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We evaluate the coordinate space dependence of the matrix elements of the commutator of the
electromagnetic and gluon currents in the vicinity of the light cone but at large distances. We found
within the parton model, Doushitzer-Gribov-Lipatov-Altarelli, the resummation approaches to the
small x behavior of deep-inelastic scattering (DIS) processes that an increase of the commutator with
relative distance py as x (py)f(py,y*> = > — r?), where f is increasing with increase of py is the
generic property of QCD at small but fixed space-time interval y?> = > — r> in perturbative and
nonperturbative QCD regimes. We explain that the factor py follows within the dipole model (QCD
factorization theorem) from the properties of Lorentz transformation. The increase of f disappears at
central impact parameters if the cross section of DIS may achieve the unitarity limit. We argue that such
long-range forces are hardly consistent with thermodynamic equilibrium while a unitarity limit may
signal equilibration. Possible implications of this new long-range interaction are briefly discussed.
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L. INTRODUCTION

Commutators of the local currents in the coordinate
space play an important role in the quantum field theory.
In particular, they help to visualize the relationship be-
tween the quantum field theory and statistical mechanics
of equilibrium and nonequilibrium systems. It has been
understood that many properties of deep-inelastic pro-
cesses follow from the operator product expansion. In
particular, the dependence of the product of the local
currents,

(N1ju3)jn(@)INY = (1/y*)> pup,(py)(N10,(0)IN)

+NLT terms
= pup,[F(py,y)/(y*)?] + NLT terms,
(1.1)
on the space-time interval y> = /> — r? unambiguously

follows from this expansion for the leading term (see
review [1]) and from renormalization group. (For cer-
tainty we write formulas for the product of electromag-
netic (e.m.) or gluon currents and neglect by longitudinal
structure functions.) We will show in this paper that the
dependence of operator product on relative distance (py)
at fixed y? as

F(py, y») = (py)f(py, ¥, (1.2)

with f increasing with (py), follows from the basic
properties of QCD.

The actual behavior of the structure functions of the
nucleon at small Bjorken x = Q?/2pq is still a challeng-
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ing question now, as it was 30 years ago. (Here —Q? is
mass® of an incoming photon.) So a variety of the new
approaches to small x phenomena were developed such
as the generalization of the QCD factorization theorem
to the amplitudes of the hard diffractive processes
which justifies the dipole approach [2,3]; the derivation
within the Balitsky, Fadin, Kuraev, Lipatov (BFKL)
approximation [4] of the dipole approach in the large
N, limit; the resummation of the perturbative QCD
(pQCD) series within the Doushitzer-Gribov-Lipatov-
Altarelli (DGLAP) approximation [5]; the next to leading
order (NLO) BFKL approximation and resummation
[6,7]; the McLerran-Venugopalan model [8]; the eikonal
approximation where a “‘potential” is evaluated within
the DGLAP or BFKL approximations [9-11], and the
unitarity bound (blackbody limit) approach [12].

It is well known that the theoretical description of the
high-energy processes is significantly simplified in the
coordinate space even if actual calculations may appear
rather cumbersome. The aim of this paper is to evaluate
the amplitudes of the deep-inelastic scattering (DIS)
processes in coordinate space and to visualize the domi-
nant physics. The knowledge of the space-time evolution
of DIS is especially important for the theoretical descrip-
tion of the RHIC program of heavy ion collisions, for the
QCD part of the LHC program, and for the hunt for the
new particles [13-15].

It has been demonstrated that DGLAP approximation
describes well the increase of structure functions of a
proton [16] observed by H1 and ZEUS. The experimental
data can be fitted as

XG(-X’ Qz): FZ(xr QZ) & xi)\) (13)

with A = 0.25 [16]. Basic features of hard diffractive
processes observed by H1 and ZEUS [16] are well de-
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scribed by the QCD factorization theorem [3]. The suc-
cess of DGLAP at the energy range covered by HERA is
due to the energy-momentum conservation law restric-
tions on the possible number of gluons radiated in the
multi-Regge kinematics. In the kinematics covered by
HERA, this number is equal to 1-2. At even smaller x
(this corresponds to the LHC kinematics and larger en-
ergies), the multiplicity of radiated gluons may achieve
5-6 and therefore pQCD approximations become un-
stable because of the necessity to account for large
log(xy/x) terms. So various resummation procedures
were suggested [5,6].

Significant cross section of diffraction in DIS observed
by H1 and ZEUS [16] is hardly consistent with the valid-
ity of the leading twist (LT) approximation at large Q? but
sufficiently small x. The theoretical analysis shows that
the LT approximation is probably violated in the kine-
matics which is not far from that investigated at HERA
[16]. Account of the conservation of the probability leads
to the unitarity bound which is the generalization to DIS
of the Froissart limit familiar from the hadron-hadron
collisions. The unitarity bound formula shows that the
structure functions of a nucleon may increase with the
energy as [12]

F,, xG = log3(xo/x). (1.4)

Increase of the structure functions with the energy fol-
lows from the increase with the energy of the essential
impact parameters factor log?(xy/x) and from the ultra-
violet divergence of the renormalization constants in
QCD factor log(xy/x). The conservation of the probabil-
ity permits a more moderate increase of the structure
functions at the central impact parameters as

F,, xG o« log(xy/x). (1.5)

It has been understood already in 60-s that the depen-
dence of the amplitude of the deep-inelastic scattering on
v = 2pq and photon virtuality —Q? gives a unique pos-
sibility to probe the space-time behavior of the DIS
processes [17]. (On the contrary, the amplitudes of the
soft QCD processes are always on mass shell. So it is
impossible to compare with the data the dependence of
the commutator of currents on the space-time interval
y2 = 1> — r? and the relative distance py.) An increase
with the energy of the coherence length in the target rest
frame has been suggested in Ref. [17], based on the
analogy with the QED coherent phenomena in the high-
energy electron interaction in the medium [18,19]. The
formula for the coherence length, [, = 1/2myx, follows
from the properties of the Fourier transform in [17] since
the amplitude of the DIS decreases with an increase of
Q?. Recently, the calculation of Ref. [20] found that
account for the pQCD radiation leads to significantly
smaller (but still increasing fast with the energy) coherent
length as compared to that found within the parton
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model. The first theoretical analysis of the space-time
evolution of high-energy processes in a quantum field
theory was given by Gribov [21] and applied for the
calculation of the nuclear shadowing in the electron-
nucleus interactions [22].

The dependence of the DIS amplitude on the light cone
interval y*> was studied extensively in the parton model
[1,23-25]. It was also studied in the framework of a
Regge ansatz for small xp structure function behavior
[1,25].

The aim of the paper is to show that for sufficiently
small but fixed y> the product of the currents is the
increasing function of py—distance (time), within both
the leading log (LL) or resummation approaches to pQCD
« (py)f(py, y*), where f is an increasing function of py at
fixed y>. Moreover, we shall see that the increase of the
product of the color-neutral currents with (py) is valid for
the phenomenological structure functions, describing
HERA data. An increase of f disappears in the unitarity
bound approximation but for the fixed impact parameters
only. In particular, in perturbative QCD

log(Q2 2y1/4
Flpyy?) = 003/ 67 (@ N /) 4S8 A

X expl2y/(e,N./ ) log(py) log(Q}y)], (1.6)

and in the black limit

F(py, y*) = 0(y*)log*(py)/(y*)* + peripheral terms.
(1.7)

Note that a similar increase of correlators with relative
distance is characteristic for turbulence. It is well known
that the velocity-velocity correlator increases with dis-
tance in such a system for the case of homogeneous
turbulence, i.e., for the scales much smaller than the scale
of the entire system [26]. In turbulence such a behavior
arises because the same piece of matter reveals itself in
different points. Similarly in the deep-inelastic scattering
in the target rest frame the same dipole reveals itself in
different space-time points as a consequence of the large
coherence length. This explains factor r in the matrix
element of the commutator. An increase of f(r, y?) with
r (r ~ 1) indicates that the produced perturbative system
is far from the thermodynamic equilibrium. Some caution
is to the point: Our interest is in the distances less or
comparable with coherence length. At larger distances
deduced formulas are hardly applicable at the distances
>> [. where nonperturbative phenomena, such as confine-
ment of color and phenomenon of spontaneously broken
chiral symmetry, should be important. Discussion of this
important question is beyond the scope of this publica-
tion. Note, however, that the regime leading to the uni-
tarity bound corresponds to f not increasing with
distance, which is a hint for the possibility of the
equilibrium.
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To visualize physics relevant for the shadowing effects,
we investigate also the Fourier transform of the ratio of
the distribution function and the invariant energy s.
(Within the region of validity of QCD factorization theo-
rem this ratio has a meaning of the cross section for the
scattering of a dipole off a target [2].) The increase with
the distance of a Fourier transform of this quantity shows
the existence of the long-range pQCD interaction between
the two colorless dipoles. (Remember that the long-range
interaction related to the zero mass of the gluon is can-
celed out in the amplitudes of the collisions of color-
neutral objects as the consequence of the gauge
invariance).

Let us note that a similar increase with distance can be
derived from the calculations of structure function eval-
uated within the Regge pole approximation [1,25] if the
intercept of the Regge pole is @(0) > 1 [Only the «(0) <
1 case was considered in Refs. [1,25].]

Let us recall conventional definitions concerning the
relationship between the products of the currents and the
structure functions. The structure functions are defined
through the current product as

—Wods P) = (B = a5 47) + (1 /)

X[pu + q,/20)]pr + qa/(2x)]IW,,
(1.8)

W = (ol [ diyexplian)0)00p). (19)
Here J,, is the operator of the electromagnetic current.
These structure functions are usually redefined into the
dimensionless ones:

F] = W],F2 = (QZ/ZmZX)WQ. (110)

Within the DGLAP approximation these structure func-
tions can be approximated at small x as

Filx, 02) = f L d5G(x/5, 0)gguon(s: 02, (111

X

and

xFy(x, 0?) = f (ds/5)Gy(x/5, )8 guons, 02). (1.12)

The function ggjyon (s, Q(Z)) is the nonperturbative gluon
distribution that parametrizes long distance contributions
while the functions G; describe the distribution of gluons
(sea quarks and antiquarks) within the gluon. For the
gluon distribution similar convolution formulas are valid.
(See, e.g., Ref. [27] for more detailed definitions.) Within
the parton model the quark-gluon distribution functions
are

G, =G, =8(x—s). (1.13)
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For the analysis of the light cone behavior it is conve-
nient also to use functions

Vy = W,/(m%0%), Ve =[(Q*/x))W, — W]/ 0%
(1.14)

These functions are free from the kinematic singularities.

For the theoretical description of high-energy pro-
cesses in the nucleon rest frame, it is useful to analyze
the cross section

o=F,/0%

instead of the infinite momentum frame parton distribu-
tion F2.

For the gluon-gluon distribution function G this cross
section has the sense of the dipole-target cross section

[2]:

(1.15)

o, = 4maxgG/Q% (1.16)

In the framework of the Feynman parton model [1,23—
25,28]

V(6% px) = —2mie(xo)8(x?) f1(px),
V,(x2%, px) = 2mie(x)0(x?) f(px),

while the calculation based on the Regge models [29]
gives

(1.17)

f2~ (px)*©0-2,

Our main result is the current-current correlator and
the cross section in the coordinate space at fixed and
sufficiently small space-time interval y> but large relative
distances py evaluated in QCD using both leading log and
resummation models.

The paper is organized in the following way. In the
second chapter we review the results of the parton model
for the structure functions in coordinate space and show
in detail how to properly account for the space-time
structure of the commutators including causality. In the
third chapter, we evaluate the light cone correlators of the
currents within the DGLAP approximation, and find that
at a fixed space-time interval they increase with the
distance near the light cone. We found it difficult to
calculate the Fourier transform of amplitude directly
and to keep causality because of necessity to make ap-
proximations. Instead we generalized a method of calcu-
lations developed within the parton model in [23,24]. For
this aim we found it convenient to use a method of mo-
ments including analytic continuation in the vicinity of
n — 1. In the fourth chapter, we evaluate Fourier trans-
form into coordinate space of the phenomenological and
theoretical gluon distributions in the small x limit, in-
cluding both the experimental data and the recent resum-
mation models. We also consider the space-time behavior
of the structure functions if the unitarity bound is
achieved at high energies. In general, we find that the

fr ~ (px)*© + const, (1.18)
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rise of the distributions in the limit x — O leads to the
corresponding rise of the light cone product of the local
currents. The fifth chapter is the conclusion.

IL. PARTON MODEL IN THE COORDINATE
SPACE

Let us briefly review the calculations of the structure
functions in coordinate space for y> — 0 within the par-
ton model [1,23,24,28]. Within the parton model approxi-
mation, the structure functions are the functions of only
x. The calculations were carried through in the early
seventies assuming dependence on x as given by Regge
formulas, with ap(0) = 1. We need to calculate

d* .
F(y*, py) = f —q3F (4% pq) exp(iqy). 2.1
(2m)
The structure function in the parton model can be derived
in the nonperturbative QCD as the discontinuity on the
cut in the complex pq plane [24,30]:

1
F(q* pq) = ﬁ dx(2pq)e(pg){dlg*> + 2(pq)x]

+6[q* — 2(pg)x]}F(x).

Here F(x) is the nonperturbative parton distribution in the
target. For simplicity we consider here spinless quarks.
Generalization to spin of quark 1/2 is trivial and does not
introduce new theoretical phenomena. Let us briefly re-
view the standard way of the calculation of these Fourier
transforms [24]. We shall start from the integral that is the
particular case of the integral (2.1), the integral

(2.2)

RO ) = [l [ anetpiola? + 2pi
+0[q* — 2(pg)x]}. (2.3)
We first calculate the integral
10 ) = [ e elpatole + 20pare)
+8[q* = 2(pg)x]}- 24)

This integral is equal to a sum of two integrals; the first of
them corresponds to the contribution of the region pg >

0, and the second of the region pg < 0:
1%, py) = 17 (2% py) + 172 py). (2.5)

Here

I*(x?, px) = f d*q{dlq* + 2(pg)x] + 8l¢* — 2(pg)x]}
X exp(igy)0(*qp). (2.6)

Making substitution ¢ — g + px in the first term and
q — q — px in the second, we obtain
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I* = 2cos[(py)x] f d*q/(2m)*6(¢*)6(=pq) exp(igy).
(2.7)

The latter integrals are well known (see, e.g., Ref. [31]):

1=(y%, py) = 2icos[x(py)ID=[(* py)]. (2.8)
Taking the sum we obtain
1(y?, py) = 2i cos[x(py)ID[y? (py)] (2.9)

Integrating now over x we obtain the integral (2.3)

RO py) = 21 [ dxcosle(py)IDO?, py). 2.10)
Here the function
D(y?, py) = [1/Q27) Ke(py)[6(y*)]

—[(mx)/2yy)10GAT (ma D)} 2.11)

is the Pauli-Jordan commutator of the scalar particles
[see, e.g., Ref. [31] for a detailed analysis of the singular
functions in quantum field theory (QFT)]. We retained the
full dependence on the nucleon mass in order to be sure
that there are no singularities in the limit m — 0. To
account for the spin of the quarks, one should substitute
function D by the Green function of spin 1/2 particle
S(y). In the LT approximation it is necessary to neglect
masses of quarks. Taking now the m — O limit in the
latter equation, we obtain

R(y%, py) = (i/m)e(py)d(y*) sin(py)/(py).

We can go now to other structure functions discussed in
the introduction. The corresponding Fourier transforms
differ from the integral (2.3) that we had taken by the
powers (g2)"(pq)™, where n and m are integers (but gen-
erally nonpositive numbers). If both n and m are positive,
we can take the relevant integrals just by using the
corresponding differential operators. In the parton model
the scaling leads to the general form of the structure
function F(x) and one immediately obtains, acting on
the Eq. (2.11) with the operator pg = —ipd,, that near
the light cone [24]

(2.12)

FOA py) — e(py)/2m) [0 L dx{di(py)8'(2) cosLx(py)]

—2m’xsin(py)8(y?) + 2(pa,)[0(v*)mx/ \/;2 ]

X (e [y} ().

Here we once again retain nonzero m to be sure there are
no singularities. Taking the limit m — 0, we immediately
obtain the following for the parton model:

(2.13)
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1
FO2 py) = (1/7) ﬁ dxe(py) cos[x(py)]6'(?)

X[2(py)JF (x).

In particular for F(x) = 1 we obtain the Fourier trans-
form

(2.14)

K2, py) = (2/m) sin(py)&'(y*)e(py). (2.15)

The integral (2.14) is well defined for F(x) ~ x* if a >
—1. This is however not the general case. The most
interesting  structure functions are F(x) = 1/x,

Valg? pq) ~1/(@*pa) ~ x/q*, Vi~ pa/q* ~ 1/(xq?).
It is easy to see that for these structure functions the
integral (2.14) formally diverges logarithmically and
must be regularized. In order to define these integrals
and satisfy the requirement of causality, we follow
Ref. [24], namely, use the differential equations: If two
functions A and B are connected as

A= B/q%,

then B(q?%, pq) = q*A(g?% pq), and in coordinate space we
obtain

OAG? py) = B2 py).

Let us use this method for the calculation of the struc-
ture functions defined above. Let us start from F| =
1/x = —2(pq)/q*. Then one has

OF,(x%, px) = +2L(pq) = —2i(pd,)K(x*, px). (2.16)

Here L means a Fourier image of the corresponding
structure function. Since K = 4sin(py)d’(y*)e(py), one
obtains the equation

OF,(y2, py) = —(4i/m)(py)e(py) sin(py) 5" (y?).
2.17)

We look for the solution in the form

Fi(% py) = A(v)B(u),
where v = y?, u = py. Since

OH(v, u) = 4Q2F, + vF,, + uF,,),
where we used p> = 0, we obtain
O[A(v)B(u)] = 4[2A,B(u) + vA,,B(u) + uB,A,].

Note now that

v8"(v) = —né" (v), (2.18)

as easily proven by direct calculation. Then if we take
A(v) = 8'(v), one obtains

OH = 4[—8"()B(u) + uB,(1)8"(v)].

Comparing this expression with the right-hand side of
Eq. (2.17), we obtain

(=i/m)usin(u) = uB, — B(u). (2.19)
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This differential equation can be easily solved with the
boundary condition B(0) — 0. The solution is

B(u) = —(i/ m)u ]0 “dssin(s)/s.  (2.20)
Then one obtains
Fy— —(i/m)e(py)d'(y*)(py)Si(py). 221
Here Si is the integral sinus function
Si(u) = ﬂ) ’ Sins(s) ds 2.22)

(see, e.g., Ref. [32] for the detailed review of its proper-
ties). In the limit of large py in which we are interested in
this paper, we obtain

F,(y% py) = —(i/2)e(py)(py)&'(y?).

Note that the results do not contain any logs as it will
follow naively from the corresponding diverging integral
(2.14) and are causal.

Exactly in the same way, one can calculate V, and V.
For V, one gets

OVva(?, py) = —[i/(2m)]e(px)8(y*) sin(py)/(py).
(2.24)

(2.23)

This equation can be easily solved using the ansatz

Vy = 0(y*)e(py)B(py). (2.25)

Repeating the steps that lead to the solution of the pre-

vious equation, we obtain
uB, + B = sin(u)/u. (2.26)

This equation has the solution
1

B(u) = —Si(u).
u

We immediately obtain

Vo(y2 py) = —(i)/2m)(1/ py)Si(py)6(yHe(py), (2.27)

Asymptotically one obtains
Va~ (=i/4)/(py).

This is just the result of loffe [24] (obtained practically
by the same method). Note that one does not obtain any
large logs using such a method as one will obtain making
naively Fourier transform (see next section). Finally, us-
ing the same approach, one can calculate the function

Ve~ (pq)/q*:

(2.28)

[PV, = 2(py)8"(y*) sin(py). (2.29)
The general solution is
Ve =[=i/2m]8(y*)e(py) cos(py), (2.30)

as in Ref. [24].
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Summarizing, in this chapter we reviewed the method
of differential equations due to Ref. [24] of obtaining the
Fourier transform of the scaling functions, and stressed
that this method permits one to calculate Fourier trans-
forms without violating causality. We considered the
Fourier transforms of F; in the parton model under the
condition that F;~1/x near x—0, ie, has
Pomeranchuk behavior with ap(0) = 1.

III. COORDINATE SPACE REPRESENTATION OF
THE SEA QUARK, GLUON DISTRIBUTION
FUNCTIONS OF THE GLUON

A. Fourier transform of the current-current correla-
tors

In the previous section we performed the Fourier trans-
form of the structure functions in the parton model. Let
us now go to the leading log QCD. Let us make the actual
calculation for the simplest case—Fourier transform into
coordinate space of the structure function of the gluons
within the gluon. In the case of quark structure function
of a quark or a gluon all calculations are practically
identical. So there is no need to repeat them. All calcu-
lations will be made in the target rest frame because the
space-time evolution is most straightforward in this
frame. Our calculations will be legitimate in the limit
of the fixed space-time interval y> but py — oco. We
choose this limit because there exists a rather direct
correspondence between the structure functions at small
x and Fourier transform. We start from the expression for
the gluon structure function which is the solution of the
DGLAP equation in the double-logarithmic approxima-
tion [33,34]. To derive analytic formulas, we neglect the
running of the coupling constant which should be slow
because of the smallness of y2. The DGLAP equation is

d 2) —
erG(x, Q%) = [a,/(2m)]
% [ax /) yecta/ )G, 02

X

3.D

QZ

Here ys¢ is the kernel in the QCD evolution equation,

Yo = 2N./x.

The solution of this equation is given by

3.2)

Gx, 0?) = [ dn) 2ai)(xg)" [x1(Q2/ QR)N/rtn =]
3.3)

Here the contour integration over n runs along a straight
line parallel to the imaginary axis to the right of all
singularities of the integral. We use the notation Q% =
—q? if g¢> = 0 and Q? = ¢° if ¢> = 0. The Bjorken scal-
ing variable is defined in a usual way:
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x=—q*/2pq). (3.4)

The above solution corresponds to simple initial condi-
tions

xG(x, Q%) = 8(x — xo).
We shall need the Fourier transform of Eq. (3.3):

G(py.y) = [ d'4G Q) expliay.  (5)

Let us first determine the integration area. The struc-
ture function is symmetric between the u and s channels.
So ImyF; = ImF,. This means the invariance on the
substitution x — —x, pg — —pgq. Thus, one can limit
the area of integration by the region (pg = 0). In this
area there are four subregions:

(i) ¢> =0 and 0 = x3 = —1 which corresponds to
the e* e~ fragmentation into hadrons in the field
of target. Within the LL approximation this struc-
ture function is zero.

(ii) ¢> = 0and x = —1. Amplitude in this kinematics
can be related with the inclusive process: eTe™ —
N + X. We will show that this region gives no
significant contribution to the kinematics of inter-
est in this paper. In the LL approximation this
amplitude is connected to DIS amplitude by the
Gribov-Lipatov relation (see below).

(iii) ¢> =0, and 1 = x = 0 that corresponds to the
DIS.

(iv) ¢> = 0 and x = 1. In this area the structure func-
tion is O because of the energy-momentum con-
servation laws.

In the second region, one has an additional kinematical

restriction:

x=1, g% = 4m?x?,

(3.6)

which just expresses the condition g3 = ¢* in this kine-
matical area.

In the third region, it is worthwhile to use Q> = —¢?
instead of g2 as an invariant variable, and it is easy to see
that kinematically x = 1.

We shall start from the DIS region.

Naively, in order to carry the Fourier transform in
Eq. (3.5), one can use the Gribov-Ioffe-Pomeranchuk
(GIP) approximation [17,24]. In this approximation, one
takes into account that the integrand in the laboratory
reference frame is dominated by

0 = (¢*)/(4m*) > |¢*1. 3.7)
Va0 — 4>~ a0 —
g*/(2qo). Using this approximation, one obtains the in-
tegrand directly as a function of y?. The arising integrals
can be easily calculated. However, they do not satisfy the
causality condition: The commutator is nonzero for y> <
0, and this condition must be imposed by hand. It is easy

Correspondingly, one can expand
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to see, taking as a pattern the calculations from the
previous chapter for the parton model and trying to do
them explicitly calculating the integrals in the GIP ap-
proximation, that the problem is the limitation of the
integration area by the condition (3.7). Then even when
we obtain the convergent integrals it is not clear how to
obtain casuality naturally. Instead, we shall adopt here a
different approach. It is possible to prove that the Fourier
transform of (g%)"/x™ is the analytical function of n,
uniquely defined by its values in integer n, where the
latter function is understood as a generalized one. Let
us start from the integral (2.15) and multiply the inte-
grand by (¢%)". The integral is obtained by acting with the
operator [1" on the result of the integration. For the
leading term in the asymptotics in py one obtains

2n_) n _1\n ! I(~,2
() — "2/ m)(~1) ﬁ dx cosLx(py)]18'(52) (py).

(3.8)
After differentiating one gets
1
anF(x) — ];) dx22n(py)n+15n+l(y2)xn
X cos[x(py) + nw/2]F(x). (3.9)

There exists, however, the unique generalized function
such that it is an analytic function of n and is equal to
6"(u) for positive integer n [35]. This function is

J(s, u) = w1 /T(s).

For this function

(3.10)
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lim J(s, u) = 6" (u), 3.11)
S——n

and we denote u, = 6(u)u (the standard notation in the
mathematical literature [35]). Then we can extend
Eq. (3.9) to noninteger n as

(/27 — [O L x5 (py) " cos[x(px) — /2]

XF)03) ™2 T(—s —1).  (3.12)
Here y3 = 6(y%)y*.

Let us briefly discuss the result from the mathematical
point of view. It is easy to check by using the inverse
operator of Laplace as we did in the previous section that
the asymptotics (3.12) is valid for negative n. Thus, we
have the problem of restoring the function that is known
for all integer n, analytical in n, and has power like
asymptotics. Such a function is uniquely defined [36], as
it is well known from the theory of complex variables
(and Regge calculus, where the corresponding procedure
is called Gribov-Froissart projection). Then Eq. (3.10)
fully defines the function. It is straightforward to see
that this function coincides with the one obtained in
GIP approximation, except for an important difference:
We automatically achieve causality. Thus, our approach,
analytically continuing the result of the parton model, is
the only possible approach to the Fourier transform. Once
we know how to deal with the powers of ¢, we must put
s = a,N,./[7(n — 1)] and carry the remaining integra-
tion over x. We obtain the following using Eq. (3.11):

G(py,y?) = [m/2py)] f dn/ (i) [0 (dx/®) cos( — {aryNo/[a(n — 1)] + 2a/2 + x(py)T{arsNo/[ar(n — 1)] + 2}

X(x)aSN‘/[ﬂ(n_1)]+2_n/|[y2/(2py)]|aSNC/[7T("_1)]+2(Q(2))_aSNf/[W(n_l)]xg_l (2m)aJNC/[7T(n—1)]+2.

The integration in the above formula can be easily per-
formed [32,37,38]:

fl sin(a + mxr)x*~'dx = {sin(a)[F(imr) + F(—imr)]
0

—icos(a)[F(imr)
—F(=imnr)]}/2u).

Here the function F is the confluent hypergeometric
function:

(3.14)

F(x) n Fi(w, p+1,x),F0) =1 (3.15)

We are actually interested in the limit of large distances
(times), r — oo. In this limit, one uses the asymptotics
F(imr) =T'(u + 1) exp(imp)/(imr)*

+wexp(imr)/(imr), (3.16)

(3.13)
|
F(—imr) = T'(u + 1) exp(—imw)/(—imr)*
+uexp(—imr)/(—imr), (3.17)
or, since
F(imr) + F(—imr) = 2[I"(u + 1) cos(mu/2)/(mr)*
+ u sin(mr)/(mr)], (3.18)
and
F(imr) — F(—imr) = 2i['(u + 1) sin(ar e /2)/(mr)*
—2u cos(mr)/(mr)], (3.19)
we have

fl dxx*~Vsin(a + mxr) ~ 2[T(w) sin(a + 7w /2)/(mr)*
0

—cos(mr + a)]. (3.20)
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Using the latter integral, we finally obtain the contribu-
tion from the deep-inelastic scattering region in the
Fourier transform. In our case

a+ uw/2=2aN,/[7n—1]7/2 — (n + 1)7/2,
(3.21)
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=a,N,/[m(n —1)]—n+1,

(3.22)
a=—{+a,N,/[7(n — 1)] + 1}7/2.

Then we have

G(py,y?) = [7/(py)] [ [dn/Qmi)[I{a,N./[m(n — D] + 2} cos(py —{a,N./[m(n — D]}7/2)/(py)

TN /Tm(n = 1] = n + 1 sinGam/2)){(py) 70132 /2y e elimtr D12y

X (Q2)~eNe/lmln=1)]xn 1,

We have found the contribution due to the DIS into the
integral over n. The contribution due to the fragmentation
of ¢ + ™ in the nucleon color field into the integral over
n is zero in the leading log approximation (see above and
Ref. [39]).

Let us now consider the contribution due to the
annihilation. The current commutator in the anni-
hilation region can be expressed through the correla-
tion function in DIS via the Gribov-Lipatov relation
[39]

G(x, g*) = xG(1/x, Q?). (3.24)

Here x is the Bjorken variable defined in the same way as
above, only for the different kinematic region. It is
straightforward to obtain the annihilation contribution
to the commutator:

G(py,y>) = [7/2py)] [ dn/(2mi) [l v

X dxcos( + {a,N,/[m(n — 1)] + 2} + (py)x)
X Na,N,/[7(n — 1)] + 2}(x)a.\-N(:/[7T("—l)]—n/|
X [y?/2py)]|ee/trtn =l

% (Q%)_“th‘/[”("_l)]xg_l. (3.25)

The integral over x can be easily taken using the integral
®© . © .

f sin(a + mrx)x*~ldx = [ sin(a + mrx)x*~'dx
1 0

1
—f sin(a + mrx)x*~1dx.
0

(3.26)
|

(3.23)

Then the first integral can be easily taken explicitly, while
the second was taken above:

foo sin(a + mrx)x*'dx = T'(u) sin(u7/2 + a)
1

1
—f sin(a + mrx)x*~dx.
0

(3.27)

The asymptotic expansion of the latter integral is known,
and it is straightforward to see that for large r

foo sin(a + mrx)x*~'dx ~ + cos(mr + a)/mr. (3.28)
1

The reason that the latter integral does not depend on w is
that the asymptotics is dominated by the area x ~ 1,
where

a7l =expl(n — 1)log(x)] ~ 1.

It is clear that the similar term in Eq. (3.13) also comes
from the region x ~ 1, and these terms correspond to the
contribution of the parton model. The two contributions
are very similar with the only difference that we must use
in Eq. (3.28)

a = —{a,N./[7(n — 1)] + 2}7/2. (3.29)

Now we can write the expression for the structure funcion
that includes both the DIS and annihilation regions:

G(py,y*) = [7/(py)] f dn/QimI{aN,/[m(n — 1)] + 2}sin(py) cos(a,N./[7(n — 1)]}7/2)

+M{a,N, /[m(n — D]+ 2H{a,N./[7(n — 1)] — n + 1}

X sinom/2)1/(py) D1 32 /@y D2 ) e Nt g,

(3.30)
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We see that the current-current correlator contains two
distinct contributions. The first is due to x ~ 1. The sec-
ond is solely due to perturbative gluon effects. This part is
dominated by moderately small x.

We can now take an integral over n. Let us start from
the x ~ 1 contribution:

G1(py.y?) = —[1/2py)] [ [dn/Qai)]cos(a,N, /[

X(n — D)}m/2) sin(py)/(py)H{a,N,. /7

X(n — D]+ 2}/I[y%/(@2py)]|sNe/trtn=1I+2

X(Q(%)—aJNC/[ﬂ'(n—1)]x8—1(2m)asN[/[7T(n—1)]+2_
(3.31)

The second contribution is due to the moderately small x.
It is equal to

X(n = 1)] + 2}sin[(n)7/2]/[(py):Ne/lmtn=DIn )

X[yz/(Zpy)]I“»&Nc/[”("‘1)]+2](Q%)‘“SNC/[”("‘1)]x6"1

X (2m)@sNe/lmn=11+2, (3.32)
These integrals can be taken using the saddle point
method. Consider first the contribution where xG =
const for small x to honor the distinctive property of the
soft QCD amplitudes to significantly more slowly in-
crease with energy as compared to the amplitudes of

hard processes. This contribution can be studied using
the saddle point approximation. Indeed, we have

Gi(py,y?) = f dn /i) (1/y?) cos(py) cos{er, N, /[(n

= Dlm/2}{2py/(y* Q)] cos{a,N./[m(n

= Dlm/2{a N, /[m(n = 1)] + 2}(xo)"~".
(3.33)

|
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The saddle point is at

n =1 =J(a,N/m log2py/y*Qf)/ log(xy).  (3.34)
We obtain
G, = [cos(py)/(y*)*] cos
X[y(a,N. /) log(x,)/ log(2py/y* Q)
XTT2 + y/(a,N. /) log(x,)/ 10g(2py/y* 03)]

X expyfa, N,/ 7 log(py) log(xo) log(> 03
X(a,N./m)"*log2py/y* QF)"*/ 1og(x)¥*. (3.35)

The last line corresponds to the preexponential.
Consider now the second integral (3.32). The integral
can be rewritten in dimensionless variables as

G2 = F{CYTNL/[’/'T(I’Z - 1)] —n+ l}r{avNc/[W
X(n = 1)] + 2} sin[(n + 1)7/2]

X(py)n+ 1 /(Q(Z)yZ)aSNL./[ﬂ'(nf1)]+2x6171

X(2)2{OZXNC/[7T(’I*1)]+2}. (3.36)

We immediately see that the saddle point is determined
from the equation

log(pyxg) = —a,N./[7(n — 1)*]1og(Q%y?).

We obtain

(3.37)

n—1= \/(ach/ﬂ')[log(l/Q(z)yz)]/ log(pyxy). (3.38)

Then substituting the latter expression into the integral
over n, one immediately obtains the asymptotics

Gx = T}y loxpyx0 102070 —ioetrya) /o QYT | (“5) o222 + 2]

T

[ |agNe  log(QFy*)  TfasNo\/4log(Q3yH)'* (12 a,N, 2.2
<" fommm ) () el 2 oxtrmostai | 639

Let us now check the applicability of the saddle point
method. It is easy to see that the condition is

a,log(py)log(y?Q3) > 1. (3.40)

Thus Egs. (3.37), (3.38), and (3.39) are not valid in the
limit &g — O that corresponds to parton model.

We have found the asymptotics of the current-current
correlator in the double-logarithmic limit of QCD. In this
limit the saddle point method is applicable and the cor-
relator increases with distances. The applicability condi-
tion of this method is evidently the existence of two large

log(py)¥/*

¥ T

logarithms: the parameter

(ayN./m)log(Q5y?) log(py) > 1.

Note that, generally speaking, it is beyond of the
accuracy of the method to keep single logs in the argu-
ments of the exponents in the above expressions, and the
legitimate answer for asymptotics:
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1 2.,2)1/4
GPOLAP(py 42) = g(y?) py (a,N,/m)/4 0g(Q5y?)

(»*)? log(py)*/*

X expl2y/(a,N,/ ) log(py) log(Q3y*)].
(3.41)

Here we put all terms with a single log in the arguments
of exponents to 1. Note that the leading asymptotics is
given by the integral (3.39).

Thus, we obtained asymptotics for perturbative QCD.
Note that delta-function singularities on the light cone for
F, and F, were translated into 1/(y%)? behavior in the
perturbative QCD.

B. Coordinate space physics relevant for cross sections

In the previous section we discussed the space-time
asymptotics of the current-current commutator in the
LL approximation of pQCD. This commutator has a
well-defined probabilistic interpretation in the infinite
momentum frame . However, in the target rest frame
significantly more direct interpretation has a cross section
for the dipole scattering of a target and related shadowing
effects . The cross section is equal to the correlator
divided by an invariant energy, i.e., by s, which means
the commutator must be multiplied by 2x/Q?. Thus, in
the notations of the introduction we have to calculate

D(py,y?) = / d*qexpliqy)G(x, 02)/(s)

= ] d'qexpliqy) s/ Q)G V). (3.42)

Here s = Q?/x is the invariant energy squared.

This quantity is sometimes considered a potential for
the interaction between color-neutral dipoles. For this
quantity we may repeat the analysis of the previous
section. It is straightforward to see that, for both parton
model and large Bjorken x, large Q? regime of DGLAP
equations, the effect is the loss of one power of y? in the
denominator and the loss of one power of (py) in the
nominator, i.e., the correlator increases logarithmically
in the parton model (see the previous subsection). For the
perturbative QCD asymptotics we obtain

log(Q5y»)"/*

1
D(py, y*) = 6(3*) = (a,N./m)"*
e log(py)*/*

X expl2y/a,N, /7 log(py) log(Q3y*)]. (3.43)

The function D thus increases in the perturbative QCD.

C. More about parton model

The modern definition of the parton model ordinary
refers to nonperturbative distributions without taking
into account perturbative QCD evolution, i.e., for initial
conditions for evolution equations, such as DGLAP. The
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most popular form of the initial conditions (that also
gives a best agreement with the experimental data) is

F,(x) = C/x?, (3.44)

where a > 0. This case was not considered in the early
seventies since at that time it was assumed that a = 0 for
the physical cases. The Fourier transform of this function,
except the special case of the integer «, is clearly given by
the analytic continuation of the asymptotics obtained in
the previous section. If we continue analytically the
equations from the last section and use the results of
Sec. I, we immediately obtain

F,— Ll dx COS[x(py)]5/(y2)(py)x(l70{)71

~2I'(1 — a) sin(7a)(py)©. (3.45)

Note that for a = 0 this term becomes zero and the
asymptotics will be given by the oscillating term
~sin(py)/(py) (times the same type of light cone
singularity).

For the structure function F, the behavior is ~xl;(a+1),
and one continues analytically Eq. (3.45) obtaining the

increase of the commutator as

F, — 2I'(—a) cos(ma/2)(py)* 18 (y?). (3.46)

This expression has a pole singularity for & = 0, when
we return to the function already considered in the frame-
work of the parton model.

IV. PHENOMENOLOGICAL DISTRIBUTIONS

A. Small structure functions

In the previous section, we analyzed the space-time
structure of the correlators due to a parton model and
within the area of applicability of leading order DGLAP
equations. Including NLO will not change our conclu-
sions. However, at extremely small x (kinematics of
LHC?) where the energy conservation law does not pre-
clude a large number of gluon radiations in the multi-
Regge kinematics, a small x limit of the DGLAP equation
is, literally speaking, not available and instead one needs
to use for G either by resummation approaches [5,6], or
phenomenological ones or phenomenological one from
HERA [16]:

G,(x, %) ~ (1/x)**1(Q*)P, (4.1)

where

a ~0.25, B ~ 0.25. 4.2)

The theoretical distributions expected within the resum-
mation approaches of [5,6] differ from a phenomenologi-
cal one by logarithmic terms:

Grlx, 0%) ~ (1/x)'2(0%)"% /4/log(x)*. (4.3)
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It is straightforward to carry Fourier transform of this
distribution. Once again we carry the analytical continu-
ation of the parton model formula. The singularities 8(y?)
and &’'(y*) are smoothened into 1/(y3) and 1/(y3)?, re-
spectively. We obtain

G(py,y?) = 7T(B + 2)(py)P*! /(y?)**F ﬁl dxxBa~!
x sin[x(py) — Bm/2]1/(py).
D(py,y?) = al(B + D(py)B /() +F /()1 R

X cos[x(py) — Bm/2]/(py). 4.4)
The relevant asymptotics is obtained from the asymp-
totics of the confluent hypergeometric function as in the
previous section. For 8 — @ = 0, the integrals must be
considered in the analytic continuation sense; for S = «
one obtains the logarithmic divergence that must be dealt
with as in the parton model in the previous subsection.
Altogether one obtains, if 8 # «,

G(py, y?) = 0(H) @l (B + 2T (B — a)sin(7a/2)

X (py)**t1/(y*)F+2, 4.5)

and

D(py,y?) = 0(y*)mwl(B + 2)T(B — a)(1/2) cos[m(a)/2]

X(py)*/(y?)E*. (4.6)
If B = a # 0, one obtains logarithmic asymptotics:
G(py, y*) = #l(B + 2) sin(B7/2)(py)'*# log

X(py)/(y*)F*2, 4.7

and

D(py, y*) = wI'(B + 2) cos(B/2)(py)? log(py)/(y*)B*!.

(4.8)

For the HERA phenomenological case, one has 8 ~ «;
the same is true for recent phenomenological asymptotics
due to Refs. [5,6]. Thus, for them we obtain the logarith-
mic times power increase of D and G functions on the
light cone.

It is interesting to note that recently Ciafaloni ef al. [6]
suggested a resummation model where the structure func-
tion may have a dip in the energy dependence, postponing
an increase to smaller x than in the kinematics of HERA.
This will postpone an increase of D to larger x. An
additional factor in the asymptotics ~1/log¥/%(1/x)
claimed in Ref. [6] may change the behavior of D, making

it slowly increasing with distance as (py)®?/,/log(py) and
having a dip for some interval of py.
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In the case of the leading order BFKL approximation,
we have 8 = 1/2, @ ~ 0.8, and we have asymptotics

G(px, x*) ~ (py)8/ (),

D(py, y2) ~ (py)*3/ (22 (49)

B. Black limit

It is worth analyzing the coordinate space dependence
for the unitarity limit for structure functions for the small
x behavior of structure functions [12] unitarity bound =
black body approximation

G(x, 0%) = (1/x)(Q*/Qp)log’(xo/x) + peripheral

= DGLAP terms, (4.10)

and

o(s) ~ log*(x/xo), 4.11)

where x, is a weak function of Q. Doing Fourier trans-
form, we obtain

G(py, y*) « (py)8(y*)log*(py)/(y*)? + peripheral terms,
(4.12)

D(py, y*) = 8(y*)log*(py)/(y*)? + peripheral terms.
(4.13)

Thus, in the black limit both G and D at given impact
parameter contain a trivial increase with distance: Factor
r is because the same dipole is probed at different space-
time points; one In(1/x) is due to ultraviolet divergence of
renormalization of e.m. charge. In?(x,/x) is due to an
increase with energy of impact parameters in the scatter-
ing process. Excluding the above factors, we find that an
increase of commutator with distance is stopped within
this limit. The structure function continues to increase
with energy for the configuration in the photon wave
function with 4k? = Q? as the consequence of renorma-
lizability of QCD, and because of an increase with energy
of essential impact parameters.

C. Hard diffractive processes

Another interesting question is a question of space-time
evolution of hard diffractive processes. These are the
processes y* + p — X + p, where X is vector meson,
dijet, etc. For this process the relevant amplitude behaves
as

A~ (s/0*)1/0Q",

where n = 1/2 or 1. Repeating calculations as above, we
obtain that coordinate space amplitudes increase with
distances as amplitudes of LT processes. However, depen-
dence on y? will be weaker by the factor (y?)".

(4.14)
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V. CONCLUSION

We have studied the dependence of the current-current
correlators (gluon distributions) in coordinate space on
py at fixed y? close to light cone. Quite surprisingly, we
found that all theoretical approaches (DGLAP, BFKL,
recent resummation models of small x behavior [5,6],
unitarity bound [12], and phenomenological description
of data) all lead to the increasing with the distance
current-current correlators,

G(py, y*) ~ py/ () (py)*/(y*)E.

Here indexes a and B are model dependent at present but
positive. The DGLAP equations in double-logarithmic
approximation lead to an increase:

5.1

log(Q3y?)!/4
= 00 (P (7PN

X exp[2y/a, N,/ log(py) log(Q3y*))

Thus, increasing the current-current correlators with a
distance near the light cone is the general feature of high-
energy scattering processes. Moreover, we see that, apart
from the kinematical multiplier py, this feature appears
due to the interaction with the gluons and is absent in the
parton model, where only fixed (except the kinematical
multiplier py) amplitude oscillations occur.

The increase of the commutator with the distance at
the light cone is a relativistic effect, present in the
Minkowsky space only, and it is absent in the Euclidean
space.

This feature is closely connected with the known in-
crease of the correlation length at high energies.

Such an increase seems to be a characteristic feature of
a Pomeron, i.e., of a contribution into amplitudes of a ¢

5.2)
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exchange with vacuum quantum numbers. Fourier trans-
form of amplitude with nonvacuum quantum numbers in
a t channel (contribution into cross section) decreases
with distance as (1/r)*©~!. Here « is the intercept of
trajectory of dominant Regge pole contribution.

Let us stress that we consider the asymptotics near the
light cone, i.e., » ~ t. On the other hand, for equal time
commutator, i.e., small time ¢ but » — oo, dominant con-
tribution into Fourier transform arises due to the region of
large gy ~ 1/t and small space momenta, i.e., the region
around x = 1 but g> — 0. In this region Fourier trans-
form oscillates.

We can also evaluate a product of four currents in the

same way and obtain similar results as above
Jj(»)j(2)j(0)j(0) in the kinematics
y =0, 2 —0, Fy, 'y = 00,

This correlator appears in heavy ion collisions as a cor-
relation function between two hard processes which occur
at different space-time points.

Finally, we found that the function D(y?, py) that can
be interpreted as a dipole-target potential increases with
py, in all above cases. This increase disappears for the
Fourier transform of the unitarity bound formula after
excluding effects beyond long-range dynamics. Thus, we
have found another instability of the description of the
physical state in terms of quarks and gluons. The physical
consequences of this fact will be discussed in more detail
in future publications.
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