
listed in the Appendix. Since all methods give consistent
results, we will just summarize here the structure of poles
on the positive real axis of the Borel variable u, and we
will outline the corresponding pattern of power
corrections.

First, let us note that our complete result for the Borel
function B is infrared-safe, as it must. In fact, as was the
case for the thrust, the poles at u � 0 cancel between soft
and collinear contributions. To see this, note, for example,
that the intricate expression in Eq. (A12) simplifies at u �
0 to

Bcoll:R �u� 0; �; a� � ��2=�2�a�	u 
�
�

2

2� a
u
�

�
4

2� a
 
�
�
2�1� a�
2� a

u
�
; (45)

where we have suppressed terms nonsingular at u � 0.
This clearly cancels against the contribution of Eq. (33) at
u � 0, as expected.
094010
Next, we note that Eq. (44) appears to have an explicit
pole at u � 1, which would correspond to a correction of
order O����QCD=Q�2	. This pole, however, is cancelled
by the explicit factor of sin u in Eq. (23), as was the case
for the thrust (where power corrections of this form are
present only as an effect of the  -functions in Eq. (29)).

The general structure of poles in u, for rational a, can
be deduced from Eq. (A12) in the Appendix. There are
several infinite towers of poles. From Eq. (44) we can
directly read off the first pole in each tower. We find
singularities at

u � u1 �
2� a
2

; u � u2 � �
2� a
a

;

u � u3 �
1

2

2� a
1� a

:
(46)

Recall that a � 0 in the range of validity of our ap-
proach. The crucial fact here is that all these singularities
are accompanied by a common factor of �2u=�2�a�, as seen
in Eq. (44). When combined with the locations of the
poles in Eq. (46), we see that all collinear power correc-
tions are expressed in terms of a single combination of �
and of the scale Q, namely ���QCD=Q�2�a, possibly
further raised to a noninteger power. This result agrees
with the estimate extracted for the resummation,
Eqs. (10) and (11), although the detailed pattern of sub-
leading singularities is different. We conclude that col-
linear power corrections are suppressed as predicted from
resummation, and are expected to become important only
for extreme values of the angularity 	a, 	a �
O��QCD=Q�

2�a. The suppression grows as a becomes
large and negative, although numerically the effect could
be partly compensated by the fact that some of the
corrections may be further raised to small noninteger
powers, of order 1=�1� a�.

It is also important to note that the intricate structure
of towers of subleading poles arising from Eq. (A12) is
not as model-independent as the leading poles connected
to soft radiation. For example, a different choice for the
massive definition of angularity, Eq. (19), might kine-
matically generate noninteger power corrections of com-
parable size. We emphasize, in any case, that the leading
structure expressed by Eq. (33) is unaffected.
Furthermore, we believe that the parametric dependence
of collinear power corrections on the ratio
���QCD=Q�2�a, which is found via resummation, and
confirmed by our DGE analysis, is a stable feature, sug-
gesting that the scaling rule should hold with increasing
precision for negative a.
V. CONCLUSIONS

In this work we have verified that the universal scaling
of the leading power corrections within the class of
angularities, discovered in Ref. [23] from soft gluon
-9
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resummation, is unchanged when, in addition to large
Sudakov logarithms, also renormalon enhancements are
taken into account. Furthermore, we have been able to
determine the form of subleading corrections within a
specific scheme to treat massive partons. These correc-
tions, of collinear origin, are suppressed by noninteger
powers of the hard scale relative to the leading ones that
originate from soft radiation. Different models of these
collinear corrections further suggest that the relative
suppression grows as the parameter a becomes large
and negative. A detailed phenomenological study along
the lines of Refs. [17,18] could help to further constrain
the nonleading effects, and would be necessary for a
comparison with experiment. We defer such a study to
future work, due to the lack of corresponding experimen-
tal data.

Assuming subleading corrections are negligible, as
indeed our results imply, the scaling allows to predict
the distributions of the whole class of angularities, in-
cluding nonperturbative corrections, in terms of a single
shape function, which can in principle be determined
from data by considering a specific choice of the parame-
ter a, for example, the thrust, a � 0. Since there are no
free parameters, an experimental determination of distri-
butions for other values of a would certainly give valuable
information about the properties of nonperturbative cor-
rections. Also, since the perturbative cross section has a
scaling behavior with a different from the nonperturba-
tive shape function, comparison of theory and experiment
might help to disentangle corrections due to missing
higher-order perturbative information from power cor-
rection effects. An experimental test of scaling would
determine to what extent the boost invariance of soft
radiation in the two-jet limit, which is established at the
perturbative level, also applies to nonperturbative effects.
We hope therefore that an analysis of experimental data
for the class of angularities will be made in the near
future.
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APPENDIX: EVALUATION OF THE
COLLINEAR CONTRIBUTION

Here we sketch the evaluation of the collinear contri-
bution to the DGE cross section for rational a, that is, we
consider the case

1� a �
p
q
; p; q positive integer; p � q: (A1)

This is sufficient for our purposes, since any irrational
094010
number can always be well approximated by a rational
one.

The collinear limit is equivalent to the limit in which
�! 1 faster than - (although - varies between 0 and 1).
In this limit the collinear contribution is given by
Eq. (44). In the following we will abbreviate Eq. (44) by

Bcoll:R �u; �; a� �
2

2� a
 
�
�

2u
2� a

�
�2u=�2�a�

X3
m�1

cmIm;

(A2)

where

Im �
Z 1

0
d--�a=�2�a�	u�1� -���a=�2�a�	u�m

� �1� -1�a�2u=�2�a� (A3)

c1 � 2; c2 � �2; c3 �
1

1� u
: (A4)

We use the Mellin-Barnes representation of �1�
-1�a�2u=�2�a�, a � 1� p=q,

�1� -p=q�2qu=�p�q� �
1

2 i

Z
C
d�-�p=q

�
 ���� ��� 2qu

p�q�

 �� 2qu
p�q�

: (A5)

The contour C runs along the imaginary axis, to the
left of Re��� � 0. With this we can rewrite Eq. (A3) in
terms of p and q as

Im �
Z
C

d�
2 i

 ���� ��� 2q
q�p u�

 �� 2q
q�p u�

�
 �m� 1� p

q �� �1�
�q�p�
q�p u�

p
q ��

 �m� �q�p�
q�p u�

: (A6)

We change variables from � to ~� � �=q, with ~C the
contour in the new variable, and use the following prop-
erties of the  -function [30,31]:

 �nz� � nnz�1=2�2 ��1�n�=2
Yn�1
k�0

 
�
z�

k
n

�
; n integer;

(A7)

 �z� n� �
��1�n �z�
�1� z�n

; (A8)

Res �f ��� b�f���g �
X1
n�0

��1�n

n!
f�� � b� n�; (A9)

where in (A9) the residues of the  -function are taken
with respect to �. This allows us to rewrite (A6) as
-10
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I m �
q�2qu=�q�p�pm�1�u�q�p�=�q�p��2 �2�p�q

 �� 2q
q�p u� �m� q�p

q�p u�

�
Z
~C

d~�
2 i

Yq�1
k�0

 
�
�~��

k
q

�

�
Yp�1
i�0

 
�
�~��

m� 1� i
p

�

�
Yq�1
j�0

 
�
~��

2

q� p
u�

j
q

�

�
Yp�1
h�0

 
�
~��

q� p
�q� p�p

u�
h� 1

p

�
:

(A10)

We now close the contour to pick up the residues at ~� �
2

p�q u�
j
q� n, n integer, where j runs from 0 to q� 1,
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and ~� � � h�1
m � q�p

�q�p�p u� n, where h runs from 0 to
p� 1. We thus have p� q residues, evaluated according
to (A9). After a bit of algebra, using Eqs. (A7) and (A8),
as well as the definition of the Pochhammer symbol (28),
we can rewrite the result in terms of generalized hyper-
geometric functions, which are defined as [31]

pFq�f�1; . . . ; �pg; f�1; . . . ; �qg; z� �
X1
n�0

zn

n!

Qp
i�1��i�nQq
j�1��j�n

:

(A11)
In order to find the poles in u with respect to a, it is
instructive to partially rewrite the result in terms of a
where possible (recall that p � �1� a�q):
Im �
Xq�1
r�0

q1=2�r�2 ��1�q�=2
Yq�1

j�0;j�r

 
�
j� r
q

�
�2�a�qF�2�a�q�1�fAg; fBg; ��1��2�a�q�

 �r� 2
2�a u�

 �� 2
2�a u�

�
 ��1� a�r�m� 1� 2�1�a�

2�a u� �1� u� �1� a�r�

 �m� a
2�a u�

�
X�1�a�q�1

t�0

q1=2�t�1� a��1=2�t�2 ��1��1�a�q	=2

�
Y�1�a�q�1

j�0;j�t

 
�
j� t

�1� a�q

�
�2�a�qF�2�a�q�1�fA

0g; fB0g; ��1��2�a�q�
 �t�m� a

2�a u�

 �m� a
2�a u�

�
 � 1

1�a �t� 1� � 1
1�a

a
2�a u� ��

1
1�a �t� 1� � 1

1�a u�

 �� 2
2�a u�

; (A12)

with the following arguments of the generalized hypergeometric functions

fAg � f�1; . . . ; �q; ~�1; . . . ; ~��1�a�qg fBg � f�1; . . . ; �iji�r�1; . . . ; �q; ~�1; . . . ; ~��1�a�qg

�i � �
2

�2� a�q
u�

r� 1

q
�
i
q
; ~�i � �

2

�2� a�q
u�

r
q
�

m� 2

�1� a�q
�

i
�1� a�q

;

�i � 1�
r� 1

q
�
i
q
; i � r� 1; ~�i � 1�

u
�1� a�q

�
r
q
�

i
�1� a�q

;

(A13)

fA0g � f�0
1; . . . ; �

0
q; ~�0

1; . . . ; ~�
0
�1�a�qg fB0g � f�0

1; . . . ; �
0
q; ~�

0
1; . . . ; ~�

0
iji�t�1; . . . ; ~�

0
�1�a�qg

�0
i �

a
2� a

u
�1� a�q

�
t� 1

�1� a�q
�
1

q
�
i
q
; ~�i �

a
2� a

u
�1� a�q

�
t�m� 1

�1� a�q
�

i
�1� a�q

;

�0
i � 1�

t� 1

�1� a�q
�

u
�1� a�q

�
1

q
�
i
q
; ~�0

i � 1�
t� 1

�1� a�q
�

i
�1� a�q

; i � t� 1:

(A14)
Equation (A12) inserted into Eq. (A2) gives the final
answer for the collinear contribution. For a � 0 or equiv-
alently p � q � 1, we reproduce the collinear part of
(29), of course.

The poles in u can be read off from (A12), using the
properties of the  and hypergeometric functions in-
volved [30,31]. The  -function  �z� has simple poles at
z � �n, n integer, with residues ��1�n=n!, see Eq. (A9),
the hypergeometric pFq (A11) has simple poles only in �j
at �j � �n, n integer, with residues

��1�n

n!
p
~Fq�f�ig; f�1; . . . ; �j�1;�n;�j�1; . . . ; �qg; z�;

(A15)

where p
~Fq denotes the regularized hypergeometric func-

tion
-11
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p
~Fq�f�1; . . . ; �pg; f�1; . . . ; �qg; z�

�
X1
n�0

zn

n!

Qp
i�1��i�nQq

j�1  �n� �j�
: (A16)

This means, that despite its appearance, (A12) has poles
094010
in u only in the  -functions, and in the ~�i and �0
i. Note

that any pole in u at u � 9 is accompanied by a factor of
�29=�2�a�, resulting in general in a contribution of order
O��1=�2�a���QCD=Q�	29.
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