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Evidence for the saturation of the Froissart bound
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It is well known that fits to high energy data cannot sharply discriminate between asymptotic lns and
ln2s behavior of total cross section. We show that this is no longer the case when we impose the
condition that the amplitudes also describe, on average, low energy data dominated by resonances. We
demonstrate this by fitting real analytic amplitudes to high energy measurements of the �p total cross
section, for

���
s

p
� 4 GeV. We subsequently require that the asymptotic fit smoothly join the

���
s

p
�

2:01 GeV cross section described by Damashek and Gilman [M. Damashek and F. J. Gilman, Phys. Rev.
D 1, 1319 (1970).] as a sum of Breit-Wigner resonances. The results strongly favor the high energy ln2s
fit of the form ��p � c0 � c1 ln��=m� � c2ln

2��=m� � 
P 0=
����������
�=m

p
, basically excluding a lns fit of the

form ��p � c0 � c1 ln��=m� � 
P 0=
����������
�=m

p
, where � is the laboratory photon energy. This evidence for

saturation of the Froissart [M. Froissart, Phys. Rev. 123, 1053 (1961).] bound for �p interactions is
confirmed by applying the same analysis to �p data using vector meson dominance.
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FIG. 1 (color online). The heavy line is a fit, by Damashek
and Gilman [4], of the low energy ��p data to a sum of five
Breit-Wigner resonances plus a sixth-order polynomial back-
ground. The fitted value of ��p at

���
s

p
� 2:01 GeV is 151 �b.
The Froissart bound [1] says that the high energy cross
section for the scattering of hadrons is bounded by ��
ln2s, where s is the square of the cms energy. This fun-
damental result is derived from unitarity and analyticity
by Froissart [1], who states: ‘‘At forward or backward
angles, the modulus of the amplitude behaves at most like
sln2s, as s goes to infinity. We can use the optical theorem
to derive that the total cross sections behave at most like
ln2s, as s goes to infinity.’’ In this context, saturating the
Froissart bound refers to an energy dependence of the
total cross section rising no more rapidly than ln2s.

The question as to whether any of the present day high
energy data for 
pp, pp, ��p, �	p, �p, and �� cross
sections saturate the Froissart bound has not been settled;
one can not discriminate between asymptotic fits of lns
and ln2s using high energy data only [2].We here point out
that this ambiguity is resolved by requiring that the fits to
the high energy data smoothly join the cross section and
energy dependence obtained by averaging the resonances
at low energy. We show that only fits to the high energy
data behaving as ln2s that smoothly join to the low energy
data on �p total cross sections in the resonance region,
can adequately describe the highest energy points (the
smoothness constraint is analogous to the duality require-
ment imposed by Igi [3]). For the low energy cross sec-
tions we use a convenient parametrization by Damashek
and Gilman [4] of the forward Compton scattering am-
plitudes, which yields a very accurate description of the
low energy data. It provides us with a best fit in the energy
region 2m�0 �m2 


���
s

p

 2:01 GeV using five Breit-

Wigner resonances and a 6th order polynomial in �
���
s

p
	����������������

sthreshold
p

�. Here �0 � m� �m2
�=m is the threshold and m

the proton mass. Their result is shown in Fig. 1.
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Following Block and Cahn [5], we write the crossing-
even real analytic amplitude for high energy �p scatter-
ing as [6]

f� � i
�
4�

�
A� 
�ln�s=s0� 	 i�=2�2 � cs�	1ei��1	��=2

	 i
4�
�

f��0�
�
; (1)

where A, 
, c, s0, and � are real constants. The variable s
is the square of the c.m. system energy and � the labora-
tory momentum. The additional real constant f��0� is the
subtraction constant at � � 0 introduced in the singly-
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subtracted dispersion relation [4] for the reaction ��
p ! �� p. It is fixed in the Thompson scattering limit
f��0� � 	�=m � 	3:03�b GeV. Using the optical
theorem, we obtain the total cross section

��p � A� 

�
ln2s=s0 	

�2

4

�
� c sin���=2�s�	1 (2)

and �, the ratio of the real to the imaginary part of the
forward scattering amplitude, given by

� �
1

�tot

�

� lns=s0 	 c cos���=2�s�	1 �

4�
�

f��0�
�
:

(3)

Introducing the definitions A � c0 �
�2

4 c2 	
c21
4c2

, s0 �

2m2e	c1=�2c2�, 
 � c2 and c � �2m2�1	�

sin���=2�
P 0 , Eq. (2) and
Eq. (3) can, in the high energy limit s ! 2m�, be written
as

��p � c0 � c1 ln
�
�
m

�
� c2ln

2

�
�
m

�
� 
P 0

�
�
m

�
�	1

; (4)

��p �
1

�

�
�2c1 � �c2 ln

�
�
m

�
	 cot���=2�
P 0

�
�
m

�
�	1

�
4�
�

f��0�
�
: (5)

This transformation linearizes Eq. (4) in the real coef-
ficients c0, c1, c2, and 
P 0 , convenient for a straightfor-
ward �2 fit to the experimental �p total cross sections.
Throughout we will use units of � in GeV and cross
section in �b.

Our strategy is to constrain the high energy fit with the
precise low energy fit at

���
s

p

 2:01 GeV, which is the

energy where Damashek and Gilman [4] join the energy
region dominated by resonances to a Regge fit, a�

b=
����������
�=m

p
. They find that the cross section at

���
s

p
� 2:01

is 151 �b and the slope d��p=d��=m� is 	b=��=m�1:5, or
	15:66 in �b units. Using the asymptotic expression of
TABLE I. The fitted results, where m is the p
energy.

�� log2��=m�

Parameters Fit 1
c0 and 
P 0 constrained

c0 ��b� 105.64
c1��b� 	4:74� 1:17
c2��b� 1:17� 0:16

P 0 ��b� 64.0
� 0.5
�2 50.34
d.f. 61
�2/d.f. 0.825
Probability 0.83
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Eq. (4), we obtain two constraints


P 0 � 73:0� 2:68c1 � 3:14c2; (6)

c0 � 151	 0:586c1 	 0:343c2 	 0:746
P 0 ; (7)

by matching the values of the slope and the cross section,
respectively. Unless stated otherwise, both constraints are
used in our �2 fitting procedure.

We next fit the asymptotic form of Eq. (4) to the high
energy data in the energy range 4 


���
s

p

 210 GeV. The

lower energy data are from the Particle Data Group[7];
the high energy points at

���
s

p
� 200 and

���
s

p
� 209 GeV

are from the H1 Collaboration [8] and Zeus [9]
Collaboration, respectively. The results are summarized
in Table I. For Fit 1, the data are fitted with a ln2��=m�
energy dependence imposing constraints Eq. (6) and
Eq. (7). We thus obtain fitted values for c1 and c2, which
then determine c0 and 
P 0 . The fit is excellent, yielding a
total �2 of 50.34 for 61 degrees of freedom, with a fit
probability of 0.83. The fit is shown as the solid line in
Fig. 2. In order to verify that the data discriminates
between a ln2��=m� fit and a ln��=m� fit, we made Fit 3
assuming a ln��=m� energy dependence, i.e., c2 � 0.
After fitting c1, we determine c0 and 
P 0 from the con-
straint equations. The fit is poor with a total �2 of 102.8
for 62 degrees of freedom. This corresponds to a chance
probability of 8:76� 10	4. It is plotted as the dotted line
in Fig. 2 and clearly underestimates the high energy cross
section measurements. Finally, to test the stability of the
ln2��=m� fit, we relax the condition that the slopes of the
low energy fit and the asymptotic fit are the same at

���
s

p
�

2:01 GeV, only imposing the cross section constraint of
Eq. (7). Thus, in Fit 2, we fit c1; c2, and 
P 0 , which then
determines c0. This also yields a good fit, with a total �2

of 47.48, for 60 degrees of freedom, corresponding to a
chance probability of 0.88. Fit 2 is shown as the dashed-
dotted line in Fig. 2. It fits the data well, indicating
stability of the procedure. Clearly, the constraints im-
roton mass and � is the laboratory photon

�� log��=m�

Fit 2 Fit 3
c0 constrained c0 and 
P 0 constrained

92.5 84.22
	0:46� 2:88 4:76� 0:11
0:803� 0:273 —–
78:4� 9:1 85.8

0.5 0.5
47.48 102.8

60 62
0.791 1.657
0.88 8:76� 10	4
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FIG. 3 (color online). The dashed-dot-dot line is a fit, by
Damashek and Gilman [4], of the low energy ��p data to a
sum of five Breit-Wigner resonances plus a sixth-order poly-
nomial background. The fit labeled log2��=m�, the solid line, is
a �2 fit (Fit 1) of the high energy data of the form: ��p �

c0 � c1 ln��=m� � c2ln
2��=m� � 
P 0=

����������
�=m

p
, with 
P 0 � 64

�b. The laboratory energy of the photon is � and m is the
proton mass. The dashed curve is from a ��p � c0 �
c1 ln��=m� � c2ln

2��=m� � 
P 0=
����������
�=m

p
fit from Igi and Ishida

[3], using their �p cross sections rescaled by a factor of 1=208.
The cross section curves join at

���
s

p
� 2:01 GeV, where the

cross section is 151 �b.
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FIG. 4 (color online). A plot of � vs.
���
s

p
, in GeV. The solid

curve is ��p, calculated from the parameters of Fit 1. The
dashed curve is ��p, calculated from a log2� fit to ��p and
�	p data [3]. The data shown are the experimental � values [7]
for ��p and �	p.
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FIG. 2 (color online). The fitted ��p, in �b, vs.
���
s

p
, in GeV.

The solid curve (Fit 1) is a �2 fit (Fit 1) of the high energy data
of the form: ��p � c0 � c1 ln��=m� � c2ln

2��=m� �


P 0=
����������
�=m

p
, with both c0 and 
P 0 constrained by Eq. (6) and

Eq. (7). The constraints were found from a low energy fit to the
resonance region and a Regge P 0 trajectory [4]. The dot-dashed
line is a log2��=m� fit (Fit 2) that constrains c0 only, allowing

P 0 to be a free parameter in the fit. The dotted line (Fit 3),
uses: ��p � c0 � c1 ln��=m� � 
P 0=

����������
�=m

p
, with both c0 and


P 0 constrained by Eq. (6) and Eq. (7). The laboratory energy
of the photon is � and m is the proton mass. The data used in all
fits are the cross sections with

���
s

p
� 4 GeV. All fits pass

through the low energy anchor point at
���
s

p
� 2:01 GeV, where

��p � 151 �b. Fits one and three are further constrained to
have the same slope as the low energy fit, at

���
s

p
� 2:01 GeV.

Details of the three fits are given in Table I.
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posed by the low energy data strongly restricts the asymp-
totic behavior [10].

In a recent paper, Igi and Ishida [3] have analyzed ��p
and �	p total cross sections using parametrizations of
the form of Eq. (4), with both ln��=m� and ln2��=m�. They
derive two finite energy sum rules, which, when applied
to the low energy data give two constraint equations.
Subject to these constraints, they make asymptotic fits
to the available high energy ��p and �	p data. Their
analysis also favors a ln2��=m� behavior of the cross
sections. In a vector meson dominance model (in the
spirit of the quark model), the cross section ��p is
proportional to the crossing-even �p cross section,
��p � ����p � ��	p�=2. We can thus confront our re-
sults above with ��p data, renormalized by a factor 208
familiar from vector meson dominance phenomenology.
The result is shown as the dashed line in Fig. 3. The
agreement is excellent over a large energy interval—
particularly, since the pion fit was derived using data
only up to

���
s

p
� 30 GeV , whereas the plot in Fig. 3

extends to 300 GeV.
Finally, Block and Kaidalov [11] have suggested that

factorization requires �nn � ��p, and by extension, ��p
091901
should be equal to ��p, where ��p is the even amplitude
for ��p and �	p scattering. To test this, we plot ��p as
the solid curve in Fig. 4, using the parameters of Fit 1 in
Eq. (5). To calculate ��p, we have taken the �p fit
parameters from Igi and Ishida[3] and have substituted
-3
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them in Eq. (5), where we have also set f��0� � 0. The
dashed curve in Fig. 4 is ��p. Also shown in Fig. 4 are the
high energy experimental � data for ��p (the circles)
and �	p (the squares). We note that ��p � ����p �

��	p�=2. The curves for �p and for �p both reasonably
describe the data, and essentially agree in the energy
region below 30 GeV—again, we emphasize that the
�p fit was only made for energies below 30 GeV.

In conclusion, we have demonstrated that the require-
ment that high energy cross sections smoothly interpolate
into the resonance region strongly favors a ln2s behavior
of the asymptotic cross section—a behavior that saturates
the Froissart bound. Using vector meson dominance (in
091901
the spirit of the quark model), we demonstrate that our
conclusions are also supported by ��p and �	p data.
Our analysis supports predictions of Large Hadron
Collider cross sections that rely on the saturation of the
Froissart bound.
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