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Precision measurements and CKM unitarity
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Determinations of jVudj and jVusj along with their implications for the unitarity test jVudj
2 �

jVusj2 � jVubj2 � 1 are discussed. The leading two-loop radiative corrections to neutron � decay are
evaluated and used to derive a refined relationship jVudj

2�n�1� 3g2A� � 4908�4� s. Employing jVudj �
0:9740�5� from superallowed nuclear decays and the measured neutron lifetime �n � 885:7�7� s leads to
the precise prediction gA � 1:2703�8� which is compared with current direct experimental values.
Various extractions of jVusj are described and updated. The long accepted Particle Data Group value of
jVusj from fitted Ke3 decay rates suggests a deviation from CKM unitarity but it is contradicted by more
recent experimental results which confirm unitarity with good precision. An outlook for possible future
advances is given.
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I. INTRODUCTION

The study of nuclear beta decays played an important
historical role in unveiling universal properties of weak
charged current interactions and in helping to establish
the SU�2�L � U�1�Y Standard Model (SM) of electroweak
unification. In the limit of neglecting electroweak loop
corrections, a special subset of such decays, the super-
allowed 0� ! 0� Fermi transitions, depend only on the
vector current which is conserved and, therefore, not
renormalized by strong interactions at q2 ’ 0. Hence,
they are ideal for extracting jVudj, a cornerstone of the
CKM (Cabibbo-Kobayashi-Maskawa [1,2]) three genera-
tion quark mixing matrix,

VCKM �

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

0
@

1
A: (1)

Indeed, those decays currently provide the very precise
determination [3]

jVudj � 0:9740�5� �0� ! 0� �-decays�; (2)

which we will discuss later in this paper. Combining the
value in Eq. (2) with knowledge about jVusj from kaon
and Hyperon decays along with the fact that jVubj2 ’
2:1�3� � 10	5 [4] is negligibly small, allows one to con-
front the CKM unitarity relation,

jVudj2 � jVusj2 � jVubj2 � 1; (3)

at a high precision level.
04=70(9)=093006(13)$22.50 70 0930
That prediction has been tested to about 
0:15%, an
impressive accomplishment. At that level, it has con-
firmed the presence of very large, �4%, Standard
Model loop corrections in the extraction of jVudj

2 from
the data [5,6]. However, for many years, a small devia-
tion, �2�, from exact unitarity has been persistently
observed. That issue has been further clouded by various
distinct jVusj determinations which seem to be inconsis-
tent with one another. These problems are addressed later
in some detail, when newKe3 results fully consistent with
unitarity are also discussed. Of course, if a real deviation
from unitarity expectations is seen, it signals the presence
of as yet unaccounted for new physics beyond the
Standard Model, an exciting prospect. Alternatively, if
unitarity is respected, constraints on new physics can be
implied. However, jVudj and jVusj must be thoroughly
scrutinized both theoretically and experimentally before
conclusions are drawn.

Neutron beta decay, n! pe	�e, has not until recently
been prominent in efforts to determine jVudj and test
unitarity. It depends on both vector and axial-vector
charged current interactions. The latter are renormalized
by strong interactions at q2 ’ 0. The size of that effect is
parametrized by gA � GA=GV , a fundamental quantity in
its own right. Indeed, the value of gA, which has grown
over time from about 1.23 to 1.27, is important for pre-
dicting the expected solar neutrino flux [7], light element
abundances from primordial nucleosynthesis [8], the spin
content of nucleons [9,10] and for testing the Goldberger-
Treiman relation [11]. A by-product of the analysis in this
paper will be to provide a very precise determination of
06-1  2004 The American Physical Society
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gA that can be compared with more direct neutron decay
asymmetry measurements of that important parameter or
to refine the above-mentioned applications.

As new more intense neutron facilities turn on, experi-
mental measurements of both the neutron lifetime �n and
gA from the electron asymmetry in polarized neutron
beta decay are expected to become much more precise
[12]. Indeed, combining determinations of those two
quantities can yield jVudj with an anticipated uncertainty
competitive with the error in Eq. (2), i.e., dominated by
theory. In preparation for those improvements, we present
in this paper a relationship among jVudj, �n and gA which
includes one- and some dominant two-loop quantum
corrections. It can be used to determine gA from �n and
the jVudj input from superallowed nuclear �-decays or as
an independent measure of jVudj using �n and neutron
decay asymmetry determinations of gA.

Our plan is as follows: In Sec. II, we update the
radiative corrections to neutron decay by incorporating
the O��2� effects due to leading logs, (some) small next-
to-leading logs and Coulombic effects. The last of these
has been considered previously, but with the wrong sign.
We take this opportunity to correct that long-standing
error. In Sec. III, we review and update (slightly) the
extraction of jVudj from superallowed �-decays. Using
that value of jVudj along with the neutron lifetime �n we
derive in Sec. IV a very precise prediction for gA and
compare it with direct asymmetry measurements of that
parameter. Then, in Sec. V, we review and update various
determinations of jVusj and point out inconsistencies
among them. The main problem stems from oldKe3 decay
rates obtained from fitted Particle Data Group (PDG)
studies and is suggestive of errors in some long-standing
(accepted) kaon decay properties. Indeed, recent Ke3 re-
sults from Brookhaven and Fermilab experiments con-
firm significant errors in the old charged and neutral kaon
decay branching ratios and lead to values of jVusj fully
consistent with unitarity. Implications of a unitarity vio-
lation or confirmation in Eq. (3) are briefly discussed and
an outlook for future advances is given in Sec. VI.
II. RADIATIVE CORRECTIONS TO NEUTRON
DECAY

Our analysis of the radiative corrections to neutron
beta decay builds on the results of earlier studies, particu-
larly the classic work by Wilkinson [13]. They included
O��� radiative corrections as well as effects due to the
final state electromagnetic ep interaction embodied in the
Fermi function. A number of other small corrections from
proton recoil, finite nucleon size etc. have also been
examined [14–16].

In the Standard Model, one renormalizes the beta
decay amplitude using [17–22]

G� � 1:16637�1� � 10	5 GeV2; (4)
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the Fermi constant as obtained from the muon total decay
rate (inverse lifetime). In that way, ultraviolet divergences
as well as radiative corrections common to both decay
amplitudes are absorbed into G�. The remaining loop
differences and bremsstrahlung effects can then be fac-
torized into an overall 1� RC correction to the neutron
lifetime, �n,

1

�n
�
G2
�jVudj2

2�3 m5
e�1� 3g2A��1� RC�f; (5)

where f is a phase space factor,

f � 1:6887; (6)

which includes a relatively large Fermi function contri-
bution [13] ��5:6%� as well as smaller nucleon mass, size
and recoil corrections. It has been somewhat updated in
Eq. (6) to incorporate slight nucleon mass shifts.

We note that the electroweak radiative corrections,
denoted by 1� RC, have been factorized in the same
way for both the vector and axial-vector contributions.
(Interference and induced coupling corrections are negli-
gibly small in the case of the lifetime [13,14].) That
factorization effectively defines gA via the relative nor-
malization of the axial-vector current as measured by the
lifetime (it incorporates QED as well as strong interaction
effects in its definition). Employing such a definition for
gA means that there will be some O��� corrections to the
gasyA measured in neutron decay asymmetries that must be
applied before contact with Eq. (5) can be made at a level
of high precision. (Those corrections will be discussed in
Sec. IV.) In this connection, it is worthwhile to note that
the normalization of gA in Eq. (5) is consistent with the
so-called 1=k method, in which the radiative corrections
to various observables in �-decay, such as the lifetime,
the electron spectrum, and the longitudinal electron po-
larization, are expressed in terms of effective couplings
GV and GA [23–26]. The same approach has been em-
ployed to calculate the corrections to the electron asym-
metry [27–31]. The factorization of the short-distance
contributions of the radiative corrections, implicit in
Eq. (5), conforms also with an asymptotic theorem con-
cerning their behavior in arbitrary semileptonic decays
mediated by W
 [32].

To order �, the radiative corrections in Eq. (5) are
given by [5,6,33,34]

RC �
�
2�

�
g�Em� � 4 ln

mZ

mp
� ln

mp

mA
� 2C� Ag

�
; (7)

where g�Em� represents long-distance loop corrections
and bremsstrahlung effects averaged over the �-decay
spectrum [23] (Em � 1:292 579 MeV, the end-point elec-
tron energy in neutron decay),

�
2�

g�Em� � 0:015 056: (8)
-2
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The other parameters in that expression have the values

mZ � 91:1875 GeV; mp � 0:9383 GeV;

mA ’ 1:2 GeV; C ’ 0:891; Ag ’ 	0:34:
(9)

Here, following [3,26,35], we have approximately identi-
fiedmA with the mass of the a1�1260� axial-vector meson.
The value ofC is an update of the calculation discussed in
Ref. [33] (using gA � 1:27 for self-consistency). This
leads to a first order result

RCO���� � 0:037 70; (10)

which is rather sizable. [Together with the Fermi func-
tion, such (primarily) QED corrections increase the neu-
tron decay rate by 9:37%!]

Given the magnitude of the order � corrections in
Eq. (10) and our desire for high precision, it becomes
imperative to include the leading O��2� contributions
and estimate the theoretical uncertainty in the radiative
corrections. Regarding the latter issue, the overall uncer-
tainty is usually obtained by allowing mA in Eq. (7) to
vary by a factor of 2 up or down. That reflects the fact that
the last three terms in Eq. (7) result from axial-vector
current loop effects and their calculation is not perfectly
matched in going from long- to short-distance contribu-
tions. The scale, mA, uncertainty reflects the matching
error in a rough, but numerically realistic, way. With that
methodology, the theoretical uncertainty is estimated to
be

RC�uncertainty� � 
0:0008; (11)

an error common to all neutron and nuclear �-decay
studies. Reducing that dominant theory matching error
would be very useful, but it is extremely challenging and
beyond the scope of this paper.

Our focus in this section is to include the so-called
leading log corrections of the form �nlnn�mZ=mp� and
�nlnnmp=�2Em��, n � 2; 3; . . . in Eq. (7) along with some
of the other potentially most important O�2 ln�mZ=mp��

and O��2� effects. Regarding the last of those, there is a
relatively important Coulomb correction not included in
the product of the Fermi function and 1� RC. It is called
�
2�$ in the literature and approximated by (see the appen-
dix)

�
2�

$ ’ 	�2 ln
mp

me
� � � � � 	0:000 43: (12)

Although considered previously, for some reason it was
given the wrong sign. Correcting the value �0:0004 used
in the past to Eq. (12) corresponds to a 	0:000 83 shift
which is quite significant at the level of our analysis.

In the appendix, we give formulas that sum the leading
log contributions in Eq. (7) via the method in Ref. [33].
They lead to the replacements
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1�
2�
�

ln
mZ

mp
! S�mp;mZ� � 1:022 48;

1�
3�
2�

ln
mp

2Em
! L�2Em;mp� � 1:020 94;

(13)

where the large 3�
2� lnmp=�2Em�� contribution is hidden in

the �
2� g�Em� function of Eq. (7) [23].

Our final new input is to estimate next-to-leading log
(NLL) corrections of the form �2 ln�mZ=mp� and
�2 ln�mp=mf� coming from fermion vacuum polarization
insertions in loops with photon propagators. Because they
all enter with the same sign and there are quite a few
leptons and quarks that contribute, one might expect
those fermion loops to dominate the NLL contribution.
However, as illustrated in the appendix, they turn out to
be quite small in the MS formalism we employ. We
estimate

NLL � 	0:0001: (14)

Other O��2� contributions are not expected to be signifi-
cant, but a complete calculation to O��2� would be very
difficult and beyond the scope of this paper. Also, such a
refined calculation is not obviously warranted until the
one loop matching uncertainty in Eq. (11) is significantly
reduced.

Our next step is to organize the radiative corrections
into a factorized form that does not induce spurious
contributions when multiplied out. To accomplish that
end, we take an effective field theory approach, dividing
contributions into very long-distance (the Fermi func-
tion), long-distance, intermediate distance, and short-
distance factors. Of course, we must make certain that
the matching is done correctly, for example, by introduc-
ing terms such as �

2�$ [see Eq. (12)] when appropriate.
Overall, we employ the following factorization beyond
the Fermi function:

1� RC �

�
1�

�
2�

�
g�Em� 	 3 ln

mp

2Em

��
�

�
L�2Em;mp�

�
�
�
C�

�
2�

$
�
�

�
S�mp;mZ� �

��mp�

2�

	
ln
mp

mA

� Ag



� NLL

�
; (15)

where ��mp� ’ 1=134. Employing the values we have
given above for the quantities in Eq. (15), one finds

1� RC � 1:0390�8�; (16)

where the uncertainty in Eq. (11) has been employed.
Comparing Eqs. (16) and (10), one sees that the O��2�
and summation effects have increased the RC by 0.0013,
not a very large shift. Nevertheless, they must be included
in precision studies. In summary, our updated analysis
includes the following two-loop, O��2� contributions: (1)
-3



TABLE I. The values of jVudj obtained from superallowed
beta decays. The error given does not include nuclear and
theory uncertainties common to the analysis. It is taken from
Ref. [36] and used to obtain the weighted average.

Nucleus jVudj

10C 0.973 88(76)
14O 0.974 45(41)
26Al 0.974 16(35)
34Cl 0.974 31(40)
38K 0.974 24(43)
42Sc 0.973 51(38)
46V 0.973 72(43)
50Mn 0.973 96(44)
54Co 0.974 09(43)
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Leading Logs, (2) Next-To-Leading Logs from fermion
vacuum polarization effects and (3) Coulombic matching
corrections due to the factorization of the Fermi function.
Other neglected two-loop corrections are not enhanced
by relatively large factors and thus assumed to be
negligible.

Employing Eq. (16) in Eq. (5), we derive the relation-
ship

jVudj2�1� 3g2A��n � 4908
 4 s: (17)

That master formula can be used to extract jVudj via

jVudj �
	

4908�4� s

�n�1� 3g2A�



1=2
; (18)

as �n and gA become more precise or to obtain gA from �n
and jVudj. Currently, one finds from the experimental
averages

�aven � 885:7�7� s (19)

gaveA � 1:2720�18�; (20)

the CKM parameter

jVudj � 0:9729�4��11��4�; (21)

where the errors correspond to �n, gA and RC, respec-
tively. In Sec. III, we compare that value with the more
precise jVudj obtained from superallowed beta decays. Of
course, the full utility of Eq. (18) will be much better
realized as �n and gA measurements improve.

The master formula in Eq. (17) can also be used to
extract a very precise value of gA via

gA �

�
1636�1� s

�njVudj
2 	

1

3

�
1=2
: (22)

Note that the theory uncertainty ( 
 1 s) in Eq. (22) is due
to the mA scale uncertainty in the radiative corrections
and it cancels with the same error in determinations of
jVudj

2 from nuclear decays. The formula in Eq. (22) will
be utilized in Sec. IV.

III. SUPERALLOWED �-DECAYS AND jVudj

Superallowed 0� ! 0� Fermi transitions have been
the focus of many studies, both experimentally and theo-
retically. Here, we start with the recent results of Towner
and Hardy [36]. They have thoroughly scrutinized the
nine very well measured superallowed �-decays, using
RC last updated in Ref. [35,37,38], and taking great care
to correct for various nuclear Coulombic and structure
dependent effects. In the end, they arrive at F t values that
are nucleus independent and can be used to extract jVudj,
modulo uncertainties in the radiative corrections. The Z
independence of their results is an important consistency
check, since the daughter nuclei have Z values ranging
093006
from 5 to 26 with correspondingly different Coulomb and
structure corrections.

In Table I, we give the (slightly) updated values of jVudj
obtained from the nine best measured superallowed
�-decays, incorporating the isospin symmetry-breaking
and structure dependent corrections $C and $NS used by
Towner and Hardy, in conjunction with our new factori-
zation scheme for the radiative corrections in Eq. (15)
(changing Em and $ in that expression as appropriate for
each nucleus). Specifically, we include the corrections
$NS in the second factor of Eq. (15) and append an addi-
tional factor �1	 $C�.

The values of jVudj derived from those distinct mea-
surements are very consistent with one another and range
from about 0.9735 to 0.9745. The weighted average is
centered at jVudj � 0:974 047; so we round down to

jVudj � 0:9740�1��3��4�; (23)

where the uncertainties are experimental, nuclear theory
and RC [see Eq. (11)]. We have checked that the combined
small changes in the RC arising from our new factoriza-
tion in Eq. (15), improvements in the higher order leading
logs, central value of mA, small NLL ( 	 0:0001) correc-
tion etc. tend to cancel. For that reason, the result in
Eq. (23) is essentially the same as the one obtained earlier
by Towner and Hardy [cf. Eq. (2)] using the radiative
corrections given in Ref. [35]. We note that the sign of
the �

2�$ corrections for the superallowed decays (which
are all e� emitters) is correct in the literature and nu-
merically the change in sign of that correction for neu-
tron decay was our biggest modification of previous
results. So, jVudj in Eq. (23) remains the current best
value. Indeed, comparison with jVudj extracted from neu-
tron decay �n and gA values in Eq. (21) shows that they
share the same RC uncertainty, but the error on gA must
be improved by about a factor of 4 before the neutron
decay becomes competitive.
-4
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One way of reducing the RC uncertainty in jVudj,
perhaps by as much as a factor of 2, would be to use the
�� ! �0e��e decay rate for which the loop induced
axial-vector contributions are better controlled and nu-
clear theory uncertainties are circumvented [39].
However, the small branching ratio �10	8 makes that
method statistically challenging. Nevertheless, an on-
going PSI experiment finds

jVudj � 0:9749�26� �
�
BR�� ! e��e�'��

1:2352� 10	4

�
1=2
; (24)

where its dependence on the �� ! e��e�'� branching
ratio (used for normalization) is exhibited. We assume the
SM theory value of 1:2352� 10	4 is correct and hence
obtain jVudj � 0:9749�26�, in excellent agreement with
nuclear and neutron results but with a larger error.
Alternatively, others have chosen to use the PDG recom-
mended branching ratio of 1:230�4� � 10	4 which
leads to jVudj � 0:9728�30� which is also in agreement
within errors even though the central value may appear
low [40].

Note, if we average the jVudj determinations above, we
still find

jVudj � 0:9740�5�; �Average� (25)

because the superallowed �-decays dominate and they
have an average central value slightly larger than 0:9740.
IV. gA: THEORY VS EXPERIMENT

Employing the neutron lifetime measurement in
Eq. (19) and the value of jVudj in Eq. (23), we find via
Eq. (22) the Standard Model prediction

gA � 1:2703�6��5�; (26)

where the errors are in �n and jVudj (nuclear uncertainty).
That precise prediction is larger than the PDG recom-
mended value of 1.2670(30) [41], but smaller than the
single best asymmetry value [42] of

gA � 1:2739�19�; (27)

(after small QED corrections are applied).
For now, the gA in Eq. (26) should be considered the

standard, to be used in solar neutrino flux calculations,
etc. However, to take proper advantage of its precision,
one should employ the neutron decay definition we have
assumed and correct the weak interaction process under
consideration for its own electroweak radiative correc-
tions. As an example, consider the relationship between
the gA defined via the neutron lifetime whose value is
given in Eq. (26) and one defined by the lowest-order
polarized neutron decay asymmetry
093006
A �
2ĝ�1	 ĝ�

1� 3ĝ2
; ĝ � gasyA : (28)

If we wish to replace ĝ by gA in that expression, then there
will be additional (energy dependent) radiative correc-
tions to the asymmetry. Those corrections were computed
long ago, originally by Shann and later confirmed by
many others. They are quite small, leading to about a
0:1% shift in the asymmetry [27]. That effect is corrected
for in the most recent [42] experimental measurement of
the asymmetry, although it is well below current experi-
mental uncertainties. It would be useful to compute the
QED corrections to other processes where the very pre-
cise value of gA in Eq. (26) might prove useful, for
example primordial nucleosynthesis or the solar neutrino
flux.
V. jVusj DETERMINATIONS AND CKM
UNITARITY

The 2002 PDG recommended value for jVusj [41],

jVusjPDG � 0:2196�26� PDG2002; (29)

has remained fixed (modulo small variations in its un-
certainties) for many years. It is based on fitted branching
ratios from rather old data for Ke3 decays, K0 ! �	e��e
and K� ! �0e��e, combined with the kaon lifetimes,
�KL and �K� . The resulting Ke3 decay rates are propor-
tional to jVusj

2 and can be used for its extraction. In fact,
they are analogous to superallowed nuclear beta decays
(or �� ! �0e��e) in that only the weak vector current
contributes at the tree level. Since that current is con-
served in the SU(3) flavor limit, strong interaction cor-
rections are of second order in SU(3) breaking. Those
effects, characterized by the departure of the form factor
f��0� from one along with isospin breaking effects, were
considered in the classic study by Leutwyler and Roos
[43] that forms the basis for the extracted value of jVusj in
Eq. (29).

In addition to SU(3) breaking effects, there is a fairly
significant first order md 	mu correction due to �0–(
mixing ( � 4%) that must be separately applied to the
charged K�

e3 decay rate and an extra Coulombic �	e�

final state QED interaction for K0
e3. The fact that, even

with those different isospin violating corrections, both the
neutral and charged Ke3 decay rates gave consistent val-
ues for jVusj [Eq. (29) is their average] has often been used
to argue for the validity of Eq. (29) as compared with, for
example, Hyperon beta decays which have tended to give
somewhat larger values for jVusj but are not as theoreti-
cally clean.

We note that combining Eq. (29) with the value of jVudj
in Eq. (23) and using jVubj2 ’ 2:1� 10	5 leads to
-5



CZARNECKI, MARCIANO, AND SIRLIN PHYSICAL REVIEW D 70 093006
jVudj20�!0�
� jVusj2PDG � jVubj2 � 0:9969
 0:0015:

(30)

That roughly 2 sigma deviation from unitarity has been a
persistent problem for many years. It has been at times
interpreted as a hint of new physics or as an indication
that something is wrong with the data and/or theory
calculations used to extract jVudj and jVusj. Since perfect
unitarity would require a rather large shift ( � 3:2%) in
jVusj but a relatively smaller shift ( � 0:16%) in jVudj, the
latter has been generally thought to be the root of the
problem. As a result, considerable experimental and theo-
retical scrutiny has been applied to jVudj. Nevertheless, as
emphasized in the first part of this paper, its value has
remained rather stable.

To illustrate the above approach and some of its under-
lying uncertainties, we describe the general Ke3 decay
rate formula [43],

&K ! �e��'�� �
G2
�m

5
K

192�3 SEW�1� $eK�C
2jVusj2f2��0�I

e
K;

(31)

where C2 � 1 for KL or KS decays (to both �
e�) and
C2 � 1=2 for K
. SEW � 1:022 is the universal short-
distance radiative correction in Eq. (15) [32] while $eK
are model dependent long-distance QED corrections re-
cently estimated to be (for radiative inclusive studies)
[44–46]

$e
K0 � �1:3
 0:3%; $eK� � 	0:1
 0:7%: (32)

The form factor f��0� incorporates SU(3) breaking.
Leutwyler and Roos found

f��0� � fK
0�	

� � 0:961
 0:008; (33)

a value recently confirmed by a lattice calculation [47]
and to some extent by new papers based on Chiral
Perturbation Theory (ChPT) [46,48,49]. In particular,
in Ref. [48] it is shown that the only unknown constants
in the O�p6� contributions in ChPT can be determined by
accurate measurements of the slope and curvature of the
scalar Kl3 form factor. In Ref. [50] dispersion relations
are employed to calculate theoretically these two observ-
ables, leading to f��0� � 0:974
 0:0057
 0:0028

0:009, which is consistent with Eq. (33), although the
central value and estimated errors are somewhat larger. In
this paper we employ the classical result given in
Eq. (33), but we also emphasize the importance of refin-
ing the lattice and ChPT calculations of f��0�.

In the case of charged kaons, md 	mu mass splittings
give rise to �	 ( mixing such that

fK
��0

� ’ 1:022fK
0�	

� � 0:9821
 0:008
 0:002: (34)

Finally, the phase space factor is determined for a linear
form factor to be (for a slope factor of 0.028)
093006
Ie
K0 � 0:1550; IeK� � 0:1594; (35)

while for a quadratic form factor suggested by KTeV data
[51],

Ie
K0 � 0:1535: (36)

The difference, �1%, is somewhat accounted for by
assigning an extra 
0:7% form factor decay rate uncer-
tainty. However, we note that the central value of jVusj
will depend on which parametrization is used. The value
of jVusj in Eq. (29) would become 0:2207 if a quadratic
parametrization were employed.

Recently, a number of developments have cast doubt
on the reliability of Eq. (29). First, a new measurement of
the K�

e3 branching ratio by the E865 Collaboration at
Brookhaven National Laboratory finds it to be about
5:3% larger than the fitted PDG value used to obtain
jVusj. Their finding conflicts with the earlier Ke3 decay
rates, even after all isospin violating differences are taken
into account and on its own leads to [52]

jVusj � 0:2236�23�=fK
��0

� �0�; E865 (37)

where fK
��0

� �0� � 1� SU�3� breaking effects, including
md 	mu corrections (but unlike E865, we have not ab-
sorbed QED corrections into its definition). For the value
fK

��0

� �0� � 0:9842�84� effectively used by the E865
Collaboration after removing the QED correction, one
finds jVusj � 0:2272�30� and correspondingly almost per-
fect unitarity,

jVudj20�!0�
� jVusj2E865 � jVubj2 � 1:0003
 0:0017:

(38)

However, that is not the end of the story. In an
even more recent development, the KTeV Collaboration
(E832) [53] at Fermilab has reported a thorough analysis
of all primary KL decay modes, including Ke3. They
find significant disagreement with the PDG fit values
for several of the main KL branching ratios, including
Ke3, exactly the types of shifts required to bring the KL
system into accord with unitarity and the K� results of
E865.

The KTeV Collaboration finds (using the PDG KL life-
time)

&�KL ! �e�� � 0:520�4� � 10	14 MeV: (39)

That radiatively inclusive Ke3 partial decay rate is about
5% larger than the 2002 PDG fit value. After accounting
for measured form factor effects, a new calculation of
QED radiative corrections [44–46] and SU(3) breaking
(via Leutwyler and Roos [43]), they find

jVusj � 0:2253�23� KTeV Ke3; (40)

where (because of the very high statistics) the error is
essentially dominated by SU(3) breaking, form factor
shape and KL lifetime uncertainties. Unlike K�

e3, the KL
-6
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extraction is not directly sensitive to the up-down mass
difference. For K�3, they obtained a similar result
jVusj � 0:2250�23�, which provides strong confirmation.
Taken together with the value of jVudj in Eq. (23), one
finds from Eq. (40)

jVudj2 � jVusj2 � jVubj2 � 0:9994�14� KTeV Ke3;

(41)

in very good agreement with unitarity, a remarkable turn
of events. So, E865 and KTeV are in apparent agreement
regarding jVusj and unitarity. Of course, they are depen-
dent on the K� and KL lifetimes which, if the history of
the kaon branching ratios is any indication, could change
upon closer scrutiny.

It is useful to average the Ke3 and K�3 results from
E865 and KTeV in order to get a single determination of
jVusj and unitarity constraint that can be used to limit
new physics appendages to the Standard Model. To carry
out such an average requires a consistent treatment of
features common to the analyses of both measurements.
In that category we put SU(3) breaking effects and the
form factor shape (linear vs quadratic). We adopt the
KTeV quadratic form factor along with its 
0:7% uncer-
tainty and assume the Leutwyler-Roos estimate of SU(3)
breaking and md 	mu effects. Together they shift the
E865 value of jVusj up by about 0:7%. So, we wind up
with the following two quantities to be averaged:

jVusj�0:2288�26��20� ShiftedE865K�
e3;

jVusj�0:2252�13��20� KTeVK0
e3 andK0

�3 average; (42)

where we employ the KTeV Ke3 and K�3 averages under
the assumption of muon-electron universality. The com-
mon error from the form factor and SU(3) breaking,
�
20�, has been factorized. The remaining uncertainty
in the K� case comes from adding in quadrature the
experimental uncertainties along with errors due to
QED, the K� lifetime, md 	mu effects, and normaliza-
tion uncertainties associated with correlations among K�

branching ratios. We estimate the last of these to be

0:5%. For the KL, the first error comes from experimen-
tal uncertainties, the KL lifetime error (which is appre-
ciable), and QED.

Carrying out a weighted average, using the first set of
errors to do the weighting, we find

jVusj � 0:2259�12��20� E865-KTeV Average; (43)

or, combining errors in quadrature,

jVusj � 0:2259�23� E865-KTeV Average: (44)

Together with the jVudj value in Eq. (2), that gives

jVudj
2 � jVusj

2 � jVubj
2 � 0:9997�10��10�; (45)

where the first and second errors arise from jVudj and
jVusj, respectively. Combining the errors in quadrature,
093006
we obtain

jVudj2 � jVusj2 � jVubj2 � 0:9997�14�; (46)

which confirms unitarity superbly. Agreement with the
Standard Model expectation can be used to constrain
various new physics effects. For example, if the muon
had some additional, exotic decay mode such as �! e�
the wrong neutrinos, it would affect unitarity through the
G� used in our normalization [54]. The good agreement
in Eq. (46) limits the branching ratios for those types of
hypothetical decays to be <0:2%, which is similar to the
best direct constraints, but more general.

At this point we note that the central values of jVusj in
Eq. (42) differ by about 1:2�. It could be a simple effect
due to experimental systematics (statistical errors are
very small) or might indicate a problem in the kaon
lifetimes, md 	mu, QED long-distance radiative correc-
tions or K� correlated branching ratios. Improved mea-
surements in the charged and neutral kaon properties may
prove useful in clarifying the difference. However, the
total uncertainty in jVusj of about 
1% is dominated by
SU(3) breaking and the form factor shape and magnitude.
It will be difficult to reduce those errors much further.
Unitarity prevails, but unless some new procedure for
calculating SU(3) breaking effects with much higher
precision is found, it seems unlikely that the error in
Eq. (44) can be reduced much further, i.e., a 
1% uncer-
tainty in jVusj is near the end of the road for Ke3. Similar
remarks apply to jVudj where theory uncertainty domi-
nates. Fortunately, they seem to be ending with a triumph
for unitarity and a strong confirmation of the Standard
Model.

Other new analyses of Ke3 by the KLOE Collaboration
at Frascati and NA48 at CERN are being completed
and should report results shortly. It will be interesting
to see if they confirm E865 and KTeV or reopen the Ke3
problem.

In another relatively recent development, Cabibbo,
Swallow and Winston (CSW) [55,56] have revisited the
extraction of jVusj from Hyperon beta decays. That pro-
cedure is sometimes criticized as unreliable because the
decay rates are renormalized by first order SU(3) break-
ing effects in the axial-vector contributions. However,
rather than just employing total decay rates, CSW also
included decay asymmetry measurements that effectively
measure the first order SU(3) breaking effects, analogous
to the use of gAsy

A in neutron beta decay to determine
jVudj. They found

jVusj � 0:2250�27� Hyperon Decays; (47)

where the error quoted is purely experimental and SU(3)
breaking has been neglected. Nevertheless, if taken at
face value it gives

jVudj
2
0�!0�

� jVusj
2
Hyperon � jVubj

2 � 0:9993�16�; (48)
-7
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FIG. 1. Determinations of jVusj from various sources. The
Hyperon value does not include theory errors. Shifted values
correspond mainly to the change of linear to quadratic
form factor parametrization. All Kl3 results assume Eqs. (33)
and (34).
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i.e., good agreement with unitarity. Because SU(3) break-
ing effects and various other theory uncertainties have
not been considered, we do not include Eq. (47) in our
averaging.

Finally, a recent lattice calculation [57] of the pseudo-
scalar decay constants,

fK=f� � 1:210�4�stat�13�syst; (49)

can be combined [58] with the experimental quantity

&K� ! �����'��

&�� ! �����'��
� 1:3336�44�; (50)

to yield

jVusj
jVudj

� 0:2278�26�; (51)

where the uncertainty is lattice dominated. If unitarity is
assumed, that ratio implies

jVusj � 0:2221�24�; jVudj � 0:9750�5�; (52)

while if jVudj � 0:9740�5� is employed

jVusj � 0:2219�25� Lattice: (53)

It corresponds to a modest 1.4 sigma deviation from
unitarity. The beauty of the lattice approach is that it is
still in its infancy. With new larger computers and better
treatment of chiral symmetry and isospin breaking, the
uncertainty in Eq. (53) may be reduced by a factor of 4 or
more, making the lattice approach to fK=f� ultimately
the best way to determine jVusj. Should that happen, it
will be somewhat ironic that the axial current determi-
nation via Kl2 and �l2 decay constants turns out to be
theoretically more pristine than the vector current ap-
proach using Ke3. If something similar were possible for
jVudj, the unitarity test (constraint) in Eq. (46) might be
significantly improved.

Recently, hadronic � decays have been employed to
determine jVusj. The value found in [59], using LEP
data, is

jVusj � 0:2208�34� � decays: (54)

This determination will likely improve with new data
coming from BaBar and Belle.

The jVusj central values discussed above vary from
about 0.22–0.23 depending on the data used and SU(3)
breaking corrections applied. That range is to be com-
pared with the value suggested by 0� ! 0� beta decays
and perfect unitarity

jVusj � 0:2265�22� Unitarity � 0� ! 0� Nuclear:

(55)

A comparison of the different determinations of jVusj
is illustrated in Fig. 1.
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VI. CONCLUSION AND OUTLOOK

We have presented an update of the electroweak
radiative corrections to neutron �-decay. It currently
provides the most precise determination of gA, a quantity
that finds many applications in nuclear, particle, and
astrophysics. As gA and �n experimental measurements
improve, our results can be used to obtain a jVudj that is
competitive with nuclear �-decay determinations [which
yield jVudj � 0:9740�5�], but without the nuclear struc-
ture dependent uncertainties. In the end, we will still be
limited by a 
0:0004 theory error that comes from un-
certainties in the axial-vector induced loop corrections.
Reducing the latter error further will require a new
theoretical approach or the measurement of &��� !
�0e��e� which has smaller uncertainties. The 10	8

branching ratio makes the latter strategy very difficult
statistically.

More problematic than jVudj in testing CKM unitarity
has been inconsistencies in the various jVusj determina-
tions. Of particular concern has been the low value &

0:22 obtained from PDG fits to old Ke3 data which for a
long time has suggested a small but persistent departure
from unitarity. However, recently measured Ke3 branch-
ing ratios for both the charged and neutral kaon exhibit
large deviations (about 5%) from the PDG fit values,
increasing jVusj to a level consistent with unitarity. In
fact, the average value they provide jVusj � 0:2259�23�
together with jVudj � 0:9740�5� from superallowed beta
decays concur with unitarity expectations up to 
0:0014
[see Eq. (46)]. That good agreement confirms the pre-
dicted large �4% [5] radiative correction of the
Standard Model at the 28� level—a triumph for quantum
loop effects. However, before one can be sure that the
-8
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unitarity problem has been resolved, the recent results
should be confirmed by anticipated new measurements of
the Ke3 branching ratios from the KLOE experiment at
Frascati and the NA48 experiment at CERN. In addition,
given the recent changes in kaon branching fractions, it
would be nice to have new confirmation measurements of
both the K� and KL lifetimes.

The newest approach to jVusj appears to be very
promising [58]. It combines a lattice calculation of
fK=f� with the experimental measurement of f&K� !

�����'��g=f&�
� ! �����'��g. The latter ratio is al-

ready very well measured but, in view of the changes in
K� decay rates, the numerator should be experimentally
revisited. Also, the electroweak radiative corrections that
largely cancel in the ratio should be reexamined.

The lattice calculation of fK=f� has some very nice
features that suggest its already small uncertainty may be
reduced much further. They include a cancellation of the
statistical uncertainties which are highly correlated and
the scale uncertainty. The challenge is to refine extrap-
olations to the chiral and continuum limits with full
dynamical fermion simulations. That should become pos-
sible with the advent of very large special purpose com-
puting facilities.

The current confirmation of unitarity embodied in
Eq. (46) gives us further confidence in the Standard
Model and can be used to constrain ‘‘New Physics’’
appendages to it. Roughly speaking, it rules out addi-
tional tree or loop level contributions to the jVudj

2 �
jVusj2 combination at about the 
0:2% level. Effects of
about that magnitude could in principle come about from
supersymmetry loops [60–62], an extra Z0 boson [63],
heavy quark or lepton mixing, exotic muon decays (since
we normalize in terms of G�), compositeness, extra di-
mensions [64], etc. However, there are no really compel-
ling reasons to expect such a large deviation. For that
reason, confirmation of unitarity via experimental or
theoretical changes has been anticipated. Its verification
is, nevertheless, important. Also, finding new ways to
improve the unitarity constraint, e.g., lattice calculations,
is difficult, but should be strongly encouraged. Such chal-
lenges push our computational and experimental skills to
new limits, stimulate ingenuity, and perhaps at some point
new physics will be uncovered.
APPENDIX

In this appendix, we describe the input that went into:

(1) t
he leading log summations L�2Em;mp� and

S�mp;mZ�

(2) t
he partial next-to leading log calculation due to

photonic vacuum polarization insertions and

(3) t
he residual �

2�$ correction that results from a
proper matching of the Fermi function and long-
distance O��� corrections.
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1. Leading log summations

We follow the approach of Ref. [33] where a renormal-
ization group summation for the leading short-distance
logs was given and a value for S�mp;mZ� derived. Here we
extend that method down to the intermediate region
2Em 	mp. That simply requires a change in the anoma-
lous dimension from 2�=� to 3�=2� and an evaluation of
the MS (modified minimal subtraction) coupling ���� at
low scales.

The leading log summation in an MS approach is
simply given by

L�2Em;mp� �

	
��mu�

��2Em�



9=4

	
��md�

��mu�



27=28

	��m��

��md�



27=32

�

	
��ms�

��m��



27=44

	��mp�

��ms�



9=16

; (56)

S�mp;mZ� �

	
��mc�

��mp�



3=4

	
��m��

��mc�



9=16

	
��mb�

��m��



9=19

�

	
��mW�

��mb�



9=20

	
��mZ�

��mW�



36=17

; (57)

where the ���� are values of the MS (modified minimal
subtraction) QED coupling at a scale �. This coupling is
given to leading log order by

�	1��� � �	1�me� 	
2

3�

X
f

Q2
f.��	mf� ln

�
mf

�
7

2�
.��	mW� ln

�
mW

; (58)

�	1�me� � 137:036�
1

6�
� 137:089: (59)
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In that expression, the sum is over all quarks and lepton flavors f (with a color factor of 3 for quarks). We thereby find

�	1�2Em � 2:585 MeV� � 136:745; �	1�mu � 62 MeV� � 136:0708; �	1�md � 83 MeV� � 135:9263;

�	1�m�� � 135:7896; �	1�ms � 215 MeV� � 135:2368; �	1�mp� � 133:9861;

�	1�mc � 1:35 GeV� � 133:677 28; �	1�m�� � 133:3662; �	1�mb � 4:5 GeV� � 132:1174;

�	1�mW � 80:4 GeV� � 128:0389; �	1�mZ � 91:1875 GeV� � 128:001: (60)
Relatively low effective quark masses [65] have been used
in those results in order to incorporate QCD contributions
at low energies. In that way �	1�mZ� � 128:0 is obtained
while a more detailed higher order QED and QCD analy-
sis including e�e	 ! hadrons via a dispersion relation
gives �	1�mZ� � 127:934.

Employing the above values in Eqs. (56) and (57), we
find

L�2Em;mp� � 1:020 94; S�mp;mZ� � 1:022 48:

(61)

Those results are not very sensitive to the quark masses
employed. For example, changing the mu value by a
factor of 2 leads to a shift in the RC by less than 3�
10	5 which is well below the overall 
8� 10	4 uncer-
tainty assumed in the RC.

A useful relation, valid for the nine transitions in
Table I, is

L�2Em;mp� � L�me;mp�

	
��me�

��2Em�



9=4
; (62)

which leads to

L�2Em;mp� � 1:026725
	
1	

2��me�

3�
ln
2Em
me



9=4
: (63)

2. Next-to-leading-logarithmic corrections due to
photonic vacuum polarization

Next-to-leading-logarithmic (NLL) corrections to
weak decays have been studied in detail for QCD (see,
for example, [66,67]). Here we adapt those results to QED.
We consider a subset of contributions, containing fermion
loop insertions in the photon propagator, as depicted in
γ

ud

f

ν e

d

ν

FIG. 2. Vacuum polarization diagrams contributing logarithmi
corrections to external charged particle legs are included but not i
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Fig. 2. That particular subset is somewhat enhanced by
the large number of contributing fermions. Therefore, we
expect it to dominate the NLL contributions.

The effect of short-distance corrections can be pa-
rametrized as follows. We keep only leading-logarithmic
terms, and those NLL ones that arise from fermion loops.
Then, the decay width & can be expressed in terms of the
lowest-order width &0 times a correction factor,

& � &0

�
1	 '�0�La	 La2�'�1� � 2�0B�

�
1

2
L2a2'�0���0 � '�0��

�
;

L � ln
M2
W

�2 ; a �
����
4�

;

(64)

and we will be interested in the value of this correction at
� ’ mp. A similar analysis can be extended down to 2Em.

The leading order anomalous dimension of the four-
fermion operator /u'��1	 '5�d � /e'��1	 '5�� is given
by diagrams similar to those in Fig. 2, but without
fermion loops. It can be expressed in terms of fermion
charges,

'�0� � �Qu 	Qd�
2 �Qe�Qe � 8Qu 	 2Qd� � 	4:

(65)

The running of the coupling constant is described by a
sum over all contributing fermions with charges Qf and
number of color varieties nf (equal 3 for quarks and 1 for
others),

�0 � 	
4

3
~n; ~n �

X
f

nfQ2
f: (66)
u

e

ud

ν e

c and NLL corrections to the beta decay rate. QED loop
llustrated.
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At the NLL order, we also need the two-loop anomalous
dimension '�1� and the matching coefficient B. The for-
mer is determined by calculating 1=/ poles of the dia-
grams in Fig. 2. The latter is given by the finite part of
analogous diagrams without fermion loop insertions.
Their individual values depend on the scheme of the
calculation (for example, treatment of '5), and only their
combination occurring in Eq. (64) is scheme-
independent.

We list here the values of both quantities obtained in
the naive dimensional regularization (NDR), with an
anticommuting '5, and in the ’t Hooft-Veltman scheme
(HV),

'�1�
HV � 	

20

3
~n; '�1�

NDR � 	
44

9
~n;

BHV � 	
23

6
; BNDR � 	

19

6
:

(67)

In both schemes we get

2�0B� '�1� �
32

9
~n: (68)

With these results, the logarithmic corrections of Eq. (64)
become

& � &0

�
1�

2����
�

ln
MW

�

�

	
�
�



2
ln
MW

�

�	
2~n
3
� 2



ln
MW

�
	

4~n
9

��
: (69)

All but the last terms in this correction factor are in-
cluded and summed up to all orders in the factor S in
Eq. (57). The last term is the fermionic NLL correction.
Because it is very small, we estimate it as though all
fermions u; d; s; c; b and e;�; � contributed over the
whole range from MW to mp. In this approximation, we
have

~n �
20

3
; (70)

and the numerical value of the NLL fermionic correction
is

	
4~n
9

	
�
�



2
ln
MW

mp
� 	0:000 07: (71)

Small additional NLL contributions from the Em to mp

region shift that value to about 	0:0001. Other two-loop
NLL and nonlogarithmically enhanced corrections are
individually of order ����

2 lnmp=�2Em�� ’ 0:000 03 or
smaller. Hence, we assume that they can be neglected.

3. Evaluation of the O�Z	2� corrections

In this appendix we summarize the evaluation of the
O�Z�2� corrections in the case of neutron �-decay (Z �
1). These are defined as the residual corrections of this
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order not contained in the product of the Fermi function
and the O��� corrections. For a point nucleus, analytic
results for the correction to the charged lepton spectrum
have been obtained in the extreme relativistic approxima-
tion [68]. The sign is opposite for electron and positron
emitters (as can be readily understood by a glance at the
figures in Ref. [68]) and, for the neutron decay, we have

1P � 	�2

�
ln
	mp

me



�

43

18
	

5

3
ln
	
2E
me


�
; (72)

[see Eq. (5) of Ref. [68] ]. It has also been verified that, to
good approximation, the leading contributions to Eq. (72)
extrapolate smoothly to their nonrelativistic limit, which
has also been obtained analytically. Next, we evaluate
numerically the spectral average of ln�2W� �W � E=m�
using the phase space factor

����������������
W2 	 1

p
W�Wmax 	W�2,

leading to

hln�2W�i � 1:1390: (73)

Combining Eqs. (72) and (73), we obtain

h1Pi � 	8:006�2 � 	4:26� 10	4: (74)

In order to take into account the finite proton size, we
employ Eqs. (7)–(9) of Ref. [37], with the sign again
reversed, since we are dealing with an electron emitter.
These formulas correspond to a uniformly charged sphere

of radius R �
��
5
3

q
a, where a �

���
6

p
=4 is the rms charge

radius of the proton. Using a � 0:90 fm [13], we have
4=mp � 0:572. Insertion of this value in Eqs. (7)–(9) of
Ref. [37] leads to a finite proton size effect 	5:4� 10	6.
Combining this result with Eq. (74), we obtain our final
answer for this class of corrections in the case of neutron
decay:

�
2�

$ � 	4:3� 10	4: (75)

We have verified that terms of O�4=mp�
3�, not contained

in Eqs. (7)–(9) of Ref. [37], as well as estimates of the
corrections O�Z2�3�, give negligible contributions in the
case of neutron decay.

Note added.—After the completion of this paper, a new
low temperature measurement of the neutron lifetime was
reported, �n � 878:5�7��3� s [69]. It differs from the
world average in Eq. (19) by about 6:7�. In conjunction
with jVudj � 0:9740�5�, it would lead on its own to a
larger gA value, namely gA � 1:2766�6��5�; instead, if
used in combination with the best asymmetry value gA �
1:2739�19�, it would imply jVudj � 0:9757�4��11��4�.
Although this value is not in sharp disagreement with
Eq. (2) (the difference is about 1:3�), clarification of the
neutron lifetime differences by new improved experi-
ments is clearly an important goal for the future.

Also, the KLOE Collaboration has presented some
preliminary new results on Ke3 and K�3 decay rates and
the KL lifetime [70]. They confirm the branching ratio
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increases observed by KTeV (within errors) and when
finalized should improve the KL lifetime world average.

Finally, a recent analysis [71] by the NA48
Collaboration at CERN finds a neutral Ke3 decay rate
consistent with the KTeV result in Eq. (39). However,
they effectively employ (after extracting electromagnetic
contributions) a larger value of f��0� � 0:974 suggested
by recent chiral perturbation results [45–50] and a linear
093006
form factor parametrization of phase space. As a result,
they obtain jVusj � 0:2187�28� which suggests an overall
2:2� deviation from unitarity. Such a significant change
in the interpretation reinforces the importance of refining
lattice and chiral perturbation theory calculations of
f��0� as well as the need to better experimentally deter-
mine its q2 dependence.
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