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Model for the twist-3 wave function of the pion and its contribution to the pion form factor
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A model for the twist-3 wave function  p�x;k?� of the pion has been constructed based on the
moment calculation by applying the QCD sum rules, whose distribution amplitude has a better end-
point behavior than that of the asymptotic one. With this model wave function, the twist-3 contributions
including both the usual helicity components (�1 � �2 � 0) and the higher helicity components (�1 �
�2 � �1) to the pion form factor have been studied within the modified pQCD approach. Our results
show that the twist-3 contribution drops fast and it becomes less than the twist-2 contribution at Q2 �
10 GeV2. The higher helicity components in the twist-3 wave function will give an extra suppression to
the pion form factor. The model dependence of the twist-3 contribution to the pion form factor has been
studied by comparing four different models. When all the power contributions, which include higher
order in �s, higher helicities, higher twists in DA and, etc., have been taken into account, it is expected
that the hard contributions will fit the present experimental data well at the energy region where pQCD
is applicable.
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I. INTRODUCTION

The most challenging problems for applying the per-
turbative QCD (pQCD) to exclusive processes have long
been discussed and analyzed in many papers, such as the
pQCD applicability to the exclusive processes at experi-
mentally accessible energy region due to the end-point
singularity; to estimate the contributions from power
corrections, which includes higher order in �s, higher
helicities, higher twists in distribution amplitude (DA),
higher Fock states and etc.; to estimate the uncertainties
from perturbatively incalculable DAs.

The pion form factor can be obtained through the
definition
h	�p0�jJ�j	�p�i � �p� p0��F	�Q2�; (1)
where J� �
P
iei �qi��qi, with the quark flavor i and the

relevant electric charge ei, is the vector current. The
momentum transfer q2 � �Q2 � �p� p0�2 is restricted
in the spacelike region. The pQCD applicability to the
pion form factor at the experimentally accessible energy
region has been raised by Ref. [1] and attracted much
attention for many years. In the modified pQCD approach
that is proposed in Ref. [2], i.e., the transverse
momentum-dependence (kT dependence) as well as the
Sudakov corrections are taken into account in the calcu-
lations. We have the following factorization formula [2–
5],
ngtao@mail.ihep.ac.cn
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F	�Q2� �
X
n;m

Z
dxidk?i�ndyjdl?j�m n�xi;k?i;�f�

� Tnm�xi;k?i; yj; l?j;�f� m�yj; l?j;�f�; (2)

where dxidki�n is the relativistic measure within the
n-particle sector, n;m extend over the low momentum
states only and Tnm are the partonic matrix elements of
the effective current operator. Here the helicity states of
the pion are implied in both sides. The dependence on the
scale separating low (nonperturbative) and high momenta
(perturbative) is indicated by �f. For the valence quark
state of the pion, its light cone (LC) wave functions are
defined in terms of the bilocal operator matrix ele-
ment[6],

h	�p�j �q��z�q�j0i �
if	
4

Z 1

0
dx

Z
d2k?e

i�xp�z�k?�z?�

�

�
p6 �5 	�x;k?���	�5

�
 p�x;k?�

����p�z�
 ��x;k?�

6

��
��
; (3)

where �	 � m2
	=�mu �md� and f	 is the pion decay

constant, whose experimental value is 130:7�
0:1� 0:36 MeV[7].  	�x;k?� is the leading twist
(twist-2) wave function,  p�x;k?� and  ��x;k?� are
subleading twist (twist-3) wave functions that correspond
to the pseudoscalar structure and the pseudotensor struc-
ture respectively [8]. The distribution amplitude  �x� and
the wave function  �x;k?� are related by

 �x� �
Z
jk?j<�f

d2k?

16	3  �x;k?�: (4)
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It has been shown in different approaches [2,9] that
applying pQCD to the pion form factor begins to be self-
consistent for a momentum transfer at about Q2 �
4 GeV2. The next-to-leading order (NLO) QCD correc-
tions to the pion form factor at large momentum transfer
has also been analyzed [10–17]. Ref. [17] presents a
complete NLO pQCD prediction for the pion form factor
and it shows that a reliable pQCD prediction can be made
at a momentum transfer around �5� 10� GeV with cor-
rections to the LO results being up to �30%. The theo-
retical uncertainty related to the renormalization scale
ambiguity has been estimated to be less than 10% and for
all the considered DAs, concerning the choices of the
renormalization schemes and the factorization scales, the
ratio of the NLO to the LO contribution to the pion form
factor F	�Q2� is greater than 30% as Q2 < 20 GeV2.

A detailed calculation about the higher helicity com-
ponents’ contributions to the hard part and the soft part of
the pion form factor within the LC pQCD approach was
presented in Ref. [18]. Their results show that by fully
keeping the transverse momentum-dependence in the
hard part, the asymptotic behavior of the hard-scattering
amplitude from the higher helicity components is of order
1=Q4, but it can give a sizable contribution to the pion
form factor at the present experimentally accessible en-
ergy region.

Other power corrections are from the higher twist
structures in the pion DA. In the literature, based on the
asymptotic behavior of the twist-3 DAs, especially
 as
p �x� � 1, most of calculations give large twist-3 con-

tributions [19–23], i.e., the twist-3 contribution to the
pion form factor is comparable or even larger than that
of the leading twist in a wide intermediate energy region,
e.g., Q2 � �2� 40� GeV2. It is hard to believe these re-
sults are reliable, since the power suppressed corrections
make such a large contribution up to 40 GeV2. However,
because the end-point singularity becomes more serious,
the calculations for these higher twist contributions have
more uncertainty than that for the leading twist. In fact,
one may find that such kind of large contribution comes
mainly from the end-point region and is model dependent.
It means that one should try to look for a reasonable
twist-3 wave function with a better behavior in the end-
point region than that of the asymptotic one, and the
twist-3 contribution might be less important and less
uncertainty.

Recently in Ref. [24], based on the moment calculation,
the authors obtained a new form for  p�x�, which has a
better behavior at the end-point region than that of the
asymptotic one. Their approach is different from that of
Refs. [8,25,26], i.e., they did not apply the equation of
motion for the quarks in the hadron and determined the
coefficients of the Gegenbauer polynomial expansions
directly from the DA moments obtained in the QCD
sum rules. The  p�x� obtained in Ref. [24] can be used
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to suppress the end-point singularity coming from the
hard-scattering kernel. In this paper, we will develop it to
construct a model wave function  p�x;k?� and apply it to
calculate the twist-3 contributions to the pion form factor.

The remainder of the paper is organized as follows. In
Sec. II, we construct a model for the pionic twist-3 wave
function  p�x;k?� with the help of the moment calcula-
tion in Ref. [24]. And in Sec. III, the twist-3 contribution
to the pion form factor, including those coming from the
higher helicity components, will be studied within the
modified pQCD approach. In Sec. IV, we discuss the
model dependence for the twist-3 contribution. Finally
we summarize our results and give the combined hard
contributions to the pion form factor in Sec. V.
II. A MODEL FOR THE PIONIC
TWIST-3 WAVE FUNCTION

For the twist-3 DAs, since the asymptotic behavior of
 p�x� and  ��x� are,  as

p �x� � 1 and  as
� �x� � 6x�1� x�

respectively, one may observe that the end-point singu-
larity comes more seriously from  p�x� than from  ��x�.
With  ��x� in the asymptotic form, the end-point singu-
larity coming from the hard-scattering kernel can be
cured, while the asymptotic behavior of  p�x� can not
suppress such kind of end-point singularity.

The pion twist-3 DAs have been studied in
Refs. [8,25,26]. They employed the conformal symmetry
and the equations of motion of the on-shell quarks within
the hadron to get the relations among the two-particle
twist-3 DAs, i.e.,  p�#� and  ��#� (here and hereafter
# � �2x� 1�), and the three-particle twist-3 DA  3	��i�
(�i (i � 1; 2; 3) is the longitudinal momentum fraction of
the corresponding constituent in the three-particle state
(higher Fock state, e.g., ju �dgi) of the pion and satisfiesP
i�i � 1). Then they took the moments of  3	��i� to

obtain the approximate forms for the two-particle twist-3
DAs. However as has been argued in Ref. [24], since the
quarks are not on-shell, it is questionable to use the
equation of motion. So Ref. [24] suggested to calculate
the moments of the pion two-particle twist-3 DAs directly
from the QCD sum rules.

Under the approximation that the lowest pole dominate
and the higher dimension condensates are negligible, the
sum rule for the moments of p�#� can be written as [24],

h#2np i � h#0pi �
M4

�mp
0 �

2f2	
em

2
	=M2

�
3

8	2

1

2n� 1

�

�
1� �1�

s	
M2�e

�s	=�M2�

�

�
2n� 1

2

�mu �md�h �  i

M4 �
2n� 3

24

h�s	 G
2i

M4

�
16	
81

21� 8n�n� 1��
h

������
�s

p �  i2

M6

�
; (5)
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where M is the Borel parameter and h#2np i is the moment
of  p�#�, which is defined by h#2np i � 1

2

R
1
�1 #

2n p�#�d#.
The parameter s	 in Eq. (5) should be chosen to make the
moments and the parameter mp

0 most stable againstM2 in
a certain range. In Eq. (5), one may observe that the usual
�	-dependence in the sum rule for the moments of p�#�
[8,25,26] has been replaced by an undetermined parame-
ter mp

0 . With the help of Eq. (5), setting h#0pi � 1 and
varying the Borel parameter M in a reasonable range, we
can obtain the values for the moments that are necessary
to fit the parameters for our model wave function.

Now we construct a model wave function  p�x;k?� of
the twist-3 part that is related to  p�x� by the definition
Eq. (4). The intrinsic transverse momentum-dependence
is determined by the nonperturbative dynamics and at
present we cannot solve it. Ref. [27] suggested a connec-
tion between the equal-time wave function  c:m:�q?� in
the rest frame and the LC wave function  LC�x;k?� in the
infinite momentum frame, i.e.,

 c:m:�q?� $  LC


k2
? �m2

4x�1� x�
�m2

�
; (6)
which expressed that the LC wave function should be a
function of the bound state off-shell energy. Equation (6)
is the so called BHL prescription[28]. Recently, some
improvements on the transverse momentum-dependence
of the wave function have been given in Ref. [29], which
presents a systematic study of the B meson LC wave
function in the heavy-quark limit and by applying the
QCD equations of motion. Their results show that under
the Wandzura-Wilczek approximation [8,30], the trans-
verse and the longitudinal momenta in the B meson wave
function are correlated through the combination
�k2

?=x�1� x�1. By adopting the above prescription
Eq. (6) and by using the harmonic oscillator model in
the rest frame, the transverse momentum-dependence
part, ��x;k?�, can be written as[31],

��x;k?� / exp


�

m2 � k2?
8�2x�1� x�

�
; (7)
where m and � are the quark mass and the harmonic
parameter, respectively. Combining it with the new form
of  p�#�, which is in the Gegenbauer polynomial expan-
sion [8,24–26], one can construct a model wave function
with kT dependence,
1Here x � !=�2 ��� 2 �0; 1�, where !, roughly speaking, is
the longitudinal momentum of the light quark in B meson and
�� � �M�mb� is the ‘‘effective mass’’ of B meson in the
heavy-quark effective theory.
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 p�x;k?� � �1� BpC
1=2
2 �1� 2x� � CpC

1=2
4 �1� 2x��

�
Ap

x�1� x�
exp



�

m2 � k2?
8�2x�1� x�

�
;

(8)

where C1=2
2 �1� 2x� and C1=2

4 �1� 2x� are Gegenbauer
polynomials and the coefficients Ap, Bp and Cp can be
determined by the DA moments. In Eq. (8), only the first
three terms in the Gegenbauer polynomial expansions
have been considered. Since the higher moments of
 p�#� obtained from the sum rule (Eq. (5)) depends
heavily on the Borel parameters, it is unreliable to do
further expansions, so we only take the first three mo-
ments which have a better confidence level for our dis-
cussion. The parameters m and � can be taken from
assuming the same kT dependence as the twist-2 wave
function, and here we take [31]

m � 290 MeV; � � 385 MeV; (9)

which are derived for hk?
2i � �356 MeV�2. From the

model wave function Eq. (8), we obtain

 p�#� �
Ap�

2

2	2 1� BpC
1=2
2 �#� � CpC

1=2
4 �#��

� exp


�

m2

2�2�1� #2�

�
: (10)

Reasonable ranges for the  p�#� moments have been
given in Ref. [24] by applying the QCD sum rules
(Eq. (5)), i.e., h#2i � �0:340; 0:360� and h#4i �
�0:160; 0:210�. Here we take

h#0i � 1; h#2i � 0:350; h#4i � 0:185; (11)

for our latter discussion. The parameters in the wave
function can then be determined as,

Ap � 2:841� 10�4 MeV�2; Bp � 1:302;

Cp � 0:126:
(12)

As is shown in Fig. 1, the shape of the present DA for
 p�#� is very close to the one that is proposed in Ref. [24].

In the model wave function defined in Eq. (8), only the
usual helicity components ��1 � �2 � 0� have been taken
into account, while the higher helicity components ��1 �
�2 � �1� which come from the spin-space Wigner rota-
tion have not been considered. As has been pointed out in
Refs. [18,32], there is a large suppression coming from the
higher helicity components in the leading twist wave
function, and one may expect that the higher helicity
components in the higher twist wave functions also will
do some contributions to the pion form factor. So we need
to consider the higher helicity components in the twist-3
wave function. The full form for the LC wave function,
i.e.,  fp�x;k?�, which includes all the helicity compo-
nents, can be found in the appendix. From  fp�x;k?�,
-3
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FIG. 1. Different type of twist-3 DA. The solid line is for our
 p�#�. And for comparison, we list the asymptotic DA, the DAs
of Ref. [24] and Refs. [8,25] in diamond line, the dashed line
and the dash-dot line, respectively.
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one may directly find that its DA f
p�#� is almost coincide

with  p�#� and for simplicity, we can take the approxi-

mate relation,  f
p�#� �  p�#�.

In Fig. 1, we show our  p�#� in solid line, and for
comparison, we also present the asymptotic DA, the DAs
of Ref. [24] and Refs. [8,25] in the diamond line, the
dashed line and the dash-dot line, respectively. One may
observe that the possible end-point singularity coming
from the hard-scattering kernel will be suppressed in our
DA and the twist-3 contribution can be greatly suppressed
at the present experimentally accessible energy region.
III. THE TWIST-3 CONTRIBUTION TO
THE PION FORM FACTOR IN THE

MODIFIED PQCD APPROACH

In the large Q2 region, by considering only the lowest
valence quark state of the pion (i.e., n � m � 2 in Eq. (2))
and by doing the Fourier transformation of the wave
function with the formula,

 �xi;k?;�f� �
Z d2b

�2	�2
e�ib�k? ̂�xi;b;�f�;

we can transform the pion form factor Eq. (2) into the
compact parameter b space [2,33],

F	�Q2� �
Z
dxidb�dyjdh� ̂�xi;b;�f�T̂�xi;b; yj;h;�f�

�  ̂�yj;h;�f� � St�xi�St�yj�

� exp�S�xi; yj; Q;b;h;�f��; (13)
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where �̂f � ln��f=�QCD�, dxidb� � dx1dx2d
2b1�1�

x1 � x2�=�16	3� and the hard kernel

T̂�xi;b; yj;h;�f� �
Z d2k?

�2	�2
d2l ?
�2	�2

e�ib�k?�ih�l?

� T�xi;k?i; yj; l?j;�f�:

The factor exp�S�xi; yj; Q;b;h;�f�� contains the
Sudakov logarithmic corrections and the renormalization
group evolution effects of both the wave functions and the
hard-scattering amplitude,

S�x1; y1; Q;b;h;�f� �

("X2
i�1

s�xi; b;Q� �
X2
j�1

s�yj; h; Q�

#

�
1

�1
ln
�̂f

b̂
�

1

�1
ln
�̂f

ĥ

)
; (14)

where b̂ � ln�1=b�QCD�, ĥ � ln�1=h�QCD� and s�x; b; Q�
is the Sudakov exponent factor, whose explicit form up to
next-to-leading log approximation can be found in
Ref. [34]. In Eq. (13), St�xi� and St�yi� come from the
threshold resummation effects and the exact form of each
involves one parameter integration [35]. In order to sim-
plify the numerical calculations, we take a simple pa-
rametrization proposed in Ref. [35],

St�x� �
21�2c��3=2� c�����

	
p

��1� c�
x�1� x��c; (15)

where the parameter c is determined around 0:3 for the
pion case.

To obtain the momentum projector for the pion, one
may take the Fourier transformation of the bilocal op-
erator matrix element defined in Eq. (3) and (6),

M	
�� �

if	
4

�
p6 �5 	�x;k?� �mp

0�5

�
 p�x;k?�

� i���



n� �n�

 0
��x;k?�

6

� p�
 ��x;k?�

6

@
@k?�

���
��
; (16)

where  0
��x;k?� � @ ��x;k?�=@x. n � �1; 0; 0?� and

�n � �0; 1; 0?� are two unit vectors that point to the plus
and the minus directions, respectively. Note we have used
the parameter mp

0 to replace the factor �	 in Eq. (16).
With the help of the above equations, the final formula

for the pion form factor in the modified pQCD approach
can be written as,
-4
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F	�Q
2� �

16

9
	f2	Q

2
Z 1

0
dxdy

Z 1

0
bdbhdh�s��f� �

�
�y
2
 ̂	�x; b;�f� ̂

�
	�y; h;�f� �

�mp
0 �

2

Q2

�
y ̂p�x; b;�f� ̂

�
p�y; h;�f�

� �1� �y� ̂p�x; b;�f�
 ̂0�
� �y; h;�f�

6
� 3 ̂p�x; b;�f�

 ̂�
��y; h;�f�

6

��
T̂�x;b; y;h;�f�

� St�xi�St�yj� � exp�S�xi; yj; Q;b;h;�f��; (17)
where �x � �1� x�, �y � �1� y� and  ̂0�
� �y; h;�f� �

@ ̂�
��y; h;�f�=@y. The first term in the square bracket

gives the general twist-2 contribution and the remaining
terms that are proportional to an overall factor
�mp

0 �
2=Q2� give the twist-3 contribution. The hard-

scattering amplitude T̂�x;b; y;h;�f� is given by

T̂�x;b; y;h;�f� � K0�
������
�x �y

p
Qb�5�b� h�

� K0�
���
�y

p
Qb�I0�

���
�y

p
Qh� � 5�h� b�

� K0�
���
�y

p
Qh�I0�

���
�y

p
Qb��; (18)

where the higher power suppressed terms such as
�k?

2=Q2� have been neglected in the numerator, I0 and
K0 are the modified Bessel functions of the first kind and
the second kind, respectively. If taking out the threshold
factors and absorbing the Sudakov factor into the defini-
tion of the wave functions, Eq. (17) agrees with Eq. (8) in
Ref. [23] (the factor before  ̂p�x; b;�f� ̂

�
��y; h;�f�=6�

should be three other than two obtained there). To ensure
that the pQCD approach is really applicable, one has to
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specify carefully the renormalization scale �f in the
strong coupling constant. There are many equivalent
ways to do so, a popular way is to freeze �s�Q2� at lower
Q2[9,36–39]. Here we take the scheme that is proposed in
Refs. [2,23], i.e., its value is taken as the largest renor-
malization scale associated with the exchanged virtual
gluon in the longitudinal and transverse degrees,

�f � max�
������
�x �y

p
Q; 1=b; 1=h�; (19)

The Landau pole in the coupling constant at �f � �QCD
can be safely avoided in this way.

Only the usual helicity components ��1 � �2 � 0� in
the pion wave function have been considered in Eq. (17).
From Eq. (A2) in the appendix, one may observe that the
full form of the pion LC wave function have four helicity
components (Table I): namely,

 f � � f"";  
f
"#;  

f
#";  

f
##�; � f �  f	;  

f
p;  

f
��: (20)

By including the higher helicity components into the pion
form factor, Eq. (17) can be improved as
F	�Q
2� �

16

9
	f2	Q

2
Z 1

0
dxdy

Z 1

0
bdbhdh�s��f� �

(
�y
2

X
�1�2

P � ̂f	; �1; �2� �
�mp

0 �
2

Q2

�

"
y
X
�1�2

P � ̂fp; �1; �2� �
�1� �y�

6

X
�1�2

P � ̂f
0

� ; �1; �2� �
1

2

X
�1�2

P � ̂f�; �1; �2�

#)

� T̂�x;b; y;h;�f� � St�xi�St�yj� � exp�S�xi; yj; Q;b;h;�f��; (21)

where  ̂f
0

� � @ ̂f�=@x and

X
�1�2

P � ̂f	; �1; �2� � � ̂f�	"# ̂
f
	"# �  ̂f�	#" ̂

f
	#"� � � ̂f�	"" ̂

f
	"" �  ̂f�	## ̂

f
	##�;

X
�1�2

P � ̂fp; �1; �2� � � ̂f�p"# ̂
f
p"# �  ̂f�p#" ̂

f
p#"� � � ̂f�p"" ̂

f
p"" �  ̂f�p## ̂

f
p##�;

X
�1�2

P � ̂f
0

� ; �1; �2� � � ̂f�p"# ̂
f0

�"# �  ̂f�p#" ̂
f0

�#"� � � ̂f�p"" ̂
f0

�"" �  ̂f�p## ̂
f0

�##�;

X
�1�2

P � ̂f�; �1; �2� � � ̂f�p"# ̂
f
�"# �  ̂f�p#" ̂

f
�#"� � � ̂f�p"" ̂

f
�"" �  ̂f�p## ̂

f
�##�:

In the above equation, because both the photon and the gluon are vector particles, the quark helicity is conserved at each
vertex in the limit of vanishing quark mass [40]. Hence there is no hard-scattering amplitude with the quark’s and the
antiquark’s helicities being changed. For the hard-scattering amplitude T̂�x;b; y;h;�f�, we have implicitly adopted the
-5
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FIG. 2. Twist-3 contribution to the pion form factor Q2F�Q2�,
where the second moment of  p�x;k?� or  fp�x;k?� is taken to
be h#2i � 0:350. The dash-dot line and the dashed line are the
twist-3 contributions for the full form of the LC wave function
with or without considering the kT dependence in the quark
propagator. The solid line is for the twist-3 contribution from
the LC wave function that contains only the usual helicity
component but is normalized to unity.

TABLE I. The full form of the LC wave function  f�x;k?� �  �x;k?�8	 with the helicity function 8	 being included.  f�x;k?�

stands for  f	�x;k?�,  
f
p�x;k?� and  f��x;k?�, respectively.

�1�2 "" "# #" ##

 f�1�2 �x;k?� �
kx�iky���������������
2�m2�k2�

p  �x;k?�
m���������������

2�m2�k2�
p  �x;k?� � m���������������

2�m2�k2�
p  �x;k?� �

kx�iky���������������
2�m2�k2�

p  �x;k?�

TAO HUANG AND XING-GANG WU PHYSICAL REVIEW D 70 093013
approximate relation for all the twist structures in
Eq. (21), i.e.,

T̂�x;b; y;h;�f�
"#�#" � �T̂�x;b; y;h;�f�

""�##: (22)

By ignoring the transverse momentum-dependence in the
quark propagator and applying the symmetries of the
wave functions, especially the fact that  f�"" �x;k?� �
 f##�x;k?�, Ref. [32] pointed out that the approximate
relation Eq. (22) can be strictly satisfied. In fact, when
the transverse momentum-dependence in the quark
propagator has been ignored, the TH depends only on
one compact b-space, and Eq. (22) can be changed to a
strict one, i.e., T̂�x; y;b;�f�

"#�#" � �T̂�x; y;b;�f�
""�##.

As is shown in Ref. [2], the transverse momentum-
dependence in the quark propagator will give about
15% correction at Q � 2 GeV [2], so this effect can not
be safely neglected. The hard-scattering amplitude for the
twist-2 contribution has been strictly calculated in
Ref. [18] within the LC pQCD approach. One may find
that when all the kT dependence are included, strictly
T̂�x;b; y;h;�f�

"#�#" � �T̂�x;b; y;h;�f�
""�## and

Eq. (22) can be approximately satisfied. In the following
discussions, we will keep the transverse momentum-
dependence in the hard-scattering amplitude fully and
use the approximate relation Eq. (22) to estimate all the
helicity components’ contributions to the pion form
factor.

Before doing numerical calculations, we would like to
mention a few words on the value of mp

0 . Based on the
equation of motion of on-shell quarks, the authors used
�	 � m2

	=�mu �md� � 2:0 GeV instead of mp
0 for the

twist-3 wave functions in Refs. [8,23,41]. A running
behavior has been introduced in Refs. [19–22] and with
this choice, one may find that the average value for �	
over the intermediate energy region is around 2:5 GeV. In
Refs. [35,42] a smaller phenomenological value
�1:4 GeV, which is consistent with the result obtained
from the chiral perturbation theory [25,43], is used to fit
the B meson to the light meson transition form factors.
Based on the moment calculation by applying the QCD
sum rules, Ref. [24] obtained mp

0 � 1:30� 0:06 GeV,
which is very close to the above phenomenological value.
So to be consistent with our model wave function con-
structed in the last section, we will take mp

0 � 1:30 GeV
for our latter discussions.

We show the twist-3 contribution to pion form factor
Q2F�Q2� with all helicity components (i.e., using the full
form of the LC wave functions  fp�x;k?� and  f��x;k?�)
093013
calculated within the modified pQCD approach in Fig. 2,
where the second moment of  fp�x;k?� is taken to be
h#2i � 0:350. One may observe that the transverse
momentum-dependence in the quark propagator will
give about 25% correction at Q2 � 2 GeV for the twist-
3 contribution, which is bigger than the case of the
leading twist contribution. So it is more essential to
keep the transverse momentum-dependence fully into
the hard-scattering kernel for the twist-3 contribution.
As a comparison, we also show the contribution from
the twist-3 wave functions (i.e.  p�x;k?� and  ��x;k?�)
that contain only the usual helicity component but are
normalized to unity in Fig. 2. One may find the contribu-
tion from the twist-3 wave function that contains only the
usual helicity component but is normalized to unity (the
solid line) is larger than the contribution from the wave
function with all the helicity components being consid-
ered (the dash-dot line). It is reasonable and is also the
case of the twist-2 contribuion [18], because if one nor-
malizes the valence Fock state to unity without including
the higher helicity components, then the contribution
-6



MODEL FOR THE TWIST-3 WAVE FUNCTION OF THE. . . PHYSICAL REVIEW D 70 093013
from the valence state can be enhanced and become
important inadequately.
2By using the prescription Eq. (6) for the intrinsic kT
dependence (Eq. (23) with g�x� � x�1� x�), we can construct
another three different model wave functions for  p�x;k?�.
However one may find that the moments of these three wave
functions are too small and are out of the reasonable range
obtained from the QCD sum rule, so we will not take them for
our study.
IV. COMPARISON WITH OTHER MODELS FOR
TWIST-3 WAVE FUNCTION

As has been pointed out in Sec. III, the contribution
from the twist-3 wave functions  p�x;k?� and  ��x;k?�

that contain only the usual helicity components but is
normalized to unity is larger than the contribution from
the wave functions  fp�x;k?� and  f��x;k?� with all the
helicity components being considered. However, as is
shown in Fig. 2, since both of the twist-3 contributions
have a similar behavior and are close to each other, the
qualitative conclusions will be the same. And for easy
comparing with the results in the literature, we will take
the LC wave functions  p�x;k?� and  ��x;k?� that only
contain the usual helicity components for the discussions
in the present section.

Because of the end-point singularity, the twist-3 con-
tribution depends heavily on the twist-3 wave function,
especially on  p�x;k?�. In this section, we will do a
comparative study on the twist-3 contribution from dif-
ferent type of  p�x;k?�. For this purpose, we take
Eq. (17) to calculate the pion form factor, in which only
the usual helicity components in the wave functions have
been taken into consideration.

The twist-2 and twist-3 wave functions  	,  p and  �
may have different transverse momentum-dependence,
and for simplicity, we assume the same transverse
momentum-dependence for these space wave functions.
For the transverse momentum-dependence of the wave
function, we take a simple Gaussian form, i.e.,

��x;k?� �
A
g�x�

exp


�
m2 � k2?
8�2g�x�

�
; (23)

where A is the normalization factor, g�x� is either one or
x�1� x�. When g�x� � x�1� x�, it is agree with the BHL
prescription mentioned in Sec. II. After making the
Fourier transformation, Eq. (23) can be transformed
into the compact parameter b space as,

��x;b� �
2	A
g�x�

Z 1=b

0
exp



�
m2 � k2?
8�2g�x�

�
J0�bk?�k?dk?;

(24)

where the upper limit �1=b� is necessary to insure the
wave function to be ‘‘soft’’[44,45].

Next, we consider the pion wave functions. The twist-2
wave function  	�x;k?� with the prescription Eq. (6) can
be written as

 	�x;k?� � A	 exp


�

m2 � k2?
8�2x�1� x�

�
; (25)

where the parameters can be determined by the normal-
093013
ization condition of the wave function

Z 1

0
dx

Z d2k?

16	3  	�x;k?� � 1; (26)

and some necessary constraints [31]. Taking the parame-
ter values in Eq. (9), we obtain A	 � 1:187�
10�3 MeV�2. The asymptotic form of twist-3 DA  ��x�
is the same as that of 	�x�, and the end-point singularity
coming from the hard-scattering amplitude can also be
cured. So for  ��x� we also take its asymptotic form. For
the twist-3 contribution to the pion form factor, the main
difference for the existed results[19–23] comes mainly
from the different models for  p�x;k?�. The difference
caused by the different model of  ��x;k?� (if all of them
are asymptotic like) are quite small, so in the following,
we will only consider the difference caused by a different
type of  p�x;k?� and the contribution from  ��x;k?�

will be included as a default with the fixed asymptotic
form for its DA and the same kT dependence as  p�x;k?�.

In the asymptotic limit,  as
p �x� � 1, the end-point sin-

gularity coming from the hard-scattering amplitude can
not be cured, and the model dependence of  p�x� is much
more involved. Taking the asymptotic DA and ignoring
the kT dependence in the wave function, Refs. [19,21,22]
obtained a much larger contribution in a wide energy
region 2 GeV2 <Q2 < 40 GeV2, comparing with the
twist-2 contribution. Using the model wave function of
 p�x;k?� constructed in Sec. II, one may find that the
twist-3 contributions are suppressed certainly.

To study this effect more clearly, we compare our
model with three different types of  p�x;k?�. In the
literature, most of the calculations on the twist-3 contri-
bution of the pion take  p�x� as  p�x;k?�, i.e., without
considering the intrinsic kT dependence in the wave func-
tion, some examples for the electromagnetic pion form
factor can be found in Refs. [19,21,22] and examples for
the B! 	 form factor can be found in Refs. [35,42].
However, as has been argued in several papers
[18,23,46], the intrinsic transverse momentum-
dependence in the wave function is very important for
the pion form factor and the results will be overestimated
without including this effect. So in our comparison, the
three different type of wave functions are constructed by
adding a common simple Gaussian form (Eq. (23) with
g�x� � 1) to three different type of distribution ampli-
tudes used in the literature2, i.e., the one of asymptotic
behavior, the one in Ref. [8] and the one in Ref. [24]
-7
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respectively,

 �1�
p �x;k?� � A0

p exp


�

k2?
8�02

�
; (27)

 �2�
p �x;k?� � 1� 0:43C1=2

2 �2x� 1�

� 0:09C1=2
4 �2x� 1��A0

p exp


�

k2?
8�02

�
; (28)

 �3�
p �x;k?� � 1� 0:137C1=2

2 �2x� 1�

� 0:721C1=2
4 �2x� 1��A0

p exp


�

k2?
8�02

�
:

(29)

The parameters A0
p and �0 can be determined from the

similar wave function normalization condition as
Eq. (26), A0

p � 7:025� 10�4 MeV�2 and �0 �

168 MeV. For the wave functions  �i�
p (i � 1; 2; 3), the

harmonic parameter �0 is different from that of
 	�x;k?�, however it can be taken as an effective/average
value of the harmonic parameter with m � 0 and g�x� �
1. The moments of the corresponding DAs are listed in
Table II.

We show the contributions to the pion form factor from
the different model for  p�x;k?� in Figs. 3(a) and 3(b),
where the contribution from our model wave function
 p�x;k?� with varying second moment h#2i is shown
by a shaded band and the twist-2 contribution from
 	�x;k?� is included in Fig. 3(a) for comparison. Our
present result for  �1�

p �x;k?� (in dashed line) is much
lower than the result shown in Ref. [23], since the value
of �	 used there has been changed to the present value of
mp

0 . One may observe that the twist-3 contribution is
improved with our model wave function, and for the
case of h#2i � 0:350, at about Q2 � 30 GeV2, it is only
about 45% comparing with the twist-2 contribution. This
behavior is quite different from the previous observa-
tions [19–23], where they concluded that the twist-3
contribution to the pion form factor is comparable or
even larger than that of the leading twist in a wide
intermediate energy region.
TABLE II. The first three moments for the twist-2 and the
twist-3 wave functions, where all the full form of LC wave
functions have the same BHL-like kT dependence,
 f	( f�� �  	( ��8	 and  fp �  p8	.

� � � Without Wigner rotation With Wigner rotation
� � �  	/ �  p  �1�

p  �2�
p  �3�

p  f	/ f�  fp

h#0i 1 1 1 1 1 1 1
h#2i 0.167 0.350 0.333 0.391 0.352 0.176 0.350
h#4i 0.060 0.185 0.200 0.251 0.197 0.066 0.185
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As is shown in Figs. 3(a) and 3(b), the twist-3 contri-
bution from  �1�

p �x;k?� is comparable to our model wave
function, which also has the right power behavior.We take
a simple Gaussian behavior (Eq. (23) with g�x� � 1) for
the transverse momentum-dependence in  �1�

p �x;k?�, i.e.,
a complete factorization between longitudinal and
transverse momentum-dependence in the wave function.
This Gaussian distribution behavior shows a strong dump-
ing at large transverse distances, � exp��2�2b2�,
while our model function with the prescription Eq. (6)
has a slow-dumping with oscillatory behavior,
� cos�

������������������
x�1� x�

p
b�2 � 	=4�=

���
b

p
. If we also take the sim-

ple transverse momentum behavior in our model wave
function, i.e., the one as  �3�

p �x;k?�, we find that the twist-
3 contribution will be even lower, which is shown clearly
by the dotted line in Figs. 3(a) and 3(b). However as is
shown in Fig. 3(b), we can not achieve a right power
behavior with  �3�

p �x;k?�, i.e., it drops down too quickly.
Finally, with our model wave function for  p�x;k�, we

discuss the model dependence of the twist-3 contribution
on the DA moments h#2ni. Here we take the second mo-
ment h#2i, which gives the main contribution to  p�#�, as
an example. Varying the second moment h#2i within a
broader range, i.e., h#2i 2 �0:320; 0:370�, and adjusting
the fourth moment h#4i to make  p�#� has a closed
behavior as the one that is obtained in Ref. [24] (i.e., the
dashed line in Fig. 1), we can determine the correspond-
ing parameters Ap, Bp and Cp in the wave function
 p�x;k�. The twist-3 contribution to the pion form factor
with varying second moment h#2i has been shown by a
shaded band in Figs. 3(a) and 3(b). One may observe that
the pionic twist-3 contribution increases with the incre-
ment of h#2i and all has a quite similar behavior on the
variation of the energy scale Q2, i.e., as is shown in
Fig. 3(b), the right asymptotic power behavior of order
1=Q4 has already been achieved at the present experimen-
tally accessible energy region.

V. SUMMARY AND DISCUSSION

In this paper, we have constructed a model wave func-
tion for  p�x;k?� based on the moment calculation [24]
by using the QCD sum rule approach. It has a better end-
point behavior than that of the asymptotic one and its
moments are consistent with the QCD sum rule results.
Although its moments are slightly different from that of
the asymptotic DA, its better end-point behavior will cure
the end-point singularity of the hard-scattering ampli-
tude and its contribution will not be overestimated at all.

With this model wave function, by keeping the kT
dependence in the wave function and taking the
Sudakov effects and the threshold effects into account,
we have carefully studied the twist-3 contributions to the
pion form factor. Comparing the different models for
 p�x;k?�, a detailed study on the twist-3 contribution
-8
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FIG. 4 (color online). Perturbative prediction for the pion
form factor. The diamond line, the dash-dot line, the dashed
line and the solid line are for LO twist-2 contribution, the
approximate NLO twist-2 contribution [10,17], the twist-3
contribution and the combined total hard contribution, respec-
tively. The experimental data are taken from [50].

FIG. 3 (color online). Different twist-3 wave function’s contribution to the pion form factor, where the left diagram is forQ2F�Q2�

and the right is for Q4F�Q2�. The dashed line, the dash-dot line and the dotted line are for  �1�
p �x;k?�,  

�2�
p �x;k?� and  �3�

p �x;k?�
respectively. The contribution from our model wave function  p�x;k?� with varying second moment h#2i is shown by a shaded
band, whose lower and upper edges correspond to h#2i � 0:320; 0:370 respectively. For comparison, the twist-2 contribution from
 	�x;k?� is shown in solid line.
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to the pion form factor has been given within the modified
pQCD approach. It has been shown that our model wave
function  p�x;k?� can give the right power behavior for
the twist-3 contribution. With the present model wave
function defined in Eq. (8) for  p�x;k?�, our results
predict that, at about Q2 � 10 GeV2, the twist-3 contri-
bution begins to be less than the twist-2 contribution, and
for the wave function  p�x;k?� with h#2i � 0:350 at
about Q2 � 30 GeV2, it is only about 45% comparing
with the twist-2 contribution. This behavior is quite dif-
ferent from the previous observations [19–23], where they
concluded that the twist-3 contribution to the pion form
factor is comparable or even larger than that of the lead-
ing twist in a wide intermediate energy region up to
40 GeV2. The higher helicity components ��1 � �2 �
�1� in the twist-3 wave function that come from the
spin-space Wigner rotation have also been considered.
The higher helicity components in the twist-3 wave func-
tion will do a further suppression to the contribution from
the usual helicity components ��1 � �2 � 0�, and at about
Q2 � 5 GeV2, it will give �10% suppression.

In Fig. 4, we show the combined hard contributions for
the twist-2 and twist-3 contributions to the pion form
factor, where the higher helicity components have been
included in both the twist-2 and the twist-3 wave func-
tions, and the twist-3 contribution has been calculated
with our model wave function  fp�x;k?� with h#2i �
0:350. As has been pointed out in Refs. [2,9], the appli-
cability of pQCD to the pion form factor can only be
achieved at a momentum transfer bigger than Q2 �
4 GeV2, so in Fig. 4, all the curves are started at Q2 �
4 GeV2. Together with the NLO corrections to the twist-2
093013
contributions, which for the asymptotic DA, with the
renormalization scale �R and the factorization scale �f

taken to be �2
R � �2

f � Q2, can roughly be taken as
[10,17], Q2FNLO	 � �0:903 GeV2��2

s�Q2�, one may find
that the combined total hard contribution do not exceed
and will reach the present experimental data. There is still
a room for the other power corrections, such as the higher
Fock states’ contributions [47,48], soft contributions, etc..
-9
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Finally, we will conclude that there is no any problem
with applying the pQCD theory including all power
corrections to the exclusive processes atQ2> a few GeV2.
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APPENDIX: FULL FORM FOR THE
LC WAVE FUNCTION

By doing the spin-space Wigner rotation, we can trans-
form the ordinary equal-time (instantform) spin-space
wave function in the rest frame into that in the LC
dynamics. After doing the Wigner rotation, the covariant
form for the pion helicity functions can be written as
[31,49],

8	�x;k?� �
1���
2

p
~M0

�u�p1; �1��5v�p2; �2�; (A1)

where p1 � �x;k?� and p2 � � �x;�k?� ( �x � 1� x) are
the momenta of the two constituent quarks in the pion,
~M2
0 � �m2 � k2�=x�1� x� and the LC spinors u and v

have the Wigner rotation built into them. Then the full
form of the LC wave function can be written as

 f�x;k?� �  �x;k?�8	�x;k?�; (A2)

where the momentum space wave function  �x;k?� rep-
resents  p�x;k?�,  	�x;k?� and  ��x;k?� respectively.
Because all the LC wave functions can be dealt with in a
similar way, here we only take  p�x;k?� that is defined in
Eq. (8) as an explicit example to show how to determine
the parameters in the full form.

The full form of LC wave function  fp�x;k?� contains
all the helicity components’ contributions and its four
093013
components can be found in Table I. The parameter values
built in the wave function  fp�x;k?� can be done in a
similar way as for the wave function of  p�x;k?� that
contains only the usual helicity components, i.e.,

Ap � 4:088� 10�4 MeV�2; Bp � 1:077;

Cp � �4:317� 10�3 (A3)

m � 309:6 MeV; � � 395:9 MeV;

forhk?
2i � �367 MeV�2 (A4)

where the parameters m, � are determined by the wave
function normalization condition and some necessary
constraints [31], and the values of Ap, Bp and Cp are
determined by requiring the first three moments of its
DA to be the values shown in Eq. (11). From the wave
function Eq. (A2), we obtain

 f
p�#� �

Apm�

	3=2
��������������������
2�1� #2�

p 1� BpC
1=2
2 �#�

� CpC
1=2
4 �#�� exp

�
1� Erf


 ��������������������������
m2

2�2�1� #2�

s ��
;

(A5)

where the error function Erf�x� is defined as Erf�x� �
2���
	

p
R
x
0 e

�t2dt. One may find that  f
p�#� is almost coincide

with  p�#� that is shown in Eq. (10), and for simplicity,

we can take the approximate relation,  f
p�#� �  p�#�. It

is reasonable because we have adjusted the parameters in
both DAs to have the same moments and due the fact that
the momentum space wave function  p�x;k?� is an even
function of k?, one may find that the higher helicity
components in  fp�x;k?� do not contribute to  f

p�#�.
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