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Positivity and topology in lattice gauge theory

Michael Creutz
Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA

(Received 4 September 2004; published 1 November 2004)
1550-7998=20
The admissibility condition usually used to define the topological charge in lattice gauge theory is
incompatible with a positive transfer matrix.
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With certain smoothness assumptions, continuum
Yang-Mills field configurations in four dimensional
spacetime can be classified by a topological winding
number [1]. This realization has played a major role in
our understanding of the importance of nonperturbative
phenomena in the SU(3) gauge theory of the strong in-
teractions [2].

This winding number is uniquely defined for smooth
fields; however, for a quantum field theory one must
integrate over all configurations, some of which may
not be sufficiently smooth for a unique definition of the
topological charge. Regulating the theory on a lattice
brings in questions of how to handle these topological
objects as their size drops below the lattice spacing.
Considerable recent progress in this area has involved
the use of Dirac operators with exact symmetries under
chiral transformations [3–5]. Indeed, a rigorous lattice
extension of the continuum index theorem relates the
winding number to the zero eigenvalues of these chiral
operators.

Classifying fields by their winding number divides the
space of configurations into distinct topological sectors.
With conventional actions, however, the configuration
space is simply connected. Thus the winding number
must be singular as one moves from one sector to another
[6]. The locations of these singularities will in general
depend on the particular Dirac operator used to define the
topology. This ambiguity can be avoided by placing a
constraint on the roughness of the gauge fields [7–9].
As usually formulated, the constraint forbids plaquettes
to stray further from the identity than a given distance.

At first sight this constraint seems quite harmless, and,
indeed, it is irrelevant to all perturbative physics.
However, in this paper I show that such a constraint is
incompatible with requiring a positive transfer matrix
[10–12]. The argument builds on an old discussion of
Grosse and Kuhnelt [13] that shows the failure of pos-
itivity for the Manton action [14].

I work with the gauge fields alone, and restrict myself
to single plaquette actions. In the path integral, I assume
the action associates a real non-negative weight W�P� to
any given plaquette, where the plaquette variable P is in
the gauge group. I assume that W�P� is smooth, indeed
analytic, for P in some small vicinity of the identity. This
insures a smooth mapping onto the perturbative limit.
04=70(9)=091501(3)$22.50 70 0915
Away from the identity, I only assume it is piecewise
smooth. The admissibility condition states that W�P�
should vanish for P in a finite region of the group some
distance away from the identity.

To show that such a condition conflicts with positivity, I
start by paralleling the argument of Ref. [13] and reduce
the issue to a single timelike plaquette. If positivity holds,
the matrix element of the transfer matrix between arbi-
trary states must be non-negative. In particular, for any
square integrable function  �g� over the group, one must
have Z

dg0dg ��g0�W�g0�1g� �g� � 0: (1)

As a violation of this for any subgroup would imply a
violation for the full group, I restrict the discussion to a
U(1) subgroup. Denote the elements of this subgroup as
ei	, with 	 � 0 representing the identity element. I then
should haveZ 


�

d	0d	 ��	0�W�ei�	�	

0�� �	� � 0; (2)

for arbitrary square integrable  �	�. Note that the restric-
tion to a U(1) subgroup does not place any serious con-
straint on the allowed values of the plaquette. For
example, in SU(3) the eighth Gell-Mann matrix gener-
ates a subgroup where 1

3 ReTrg runs over the full allowed
region from � 1

2 to 1.
Reduced to a U(1) subgroup, it becomes convenient to

work with the Fourier functions  �	� � ein	. Inserting
one of these into the above and changing variables to
 �
	� 	0 gives

fn �
Z
d
W�ei
�ein
 � 0: (3)

Thus all Fourier components of W must be real and non-
negative, an extremely strong constraint. As is well
known, any piecewise smooth weight can be recon-
structed from its Fourier components

W�ei
� �
1

2


X1
n��1

fne�in
: (4)

Reality of the weight gives f�n � fn.
I now extendW into the complex plane. For this I define

z � e�i
, so that the physical weight function occurs on
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the unit circle. Separating the positive and negative terms
in the series with the definition

f
�z� �
X1
n�1

fnzn; (5)

I write

W�z� � f0 
 f
�z� 
 f
�1=z�: (6)

The assumption that the weight is analytic near z � 1
coupled with the positive nature of the fn implies that one
can also expand f
�z� about the origin with a radius of
convergence z0 greater than unity. Thus, the function
f
�z� is analytic inside a circle of this radius about the
origin. For the remaining piece contained in f
�1=z�, I
instead have an analytic function of z outside a circle of
radius 1=z0 < 1. Thus the full weight W�z� must be an
analytic function in the common region, i.e., a ring with
1=z0 < jzj< z0.

This analyticity immediately precludes many possible
actions. For the present case, if W�z� vanishes on any
finite region of the unit circle, it must vanish everywhere,
contradicting using it as a weight in a path integral. This
is the main result of this paper.

Note that the weight can vanish at a finite number of
discrete points. For example,W � 1
 cos�	� satisfies the
positivity condition while being zero at 	 � 
. It is only
vanishing over a continuous region that is forbidden. The
above proof also gives an explicit procedure for finding a
wave function for which the transfer matrix is ill be-
haved; just calculate the Fourier coefficients successively
until you find one that is not positive.

The positivity of the Fourier coefficients is a special
case of the requirement that in a character expansion of
W�P� all coefficients must be positive [15]. This follows
from using representation matrix elements for the wave
functions in Eq. (1). This shows that the character expan-
sion is absolutely convergent, and the analyticity extends
to the entire group. Except for possible isolated points,
there must be a finite probability of reaching any pla-
quette value.

So far the admissibility condition is the only way
proven to give a uniquely defined topological index.
However, this does not necessarily preclude the existence
of some other smoothness condition to accomplish the
091501
same. The generality of the present result shows that any
such condition cannot be a local constraint depending
only on individual plaquettes.

Of course, positivity may not be a necessary require-
ment if the nonpositive effects disappear in the contin-
uum limit. Indeed, such possibilities have been discussed
in the context of generalized gauge actions, e.g.,
Refs. [16,17]. But it seems a large price to pay just to
define an esoteric object such as the topological
susceptibility.

As for the existence of the continuum Yang-Mills
theory, it does not appear that a nonperturbative ambi-
guity in the definition of the topological susceptibility
causes any harm. This concept is rather abstract, and it is
not clear if it can be measured in any physical experi-
ment, even considering external sources.

With several species of degenerate quarks, there is one
point where the topological susceptibility is well defined.
This is the chiral point, where the existence of massless
Goldstone bosons uniquely fixes the quark masses to zero.
Using a Ginsparg-Wilson formulation for the fermions
then ensures that the topological susceptibility vanishes.

For one flavor of massless quark, the issue is less clear.
Reference [18] argues that in the one quark case, the
massless quark theory may have a scheme dependent
continuum limit. If so, the point of vanishing topological
susceptibility is also ambiguous.

Going to the pure glue theory, i.e., nf � 0, the absence
of a fermion determinant will allow the gauge fields to
become even rougher. Recent discussions [19,20] of mea-
suring the topological susceptibility with an external
Ginsparg-Wilson operator have shown that all perturba-
tive divergences are controlled. However, nonperturba-
tively, different operators have the potential to give
different answers for the susceptibility for the same
physical continuum limit. This is ruled out if the admis-
sibility condition is satisfied, a condition inconsistent
with positivity in the regulated theory.
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