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Decay of axial-vector mesons into VP and P�
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We propose a phenomenological Lagrangian for the decay of the SU�3� nonets of the axial-vector
mesons of JPC � 1��; 1�� into a vector meson and a pseudoscalar constructed with tensor fields for the
vector and axial-vector mesons. The formulation leads to a good reproduction of the different decay
branching ratios and assuming vector meson dominance (VMD) it also leads to good results for the
radiative decay of the a1 into pion and photon, and in agreement with the structure proposed in the
chiral tensor formulation of radiative decay of axial-vector mesons. The two SU�3� parameters and the
mixing angle of K1A and K1B needed to give the physical K1�1270� and K1�1400� resonances are also
determined.
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TABLE I. Nonets of axial-vector mesons.

JPC I � 1 I � 0 I � 1=2

1�� b1�1235� h1�1170�, h1�1380� K1B

1�� a1�1260� f1�1285�, f1�1420� K1A
I. INTRODUCTION

The decay of axial-vector mesons of JPC � 1��; 1��

(nonets associated to the b1�1235� and a1�1260� and
partners, respectively, (see Table I), into a pseudoscalar
(P) and a vector meson (V) has received some attention
from the perspective of quark models [1,2] as well as
using effective Lagrangians of the strong interaction [3–
11]. Much of the work has been done in SU�2� [3,6,8–10]
and general structures have been developed. In particular,
an interesting formulation develops starting from chiral
Lagrangians of pseudoscalar mesons assuming a gauge
nature for the vector fields and introducing them through
covariant derivatives [4–9]. Two main lines of work have
developed using the formalisms of hidden symmetry [6]
and Yang Mills [4] and connections can be done between
them [7,12]. Work has also been done in the SU�3� sector
[4,5,7,11], although it has been applied mostly to the
SU�2� sector, particularly to the study of the a1 ! 
�
decay.

In most of the works the vector field formalism for the
vector mesons is used. There is another way to deal with
spin-1 particles assigning them an antisymmetric tensor
field [13,14]. The main difference between the tensor and
vector field formalisms stems from the difference in the
vector meson propagator using tensor fields. By introduc-
ing local terms and with basic assumptions of vector
meson dominance, the two formalisms were shown to
be equivalent up to O�p4� [15] and with only one vector
field (which is not the case studied in the present work).
Further work on the equivalence of the two formalisms,
up to local terms, for general Lagrangians, based on dual
transformations of gauge theories, using path integral
techniques, is done in [16]. The same kind of equivalence
exploring the baryon sector was seen in [17].

The tensor formalism has proved practical in problems
of chiral theory in which the vector mesons are explicitly
used in the Lagrangians in order to study properties of
pseudoscalar meson interaction [18] and pseudoscalar
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form factors [19–21], since the vector mesons are genuine
resonances which remain in the large Nc limit [18,22],
unlike the light scalar mesons which are dynamically
generated by the meson-meson interaction itself [18,23].
In chiral dynamical approaches, like the one of [18], they
appear as poles in the driving term of the interaction. The
use of the tensor formalism in this case is useful to avoid
doublecounting of terms that the lowest order Lagrangian
would already contain should one use the vector formal-
ism. On the other hand, if one considers the nonabelian
anomaly, the Lagrangian accounting for it, obtained from
the gauged Wess-Zumino term [24,25], is naturally writ-
ten in terms of vector meson fields in the vector repre-
sentation although, as suggested in [16], it could also be
represented in terms of tensor fields. This anomalous
Lagrangian accounts for processes which do not conserve
intrinsic parity, but this is not the case in the axial-vector
decay into vector and pseudoscalar.

The Lagrangian that we use in the present work is also
written in terms of tensor fields. However, for the purpose
of evaluating the A! VP decays, which is the main aim
of the present work, using the tensor fields, or the analo-
gous @�V� � @�V� combination of vector field, is equiva-
lent since the Lagrangians are only used at tree level. We
shall see a practical justification for the use of the tensor
representation, since the use of this formalism, together
with the vector meson dominance hypothesis to couple
vector mesons to photons, leads to a gauge invariant
amplitude in the present case which agrees with the
structure and findings for the radiative decays of the a1

axial-vector meson in the chiral formalism of [14]. This
would not be the case using the straight vector formalism.
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The main motivation for the present study is that
evidence is coming that the AVP vertices play a relevant
role in physical processes like radiative � decay [26] and
J=� decays [27,28] through sequential mechanisms in-
volving the exchange of vector mesons. These mecha-
nisms were shown to be important in radiative decays of
!, 
, � in [26,29,30]. The works of [26–28] came to
show that the sequential mechanism involving the ex-
change of axial-vector mesons also play a relevant role in
these reactions. With these problems in mind, it becomes
more useful to have at hand a Lagrangian which combines
simplicity, wide applicability, and accuracy. At the same
time, most of the work done, for instance those derived in
a chiral formalism [3–11], pay attention to the a1�1260�
meson, while the b1�1235� has received much less atten-
tion. However, both the a1 and the b1 mesons and their
SU�3� partners appear on an equal footing in the physical
processes which we mentioned before. In order to con-
struct the needed Lagrangian, satisfying the mentioned
requirements, we will assume SU�3� symmetry and con-
sider parity and charge conjugation of the particles. One
then obtains two structures involving the commutator
and anticommutator of the SU�3� matrices associated to
the V and P fields. Although SU�3� breaking terms could
also be present, the results with SU�3� symmetry prove to
be accurate enough within present experimental uncer-
tainties in the data. SU�3� is broken anyway through the
use of the physical masses. Our Lagrangian contains only
one free parameter for the a1 (and SU�3� partners) and
another one for the b1 (and SU�3� partners) decays. This
is in contrast with other models which already contain
three or more parameters for the a1 decay [3–5,7,9–11].
In spite of its simplicity we shall see that our Lagrangians
lead to good results for the partial decay widths.

Another issue in our study, implying a new free pa-
rameter, is the mixing angle between the strange members
of the nonets, the K1A and K1B, necessary to get the
physical K1�1270� and K1�1400� resonances. The experi-
mental fact that the K1�1270� decay into 
K is much
larger than into K��, and that the K1�1400� decay into
K�� is much larger than into 
K, is a clear indication that
there is a large mixing between the strange members of
the SU�3� nonets, because SU�3� would imply K1A and
K1B to have a similar amplitude for both decay modes.
Nevertheless, there is no consensus about the origin of
this mixing angle. In [31], a dynamical origin was specu-
lated through the coupling of the two jK1> states to their
decay channels, suggesting the mixing angle to be �	
45o provided the K1A and K1B states are degenerate before
mixing. Within quark models, a possible explanation
comes from the spin-orbit interaction if mq � mq.
Concerning the determination of the mixing angle,
most of the works have been based on the fit to the K1

decays into 
K and K�� and/or to the ratio B
�!
��K1�1270��=B
�! ��K1�1400��, both using symmetry
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arguments to relate the amplitudes or either using quark
models. Using K1 decay data, the fit of [32,33] found an
angle of 	45

�
, from data as of 1976, and in [34] the

solutions 35�, 45�, or 57� were found, but the 45� solution
was discarded when considering mass formulas from
quark models, which can relate the masses between the
I � 1=2 members with the mixing angle. In this latter
paper also the � decay was considered to refine the results
and the author found that the experimental data preferred
the solution of 35�. However, few years later the experi-
mental results on � decay changed and in the recent work
of [35] both the 35� and 57� angles were shown to be
compatible with the new data. Using relativized quark
models, the authors of [36] found a large uncertain value
of �30

�
& � & 50

�
from the � branching ratio and 45�–

50� from the K1 decays. In [37], using nonrelativistic
constituent quark models to obtain relations between
masses, the authors found 35o & � & 57o. In the work
of [38], the 3P0 model was used, which is based in the
assumption that the strong decays take place through the
production of a q q pair with vacuum quantum numbers,
and from the K1 decays a mixing angle 	45o was ob-
tained. Finally, fitting to charmonium and orthocharmo-
nium decays, in [39], a valid range for the mixing angle
between 30� and 60� was obtained. The previous account
summarizes the status of the knowledge on this mixing
angle. The previous works do not use in the fits the data of
other A! VP decays apart from the K1’s, neither use
information of the dynamics of the amplitude which can
be acquired from a suited Lagrangian. In the present work
we retake the issue, in view of the accuracy that our
Lagrangians provides, and we apply our AVP
Lagrangian to get the maximum obtainable information
on the mixing angle from the A! VP data, and also the
a1 ! �� decay. We will use not only the K1 decay data
but also the known available experimental information of
other A! VP decays which, although do not depend on
the mixing angle, they depend on the couplings of the
Lagrangians and consequently influence the global fit.
The present study has also the advantage of considering
the dynamics given by our Lagrangians, not only the
SU�3� relation between the couplings.
II. THE MODEL

For the Lagrangians accounting for the AVP vertices,
where A symbolizes the axial-vector mesons, we propose
the following expressions

LBVP � ~DhB��fV
��; Pgi

(1)

LAVP � i ~FhA��
V��; P�i

where hi means SU�3� trace and the i factor in front of the
~F is needed in order LAVP to be hermitian.
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In Eq. (1) P is the usual SU�3� matrix containing the
pseudoscalar mesons and B��, A��, V�� are SU�3� ma-
trices of the tensor fields associated to the axial-vector
mesons of the b1 and a1 nonet and the 
 vector meson
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nonet, respectively. Assuming the same SU�3� mixture
for the singlet and the I � 0 of the octet that one has for�
and !, the vector meson and axial-vector meson SU�3�
matrices B��, A��, V�� are given by
B�� �

1��
2

p b0
1 �

1��
2

p h1�1170� b�1 K�
1B

b�1 � 1��
2

p b0
1 �

1��
2

p h1�1170� K0
1B

K�
1B K0

1B h1�1380�

0
BBBB@

1
CCCCA
��

;

A�� �

1��
2

p a0
1 �

1��
2

p f1�1285� a�1 K�
1A

a�1 � 1��
2

p a0
1 �

1��
2

p f1�1285� K0
1A

K�
1A K0

1A f1�1420�

0
BBBB@

1
CCCCA
��

;

V�� �

1��
2

p 
0 � 1��
2

p ! 
� K��


� � 1��
2

p 
0 � 1��
2

p ! K�0

K�� K�0 �

0
BBB@

1
CCCA
��

(2)

Similarly, the SU�3� matrix, P, for the pseudoscalar mesons, assuming the standard #� #0 mixing [40], is given by

P �

1��
2

p �0 � 1��
3

p #� 1��
6

p #0 �� K�

�� � 1��
2

p �0 � 1��
3

p #� 1��
6

p #0 K0

K� K0 � 1��
3

p #�
��
2
3

q
#0

0
BBB@

1
CCCA: (3)
1There are misprints in the last term of those equations: a
commutator symbol in [4,7] and an extra � field in [7] are
missing [41].
In Eq. (1) the fieldsW�� � A��, B��, V�� are normalized
such that [14]

h0jW��jW;P; &i �
i
MW


P�&��W� � P�&��W�� (4)

Equation (4) is illustrating because it tells us that at tree
level we would obtain the same results using the combi-
nation @�W� � @�W� instead ofW��, withW� satisfying
the Proca equation, i.e., vector formalism for the spin-1
fields.

The structure of the Lagrangians of Eq. (1) is SU�3�
invariant and preserves parity, P, and charge conjugation,
C.

Should we have used vector fields without derivatives
instead of tensor fields in Eq. (1), the structure that would
appear would be the minimal one, in the sense of number
of derivatives, satisfying the SU�3�, parity and charge
conjugation symmetries. For the case of the 1�� nonet
it would be of the form

hA�
V
�; P�i; (5)

which was already derived in [6] and applied to the SU�2�
sector. This structure appears also naturally in the chiral
formalism of [4,5,7] in addition to other nonminimal
terms (see1 Eq. (3.9) of [4] or (2.59) of [7]).

h�@�V� � @�V��
A�; @���i;

h�@�A� � @�A��
V
�; @���i;

h�@�A� � @�A��
�@
�V� � @�V��; ��i:

(6)

A particular combination of the first two terms in Eq. (6)
also appears in the chiral formalism of [8]. The last term
of Eq. (6) corresponds to our Lagrangian of Eq. (1) for
tree level calculations, as we discussed before, given the
matrix element of Eq. (4). One can prove that the first and
second terms of Eq. (6) can be cast in terms of the third
one and the one of Eq. (5) by using part integration. This
reduces the freedom in the Lagrangian, at the level of up
to two derivatives, to our tensor structure plus the vector
one of Eq. (5). Note, however, that the use of derivatives in
the present case does not necessarily mean higher orders
-3



TABLE II. )AVP for the b1, a1, h � h1�1170�, h0 � h1�1380�,
f � f1�1285� and f0 � f1�1420� decays into VP. The coeffi-
cients involved in the decay of b1, h and h0 have to be multi-
plied by ~D and those involved in the decay of a1, f and f0 by i ~F.
The ��� symbol over some K means anti-K when correspond-
ing.

b�1 ! K�K b0
1 ! K��K� b0

1 ! K�0K0

1 1��
2

p �1��
2

p

b1 ! !� b1 ! 
# b1 ! 
#0���
2

p
2��
3

p

��
2
3

q
a�1 ! 
��0 a�1 ! 
0�� a0

1 ! 
���

�
���
2

p
�

���
2

p
�

���
2

p

a�1 ! K��K0
���

a�1 ! K�0
���

K� a0
1 ! K��K�

�1 �1 � 1��
2

p

a0
1 ! K�0K0 a0

1 ! K�0K0

1��
2

p �1��
2

p

h! 
� h! !# h! !#0���
2

p
2��
3

p

��
2
3

q
h! K�K
1��
2

p

h0 ! K�K h0 ! �# h0 ! �#0

1 �2��
3

p 2
��
2
3

q
f ! K��K� f ! K�0K0 f ! K�0K0

� 1��
2

p �1��
2

p 1��
2

p

f0 ! K��K� f0 ! K�0K0 f0 ! K�0K0

�1 1 �1
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in a perturbation expansion in a small momenta, since
derivatives on the vector fields can produce masses of the
massive vectors. As mentioned in the introduction, we
shall use only the structure of Eq. (1), by means of which
TABLE III. )AVP for the decay of K1�1270� i
s � sin���. The coefficients for the decays of th
�F and interchanging s$ c.

K�
1 ! 
0K� K�

1 ! 
�K0
���

� 1��
2

p �c ~D� s ~F� ��c ~D� s ~F�

K�
1 ! K�! K0

1 ! K0!

� 1��
2

p �c ~D� s ~F� 1��
2

p �c ~D� s ~F�

K�
1 ! K�� K0

1 ! K0�

��c ~D� s ~F� c ~D� s ~F

K�
1 ! K���0 K�

1 ! K�0
���

��

� 1��
2

p �c ~D� s ~F� ��c ~D� s ~F�

K�
1 ! K��# K0

1 ! K�0#

� 2��
3

p s ~F 2��
3

p s ~F

K�
1 ! K��#0 K0

1 ! K�0#0

�
��
3
2

q
�c ~D� 1

3 s
~F�

��
3
2

q
�c ~D� 1

3 s
~F�
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a good reproduction of the data is obtained in the SU�3�
sector and which naturally leads, via VMD, to a gauge
invariant A! V� amplitude as we shall see.We shall also
discuss what difference one expects for the A! VP
decay by using the vector term alone of Eq. (5).

The width for the decay A! VP or B! VP is given
by

�A!VP �
q

8�M2
A

X
jtj2 (7)

where q � 1
2MA
)1=2�M2

A;M
2
V;M

2
P� is the momentum of the

final particles in the axial-vector rest frame and the t
matrix is given by

tA!VP �
�2)AVP
MAMV

�p0 � p&0 � &� &0 � p& � p0� (8)

where p0,&0, and p,& are the momenta and polarization
vectors of the axial-vector and the vector mesons, re-
spectively. The )AVP are the coefficient of the AVP vertex
obtained using the Lagrangians of Eq. (1).

The resulting decay width is

�A!VP �
j)AVPj

2

2�M2
A

q


1 �

2

3

q2

M2
V

�
: (9)

The coefficients )AVP in Eq. (9) for the different reactions
are given in Tables II and III. The momentum structure of
Eq. (9), with the weight 2=3 in the q2=M2

V term, is the
same as the one obtained in [8]. Later on we shall relate
the coefficients )AVP to the pion decay constant, f, and
will see that our expression coincides with the one ob-
tained in [8] for the case a1 ! 
�.

In the case where there is little phase space for the
decay or it takes place due to the width of the particles,
we fold the expression for the width with the mass distri-
bution of the particles as
nto PV. In the coefficients, c � cos��� and
e K1�1400� are the same but changing F !

K
���

0
1 ! 
�K� K

���
0
1! 
0K

���
0

��c ~D� s ~F� ��� � 1��
2

p �c ~D� s ~F�

K0
1 ! K0!

�1��
2

p �c ~D� s ~F�

K0
1 ! K0�

��c ~D� s ~F�

K0
1

���

! K���� K0
1

���

! K�0
���

�0

��c ~D� s ~F� ��� � 1��
2

p �c ~D� s ~F�

K0
1 ! K�0#
�2��

3
p s ~F

K0
1 ! K�0#0

�
��
3
2

q
�c ~D� 1

3 s
~F�
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�A!VP �
1

�2

Z
dsAdsVIm


1

sA �M2
A � iMA�A

�
Im


1

sV �M2
V � iMV�V

�
�AVP


 �����
sA

p
;

�����
sV

p
�
�

 �����
sA

p
�

�����
sV

p
�MP

�
(10)


 �

where � is the step function, �AVP � j)AVPj2

2�sA
q 1 � 2

3
q2

sV
with q � 1

2
����
sA

p )1=2�sA; sV;M2
P�.

On the other hand for the decay of the K1�1270� and
K1�1400� we have to assume a mixing of the type

K1�1270� � cos���K1B � i sin���K1A;

K1�1400� � sin���K1B � i cos���K1A
(11)

where the prescription is taken to have � comparable to
the definition in [32–34,36,38], where no explicit i factor
in the Lagrangian of Eq. (1) is considered, which we
wrote here explicitly in order to have a hermitian
Lagrangian.

The coefficients in Eq. (9) for the decay of the
K1�1270� and K1�1400� into different channels are writ-
ten in Table III.
III. RESULTS AND DISCUSSION

Considering the values given in the particle data group
(PDG) table [42] for the decay widths (see Table IV), we
carry out a best fit to these data to obtain the ~D, ~F and �
parameters.

In Table IV we show the decays for which there are data
for the branching ratios with their errors. For the K1

decays, the ratios taken are as in the PDG [42]. In the
case when the decay has been seen but no numbers are
provided in the PDG, we assume the value �50 � 50�% for
the branching ratio, implying that in the fit we put as
experimental input that the partial decay width is smaller
than the total width. These data will generally weigh little
in the fit but including them prevents solutions with
partial decay widths for some channels unreasonably
TABLE IV. Reactions considered in the fit to obtain the D, F
and � parameters. The data for the K1 decays are taken from
[42]. For the other reactions there are no explicit data but we
can infer from there an approximate value with a large uncer-
tainty.

Reaction BR % Partial width (MeV)

K1�1270� ! 
K 42 � 6 38 � 10
K1�1270� ! K�� 16 � 5 14 � 6
K1�1270� ! !K 11 � 2 10 � 3
K1�1400� ! K�� 94 � 6 164 � 16
K1�1400� ! 
K 3 � 3 5 � 5
K1�1400� ! !K 1 � 1 1:7 � 1:7

b1 ! !� 75 � 25 110 � 40
f0 ! K�K 50 � 25 28 � 14
h! 
� 50 � 50 180 � 180
a1 ! 
� 50 � 50 210 � 210
h0 ! K�K 50 � 50 45 � 45
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larger than the total width. In the case where the PDG
gives only a partial decay width as ‘‘dominant’’ with no
number, (b1 ! !�), we have taken for the fit a branching
ratio of �75 � 25�% which allows any value from more
than half to total. In the case where there are two chan-
nels presented as dominant, (f0 ! K�K), we have taken
�50 � 25�% branching ratio for each of these channels.

We observe that the K1�1270� meson decays largely
into K
 with the K�� channel suppressed, while the
K1�1400� decays largely into K�� with the K
 channel
suppressed. This feature is what demands the large mix-
ing between the K1A and K1B. We also see that the a1

decays into 
�, with the !� decay mode forbidden,
while the b1 decays into !�.

As we can see in Table IV, the decays of K1�1270� and
K1�1400� have good experimental data. But the theoreti-
cal expression for these decays manifests certain sym-
metries under some transformation of the parameters:
First of all the theoretical value for the decay is exactly
the same if one interchanges ~D and ~F and changes �!
�=2 � �. The other symmetry is manifested if one
makes the following substitutions: ~D! � sin����������������������

~D2 � ~F2
p

, ~F ! cos���
������������������
~D2 � ~F2

p
and �! arctan



� ~D
~F

�
.

These two symmetries2 lead to four different set of pa-
rameters as mathematically equivalent solutions if one
only considers the K1�1270� and K1�1400� decays, which
are shown in Table V.

These solutions are similar to those found in [34].
These symmetries in the solutions of the fit can be broken
if one introduces other decays which do not depend on �.
The problem is that there are very few of these data in the
PDG, only from a1 ! K�K one could infer a reasonable
fair value for the branching ratio to be used in the fit. But
this reaction is told in the PDG to be controversial and
then we do not use it in the fit.

We next include also in the fit the last five channels of
Table IV, corresponding to ‘‘seen’’ or ‘‘dominant’’ in the
PDG, with prescription for the branching ratios and errors
explained above. The results for the parameters obtained
from the fit are shown in Table VI.

We can see that the results are very similar to those
found in TableV because the uncertainties of the new data
included are very large and weigh very little in the fit. The
main novelty of the new fit is that the solution of � � 42�

in Table V disappears and, as seen in Table VI, it seems to
prefer the solutions �1� and �2� to the one of� � 47�. This
2Apart from these symmetries, typical only for the K1
decays, there is another symmetry in all the A! PV decays
in the global sign of ~D and ~F but with a fixed value for ~D ~F if
the mixing angle � is restricted to be between 0� and 90�.
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1
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1
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FIG. 1. Diagram for the a1 and b1 decay into �� through
vector meson dominance.

TABLE V. Results of the fit to the data including only the
K1�1270� and K1�1400� decays. (dof is the number of degrees of
freedom dof � �#exp. data� � �#parameters�).

~D (MeV) ~F (MeV) � (degrees) ,2=dof

�1250 � 80 1400 � 100 62 � 3 1:394
�1650 � 100 880 � 90 42 � 3 1:394
�1400 � 100 1250 � 80 28 � 3 1:394
�880 � 80 1650 � 100 48 � 3 1:394
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conclusion would be the same one obtained in [34] for
different reasons, since the extra decays evaluated here
were not considered in [34]. In any case we should note
that the precise value of the ,2 function in TableVI is tied
to the way the unknown data have been entered in the fit
(see Table IV) and that, in any case, a fit with a ,2=dof
close to 1 is an acceptable solution.

We now comment on the differences of using the
Lagrangian of Eq. (5) instead of the one of Eq. (1) used
so far. In the vector formalism, see Eq. (5), the amplitude
and width are given by
t � �)AVP&0 � &; �A!VP �
j)AVPj

2

8�M2
A

q


1 �

1

3

q2

M2
V

�
;

(12)
where now ~D and ~F would have a different normalization.
The difference of Eq. (12) with Eq. (9) is a factor 2 in the
q2 term in the bracket. However, this term is reasonable
small in all the decay channels and thus the numerical
differences in the decay rates between the two formalisms
are very small. Later on we shall nevertheless show that
using the tensor formalism leads naturally to a gauge
invariant amplitude for the radiative decay of the a1

resonance, which is not the case if one uses the
Lagrangian of Eq. (5).

Next we pass to study the radiative decay of the a1 and
b1 into ��. We assume vector meson dominance and
hence the mechanism for the decay is represented by
the Feynman diagram of Fig. 1.

The case of the a1 decay proceeds with the exchange of
a 
 meson while the decay of the b1 requires the exchange
of the ! meson. In addition to the Lagrangians which we
have, we need the vector meson-photon coupling which is
given in [14] in the tensor formalism by
TABLE VI. Results of the fit including the data of Table IV.

~D (MeV) ~F (MeV) � (degrees) ,2=dof

�1� �1240 � 80 1380 � 100 62 � 3 0:687
�2� �1330 � 90 1250 � 80 29 � 3 0:746
�3� �980 � 100 1520 � 100 47 � 4 1:207
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L V� � �e
FV
2
)V�V0

���@�A� � @�A�� (13)

with )V� � 1; 13 ;�
��
2

p

3 for V0 � 
0; !;� respectively.
Furthermore one also needs the vector meson propa-

gator in the tensor formalism which is also given in [14]
as

h0jTfW��W
/gj0i � iD��
/

� i
M�2
W

M2
W � P2 � i&


g�
g�/�M2
W � P2�

� g�
P�P/ � g�/P�P
 � ��$ ���

(14)

In view of this, the decay width is given by Eq. (7),
where t is now given by

t �
2)AVP)V�FVe

MAM2
V

�p0 � p&0 � &� &0 � p& � p0� (15)

which exhibits explicitly gauge invariance. Should we
have used the vector couplings of Eq. (5) for the AVP
plus the vector formalism for the vector-photon coupling
of [40], we would have obtained only the term &0 � &
which does not fulfill gauge invariance and is unaccept-
able to represent the process, something that was already
pointed out in [43]. On the other hand, should we have use
Eqs. (1) and (13), replacing W�� by @�W� � @�W� and
using the standard propagator for @�W� � @�W�, (the
same as Eq. (14) except for the contact terms proportional
to �M2

W � P2�), we would have got zero, indicating that
one would have to add contact terms in the vector formal-
ism to make it equivalent to the tensor one, in the line of
the claims made in other works trying to show the
equivalence between the vector and tensor formalisms
[12,15–17].

Using the couplings obtained before for the AVP ver-
tices plus those of the V� vertex, we find for the radiative
decay width of the a1 resonance of 380 � 50 KeV, 320 �
40 KeV or 470 � 60 KeV for the solutions �1�, �2� and �3�
of Table VI respectively, in reasonable good agreement
with the experimental value 640 � 246 KeV. This is not
the case of the b1 decay for which we get a width 32 �
4 KeV, 36 � 5 KeV or 19 � 4 KeV for the solutions �1�,
-6



TABLE VII. Results of the fit including the data of Table IV
and the a1 ! �� decay.

~D (MeV) ~F (MeV) � (degrees) ,2=dof

�1� �1230 � 80 1380 � 90 62 � 3 0:743
�2� �1320 � 90 1270 � 80 29 � 3 0:859
�3� �960 � 90 1540 � 100 47 � 4 1:129
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�2� and �3�, which is too small compared with experiment,
230 � 60 KeV. The reason for this drastic reduction from
the a1 to the b1 is the factor 1=3 of the !� coupling with
respect to the 
� coupling. Since for this reason the
vector meson dominance term is so much reduced with
respect to the case of the a1 decay, it is not surprising that
other mechanisms can also account for this decay chan-
nel. However, the b1 ! �� decay width is still much
smaller than that of the a1, around a factor 3. Such
possible mechanisms would thus be smaller than the
vector meson dominance mechanisms for the case of
the a1 decay, in which case the decay width provided
by the vector meson dominance mechanism should be
relatively accurate as it is the case, accounting for more
than 2=3 of the total a1 ! �� decay width.

It is interesting to establish comparison of the result
obtained here for the radiative decay width of the a1

resonance with those of [14]. This comparison can be
carried out at the analytical level by recalling the struc-
ture of the Lagrangian in [14]

L �
FV
2

���
2

p hA��f
��
� i (16)

where f��� is defined in [14] and provides, in our case, the
pseudoscalars and photon fields. From the Lagrangian of
Eq. (16) one can derive the amplitude for the a�1 ! ���
decay obtaining

t � �
iFAe
fMA

�p0 � p&0 � &� &0 � p& � p0� (17)

where f � 92:4 MeV and e is taken positive. This latter
amplitude can be compared to the one in Eq. (15) using
that for the a�1 ! ��� decay )V� � 1 and )AVP �

�
���
2

p
iF obtaining that

~F �
1

2
���
2

p
FA
FV

M2
V

f
(18)

It is interesting to recall that the FA parameter is
related, through the Weinberg sum rule [44], to the FV

and f parameters by FA �
������������������
F2
V � f

2
q

, and using values of
FV and f from [14], then FA ’ 123 MeV. Using this value
in Eq. (18) one obtains ~F ’ 1800 MeV, to be compared
with the values obtained in Table VI. It is also interesting
to recall that FA is related to the L10 coefficient of the
second order meson chiral Lagrangian [45] through
LV�A10 � �F2

V=4M
2
V � F

2
A=4M

2
A. With the value obtained

in our fit for ~F, and consequently for FA, the same
qualitative agreement obtained in [14] with the empirical
value of L10 holds also here. This allows to relate the
parameter ~F of our effective Lagrangian (Eq. (1)) with
the L10 parameter of the chiral Lagrangians.

Apart from the comparison of the coefficients at the
numerical level, it is also illustrative to compare the
analytical expression of the coefficient of Eq. (18) with
the corresponding one used in [8]. By using the vector
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meson dominance values of [14], FV �
���
2

p
f, FA � f,

MA �
���
2

p
MV , we obtain ~F � M2

V=4f, and considering
the a�1 ! 
��0 � 
0�� and the coefficients of )AVP in
Table II, we obtain, for the coefficient of Eq. (9),

j)a�1 
��0 j2 � j)a�1 
0��j2

2�M2
A

�
M2



16�f2 (19)

which coincides with Eq. (2.22) of [8].
We can also perform another study including the ex-

perimental a1 ! �� decay width into the fit, in which
case we obtain:

With this final set of parameters we can predict the
widths of all the A! VP decay widths not included in
the particle data table. The results for the three possible
solutions of Table VII are shown in Table VIII. We make
predictions for all possible decays, many of them yet
unobserved. The errors quoted are statistical, but large
uncertainties should be assumed in cases where the phase
space is only allowed due to the tails of the resonance
mass distributions through Eq. (10). It is however instruc-
tive to see that all widths predicted are well within the
values of the total width of the decaying particle, which
we have also written in the table for comparison.

Recently, a paper dealing with �! ����� has ap-
peared [46] in which five different structures to account
for the AVP coupling in the tensor formalism have been
derived. Although the structures derived there are for-
mally different to the one we propose, it is easy to see that
at tree level the terms O4 and O5 of Eq. (12) of [46] give
an identical structure for the amplitude to that of our
Lagrangian and so would do a linear combination of O2

and O3 . The O1, however, breaks explicitly SU�3� sym-
metry and hence has no room in our SU�3� symmetric
approach. In practical terms, the results of the present
work indicate that should one use the formalism of [46]
at tree level to deal with A! VP decay, one would obtain
very good agreement with the data by taking, for in-
stance, the O4 term alone. This, of course, affects only
the octet of the a1, not the b1 which we have also studied
here.

IV. SUMMARY

We have addressed the decay of an axial-vector into a
vector and a pseudoscalar meson looking for a
Lagrangian which can reproduce all existing data while
making predictions for all yet unobserved allowed chan-
-7



TABLE VIII. Partial widths obtained for all the A! VP decays with the three different
possible solutions of the ~D, ~F and � parameters. The theoretical errors shown are only due to
the uncertainties in these parameters.

Reaction �exp
tot �MeV� �exp

i �MeV� �i�MeV� �1� �i�MeV� �2� �i�MeV� �3�

a1 ! �� 425 � 175 0:64 � 0:25 0:37 � 0:05 0:31 � 0:04 0:46 � 0:06
K1�1270� ! 
K 90 � 20 38 � 10 48 � 5 46 � 5 47 � 5
K1�1270� ! K�� 14 � 6 10 � 4 8 � 4 6 � 4
K1�1270� ! !K 10 � 3 12:8 � 1:3 12:4 � 1:3 12:6 � 1:4
K1�1400� ! K�� 174 � 13 164 � 16 143 � 14 145 � 14 146 � 17
K1�1400� ! 
K 5 � 5 6 � 4 7 � 4 4 � 4
K1�1400� ! !K 1:7 � 1:7 2:1 � 1:2 2:4 � 1:3 1:3 � 1:2

b1 ! !� 142 � 9 110 � 40 114 � 14 130 � 18 69 � 14
f0 ! K�K 55:5 � 2:9 28 � 14 42 � 5 34 � 4 51 � 6
h! 
� 360 � 40 180 � 180 290 � 40 330 � 50 180 � 30
a1 ! 
� 210 � 210 260 � 30 220 � 30 320 � 40
h0 ! K�K 91 � 30 45 � 45 42 � 5 48 � 7 25 � 5
a1 ! K�K 31 � 4 26 � 3 39 � 5
b1 ! K�K 9:1 � 1:1 10:5 � 1:4 5:6 � 1:1
b1 ! 
# 16 � 2 18 � 3 9:8 � 1:9
b1 ! 
#0 0:81 � 0:10 0:93 � 0:13 0:49 � 0:10
h! !# 17 � 2 19 � 3 10 � 2
h! !#0 2:5 � 0:3 2:9 � 0:4 1:6 � 0:3
h! K�K 17:7 � 2 20 � 3 11 � 2
h0 ! �# 2:2 � 0:3 2:6 � 0:4 1:4 � 0:3
h0 ! �#0 0:43 � 0:05 0:49 � 0:07 0:26 � 0:05
f ! K�K 24:0 � 1:2 3:8 � 0:5 3:2 � 0:4 4:8 � 0:6
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nels involving all the particles of the SU�3� nonets. We
found that a basic Lagrangian involving commutator and
anticommutator of the fields, using the tensor representa-
tion for the vector and axial-vector mesons, was rather
accurate and, at the same time, simple enough to be used
in intermediate steps of more complicated hadronic
processes.

We have also shown that the combination of our AVP
Lagrangian with Vector Meson Dominance leads to an
amplitude for the radiative decay of the a1 into��, which
formally agrees with the one obtained in the chiral for-
mulation of vector meson and axial couplings, relating
the ~F parameter of the AVP coupling to the FV parameter
of the V� coupling in VMD and to the coefficients of the
meson chiral Lagrangians. The tensor formalism pro-
duces small numerical differences in the predictions for
the different decays of the axial-vector mesons with
respect to the vector formalism without derivatives, yet
it leads naturally to a gauge invariant amplitude for the
radiative decay of the a1 resonance while this vector
formalism leads to a noninvariant one. From the studied
strong decays we found three acceptable solutions for the
parameters and the mixing angle of the strange axial-
vectors, with two of them with angles around 30� and
60�, slightly favored with respect the solution around 45�.
This is the maximum information that can be obtained
from all the A! VP present decay data. The present
determination of the mixing angle has the advantage
094006
from previous works of using all the A! VP available
decay data, not only K1 decays, and of considering the
dynamics given by a suitable Lagrangian. Regarding the
prediction for unobserved channels, it is interesting to
observe that all the predicted decay rates are well within
the boundaries of the total decay widths. Since the pre-
dictions of the three different solutions for some channels
are quite different, the measurement of some of them
would be most welcome in order to find out the actual
mixing and the value of the coupling parameters.

The simple form derived for the Lagrangian has made
easier the implementation of mechanisms involving ex-
change of axial-vector mesons which contribute in pro-
cesses of radiative decays of � and J=� which had not
been discussed until recently. With tests of hadronic mod-
els and particularly chiral dynamics been conducted in
physical processes occurring at higher energies, an in-
creasing attention will have to be paid to the role of axial-
vector mesons. The work in the present paper makes this
task easier.
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