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Why do naked singularities form in gravitational collapse? I1
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We examine physical features that could lead to formation of a naked singularity rather than black
hole, as end state of spherical collapse. Generalizing earlier results on dust collapse to general type I
matter fields, it is shown that collapse always creates black hole if shear vanishes or density is
homogeneous. It follows that nonzero shear is a necessary condition for singularity to be visible to
external observers, when trapped surface formation is delayed by shearing forces or inhomogeneity

within the collapsing cloud.
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It was investigated recently [1], within the framework
of dust collapse models, what are the key physical fea-
tures that cause the formation of a naked singularity (NS)
rather than a black hole (BH) as end state of a continual
gravitational collapse. It was shown that sufficiently
strong shearing forces within the collapsing cloud could
delay the formation of apparent horizon, thus making the
singularity visible to an external observer. This is in
contrast to the black hole scenario where singularity is
always hidden within horizon due to early enough for-
mation of trapped surfaces.

While dust models have provided valuable insights into
dynamics of collapse, in realistic situations one would
like to incorporate pressures which would be important in
later stages of collapse. Also, as we know little on the
form of matter or equation of state in later stages of
collapse, it will be preferable to consider as general
form of matter as may be possible. In fact, there have
been some considerations recently of collapse with gen-
eral type I matter [2] (which includes practically all
known physical forms of matter [3]), and it turns out
that depending on the nature of the initial data in terms of
the matter distribution and metric functions, either a
black hole or a naked singularity results as the final
outcome of an endless collapse. The occurrence of both
BH and NS end states could be generic because the initial
data sets evolving to each of these outcomes form an open
set [4]. Such a scenario may be of physical interest be-
cause a visible extreme strong gravity region could pos-
sibly provide with an opportunity to observe the effects of
quantum gravity, as generated by the strong curvature
regions [5].

In the present note, our purpose is to generalize the
conclusions of [1] to include more general forms of mat-
ter, thus incorporating pressures and more generic matter
fields. We intend to isolate the possible dynamic features
that distinguish one outcome from the other, that is, what
could cause NS to develop rather then a black hole as
collapse end state. It is seen that spacetime shear again
plays an important role in the case of general matter fields
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also towards determining the black hole or naked singu-
larity end states.

Specifically, we show that a nonvanishing spacetime
shear must be present within the collapsing cloud when-
ever the collapse ends in NS. Thus, nonvanishing shear
(and the associated inhomogeneity) is a necessary con-
dition for NS formation, and a black hole must always
result whenever there are no shearing forces present in the
collapsing cloud. A possible interpretation of this could
be, whenever a naked singularity has developed, it is
possibly due to the distortion of the trapped surface
geometry which is caused by the presence of shear and
inhomogeneity within the cloud. As the matter consid-
ered here is generic, with nonvanishing radial as well as
tangential pressures, it then appears that the physical
agencies such as inhomogeneities and spacetime shear
present within the collapsing cloud could cause a naked
singularity to develop, as distinguished from black hole
outcome. In a way, this may provide a somewhat natural
dynamical explanation as to why BH/NS phases develop
in collapse.

Consider a spherical collapsing cloud which can be
described by the general metric in the comoving coordi-
nates (1, r, 6, ¢) as given by,

ds? = =2 g2 + 2N g2 + R2(1 1)dQ? (1)

The energy-momentum tensor for any matter field which
is type I is then given in a diagonal form [3],

Ti=-p; Ti=ps TOO=Ty,=po (2

The quantities p, p, and p6 are the energy density, radial
and tangential pressures, respectively. We take the matter
field to satisfy the weak energy condition, i.e., the energy
density measured by any local observer be non-negative,
and so for any timelike vector Vi, we must have,

TyViVE=0 3

which amounts to p =0;p + p,=0;p + pf =0. We
have not confined ourselves here to any special type of
matter such as, e.g., dust or a perfect fluid form, but all
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forms of matter are included where the stress-energy
tensor admits one timelike and three spacelike eigenvec-
tors. In that sense, our conclusions are generic and apply
to a large variety of collapse models.

Now for the metric (1) the Einstein equations take the
form, in the units (87G = ¢ = 1)

F' F
= L= —— 4
P=RR P ©F 4)
,_2pe—p)R _ p; 5)
pt+tp. R p+p,
. G .H
—2R+R=+R—=0 6
G H ©)
G-H=1-L @)
R

where,

G(t,r)=e (R  HEtr)=e *R?* (8

In the above, the arbitrary function F = F(¢, r) has an
interpretation of the mass function for the cloud, giving
the total mass in a shell of comoving radius . We have
F = 0 from the energy conditions.

The shear tensor for the collapsing matter is given by

[6],
0'¢=a'g=——a',=—e_”<§—¢> 9)

Let us consider now the situation when the matter shear
vanishes identically. Our purpose is to investigate to what
extent this constraints the outcome of collapse. This
means,

R .

— =y (10)

R
or, R = g(r)e?. We can use the scaling freedom available
in rescaling the radial coordinate r, and with a suitable
rescaling we can always choose g(r) = r. We then have,

R =re? (1
It then follows that the spacetime geometry (1) becomes,
ds?* = —e?t0di2 + 2V dr? + 2d0?]  (12)

Hence we see that there are now five total field equa-
tions with six unknowns as given by, p, p,, pg, ¥, v and
F, thus giving us the freedom of choice of one free
function if we are to complete the solution. Also we
require the regularity of the initial data, and, in particu-
lar, that of the density distribution, at the initial surface
t = t; from which the collapse develops. The collapse
condition is given as R < 0, which amounts to ¢ < 0. It
is now possible to integrate the Eq. (6), using Eq. (11), to
obtain

e’ = a(n)s (13)
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where a(t) is an arbitrary function of integration. Since
the left hand side of the above equation is positive by
definition, it follows that ¢ < 0 implies a(r) < 0.

The Einstein Eq. (5) implies that there is a density
singularity developing at R = 0 and R’ = 0. The later
are the ‘“‘shell-crossings” which are generally believed
to be weak singularities which are removable. Hence our
main interest here is to study the curvature singularity
developing at R = 0, where physical radius of all collaps-
ing shells go to a vanishing value. So we require that there
are no shell-crossings, that is, we have R’ >0 in the
spacetime. This is equivalent to the condition that r¢f’ >
—1 as we see from the expression for R above. Then
ensuring that there are no shell-crossings ensures that
the coordinate system is valid and does not breakdown
till the curvature singularity at R = 0. In the case of the
singularity at R[r, t,(r)] = 0, we note that in the limit as

t—t,,
lr, t,(r)] — —o0 (14)

We note that in the case of dust, which is a special case
of general Type I matter fields considered here, the con-
gruence of curves of collapsing matter consists of time-
like geodesics and hence in that case no shell-crossings
would imply there are no conjugate points developing in
the congruence of these timelike geodesics which repre-
sent the collapsing dust particles. In fact, in this case, we
have,

¢ =R/R (15)

so R’ — 0 implies ® — —oo, which shows that the shell-
crosses are equivalent to occurrence of conjugate points
in the congruence of geodesics. Again the condition R’ >
0 then ensures that the coordinate system is valid till the
curvature singularity at R = 0. In the general case con-
sidered here, the collapsing matter need not move along
geodesics, however, imposing the condition as above that
there are no shell-crossings ensures that the coordinate
system does not break down till the curvature singularity.
The expansion parameter ®, for the infalling matter
congruence for the metric (1), is given as below,

17 . R
o, r)=—[¢//+2—} (16)
e’ R
From Eq. (10) and (13) it is then seen that, in the case of a
shear-free collapse,

O(r, r) = O() 17)

3

a(t)
The expansion has thus no space dependence in this case
and is negative, as the matter is going through a process of
continual collapse.

For the curvature singularity at R = 0, we have ©® —
—oo as the singularity acts as a sink for all the curves of
the collapsing congruence, and the volume elements
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shrink to zero along all the collapsing trajectories [3]. So
the curvature singularity occurs at a(f) = 0. Let the time
for the central shell at » = O to reach the singularity be
t;,- The singularity curve f,(r) corresponds to the value
R = 0, denoting the times at which different shells arrive
at the vanishing value of the physical radius R. Suppose
now ¢,(r) is an increasing function of r. Consider then the
spacelike surface 1 = 7, . Any event on this surface with
r > 0 then lies within the spacetime, because the singu-
larity at R = 0 is reached at a later epoch for this collaps-
ing shell. So this is a regular spacetime event at which ©
must be finite. This follows from Eq. (11) which implies
that ¢ is finite at all regular points because so are R and R.
Then, from Eq. (15), since the metric function »(r, r) has
to be regular in the spacetime, it follows that at all regular
events the function a(¢) is finite and nonzero. (This makes
physical sense as well because © is the parameter char-
acterizing the volume expansion (or shrinkage) of the
collapsing cloud which is finite at all regular events.)
However, this is not possible because O(z, ) = —oo for
all values of r, as seen above. Similar argument applies if
t(r) were a decreasing function of r. It follows that
t(r) = t,,, which is a constant function, and we have,

®[ts(r)] = ®(tso) = —® (18)

In other words, the singularity #,(r) is simultaneous.

To determine the collapse outcome in terms of either
BH or NS, we need to find if nonspacelike trajectories
escape away from the singularity, thus making it visible.
The singularity will be naked if there are future directed
nonspacelike curves that reach faraway observers, and in
the past which terminate at the singularity. But the sin-
gularity curve being constant, the collapse is simulta-
neous. This necessarily gives rise to a covered
singularity at R = 0, and there cannot be any outgoing
future directed nonspacelike geodesics coming out from
the same. Because, if there were any such curves, given
by say 7 = #(r) in the (1, r) plane, which came out from
t =t, r=0, then the time coordinate must increase
along these paths. This is, however, impossible as there
is complete collapse at 7 = 7, , and there is no spacetime
beyond that. Hence no values ¢ > 1, are allowed within
the spacetime which does not extend beyond the singu-
larity. Hence no nonspacelike trajectories come out of the
singularity and the collapse gives rise necessarily to a
black hole in the spacetime (see also [7]). Similar argu-
ment applies to the points on the singularity curve at r =
Oorr>0.

We have shown that if a naked singularity is to result as
collapse outcome, the presence of nonvanishing shear
within the cloud is a necessary condition. Hence in gen-
eral the vanishing of shear implies black hole, and ab-
sence of NS formation, for a generic matter field. We note
that presence of shear is essential for NS to occur, but
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presence of shear will not in general imply presence of NS
necessarily.

We considered here a sufficiently general form of mat-
ter, and so conclusions are generic to that extent, though
limited to spherical symmetry. To get an insight into how
shear operates in a dynamically evolving scenario, we
consider below a collapse evolution where we assume the
matter density to be homogeneous throughout. We con-
struct an explicit class of collapse models to understand
how shear works to affect the collapse. The choice of a
homogeneous density profile, implies matter is general
but we have p(r, t) = p(z) Now, choose the class of ve-
locity profiles for the collapsing shells as given by the
choice,

v(t, r) = A(R) (19)

Here the function A(R) is any arbitrary, suitably differ-
entiable function of the physical radius R of the cloud,
with the initial constraint A(R)|,—, = v((r) Again, from
the Einstein Eq. (5) we get,

vo(r) — [r<2(1va0 - py) _ Dr ) g Q0
o\ (po+pr)  potpy,

where pg, p,, and p, denote the pressure and density
profiles at the initial epoch. Let us now assume that the
initial pressures have physically reasonable behavior at
the center r = 0, in that the pressure gradients vanish, i.e.
Py, (0) = Pleo (0) = 0, and also that the difference between
radial and tangential pressures vanishes at the center, i.e.
Pr,(0) — pg,(0) = 0, which ensures the regularity of the
initial data at the center of the cloud. Then, from Eq. (20),
it is evident that »(r) has the form v,(r) = r*>g(r), where
g(r) is at least a C! function of r for r = 0, and at least a
C? function for r > 0. From this we can now generalize
the form of A(R) as A(R) = R?g,(R), where g;(R) is a
suitably differentiable function and g;(R)|.—, = g(r).
Now p = p(#) and (4) gives,

_l 3. - _ _1 ( 5
—3p(t)R, pr p(t) 3p(t)R 1)

Also, using Eq. (19) in Eq. (6), we have,
G(t, r) = b(r)e* (22)

Here b(r) is another arbitrary function of the radial
coordinate r. (A comparison with dust collapse models
interprets b(r) as the velocity function for the shells). We
can write b(r) = 1 + r?by(r). Thus we see that for an €
ball around the central shell, the function G behaves as
G =~ ¢*4 Now using Eq. (7) we get

’ 1
g =~ 21(R) +3(0) (23)

Hence, it is evident that in the vicinity of the singularity,
that is in the limit R — 0 and p — oo, and close to the
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central shell,
R
Z=f( 24)
A f

Here f() is another function of time. Thus from Egs. (24)
and (21) we see that in the limit of approach to the
singularity and near the central shell, the radial pressure
behaves as, p, = p,(f) Again, in the same limit we can
write the tangential pressure as,

2pg = RAR(p + p,) +2p, = 2p,(1) (25)

It is clear from the above that in the case of a homoge-
neous collapse, a large class of solutions as above, and
characterized by the functions A(R) exists, for which both
the radial and tangential pressures homogenize close to
the center and in the vicinity of the singularity. Hence
collapse becomes necessarily shear-free at this limit
(note that in spherical symmetry homogeneity, through
the no energy flux condition, implies vanishing shear).
The final outcome of such a homogeneous collapse is then
necessarily black hole.

It follows that collapse outcome is a black hole when-
ever the collapsing matter is shear-free or homogeneous.
The end product of collapse could be different from black
hole (i.e. naked singularity) only if the collapsing matter
is both shearing as well as inhomogeneous. This is a
generic feature to the extent that the matter field we
have considered is general enough. So for a number of
classes of general Type I matter fields, the homogeneous
collapsing configurations are subclasses of shear-free
collapse, because a collapse which is homogeneous in
density tends to be shear-free in the limit of approach to
the singularity, as seen above. This shows there is an
interesting tying up of shear and inhomogeneity for a
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collapsing matter cloud to end up in a naked singularity.
Shear could be a physical process that distorts the shape
of apparent horizon surface to expose the singularity.
This matches with why shear-free collapse always ends
in black hole. Interestingly, a similar tying up of inho-
mogeneity and shear (anisotropy) appears to exist for
nonsingular cosmological models as was argued by one
of us [8]. We thus see that the collapse of a general matter
field could generically tend to an outcome which is ob-
served in the dust case [1]. This raises an interesting
possibility whether general collapse configurations could
also tend to a dustlike model in the vicinity of the
singularity.

Finally, consider the equation for outgoing radial null
geodesics dt/dr = e?~". One could now write the above
in terms of the variables (u = r%, R). Choosing a = %
and using Eq. (7) we get,

/ _F
d_R = § B + Jov < 1% ) (26)
du 5\u \/E VG[VG + VH]
u

where we have written R = rv. Now if the null geodesics
do terminate at the singularity in the past with a definite
tangent, then at the singularity we have ‘fl—’; >0, in the
(u, R) plane with a finite value. It follows that all points
r > 0 on the singularity curve are then covered because
F/R — o (when weak energy condition is satisfied and
pressures are positive then F(r) tends to a finite positive
value for any r > 0 on the singularity curve) with % —
—oo. So noncentral singularities will always be covered
for a general type I matter distribution. The central sin-
gularity could however be visible.
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