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Corrections to the Cardy-Verlinde formula from the generalized uncertainty principle
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In this Letter, we compute the corrections to the Cardy-Verlinde formula of the d-dimensional
Schwarzschild black hole. These corrections stem from the generalized uncertainty principle. Then we
show one can take into account the generalized uncertainty principle corrections of the Cardy-Verlinde
entropy formula by just redefining the Virasoro operator L0 and the central charge c.
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I. INTRODUCTION

It is commonly believed that any valid theory of quan-
tum gravity must necessary incorporate the Bekenstein-
Hawking definition of black hole entropy [1,2] into its
conceptual framework. However, the microscopic origin
of this entropy remains an enigma for two reasons. First
of all although the various counting methods have
pointed to the expected semiclassical result, there is still
a lack of recognition as to what degrees of freedom are
truly being counted. This ambiguity can be attributed to
most of these methods being based on dualities with
simpler theories, thus obscuring the physical interpreta-
tion from the perspective of the black hole in question.
Secondly, the vast and varied number of successful count-
ing techniques only serve to cloud up an already fuzzy
picture.

The Cardy-Verlinde formula proposed by Verlinde [3]
relates the entropy of a certain conformal field theory
(CFT) with its total energy and its Casimir energy in
arbitrary dimensions. Using the AdSd=CFTd�1 (anti-
de Sitter) [4] and dSd=CFTd�1 correspondences [5], this
formula has been shown to hold exactly for different black
holes (see, for example, [6–15]).

Black hole thermodynamic quantities depend on the
Hawking temperature via the usual thermodynamic rela-
tions. The Hawking temperature undergoes corrections
from many sources: the quantum corrections [16], the
self-gravitational corrections [17], and the corrections
due to the generalized uncertainty principle.

The generalized uncertainty principle corrections are
not tied down to any specific model of quantum gravity;
these corrections can be derived using arguments from
string theory [18] as well as other approaches to quantum
gravity [19].

In this Letter we concentrate on the corrections due
to the generalized uncertainty principle. In Sec. II
we review the connection between uncertainty principle
and thermodynamic quantities, and then we drive the
corrections to these quantities due to the generalized
uncertainty principle [20]. In Sec. III we consider the
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generalized Cardy-Verlinde formula of a d-dimensional
Schwarzschild black hole [21,22]; then we obtain the
generalized uncertainty principle corrections to this en-
tropy formula.
II. THE GENERALIZED UNCERTAINTY
PRINCIPLE

A d-dimensional Schwarzschild black hole of mass M
is described by the metric

ds2 � �

�
1�

16�GdM

�d� 2��d�2c
2rd�3

�
c2dt2

�

�
1�

16�GdM

�d� 2��d�2c2rd�3

�
�1
dr2 � r2d�2

d�2; (1)

where �d�2 is the metric of the unit Sd�2 and Gd is the
d-dimensional Newton’s constant. Since the Hawking ra-
diation is a quantum process, the emitted quanta must
satisfy the Heisenberg uncertainty principle

xipj � �h�ij; (2)

where xi and pj, i; j � 1; . . . ; d� 1, are the spatial coor-
dinates and momenta, respectively. By modeling a black
hole as a d-dimensional cube of size equal to twice its
Schwarzschild radius rs, the uncertainty in the position of
a Hawking particle at the emission is

x � 2rs � 2�d

�
GdM

c2

�
1=�d�3�

; (3)

where

�d �

�
16�

�d� 2��d�2

�
1=�d�3�

: (4)

Using Eq. (2), the uncertainty in the energy of the emitted
particle is

E � cp �
Mplc2

2�d
m�1=�d�3�; (5)

where m � M=Mpl is the mass in Planck units and Mpl �

� �hd�3=cd�5Gd�
1=�d�2� is the d-dimensional Planck mass.

E can be identified with the characteristic temperature
of the black hole emission, i.e., the Hawking temperature.
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Setting the constant of proportionality to �d� 3�=2� we
get

T �
�d� 3�

4��d
Mplc2m�1=�d�3�: (6)

The entropy is

S �
4��d

d� 2
m�d�2�=�d�3� �

�d� 3�

�d� 2�

Mc2

T
: (7)

We now determine the corrections to the above results due
to the generalized uncertainty principle. The general form
of the generalized uncertainty principle is

xi �
�h

pi
� �2l2lp

pi

�h
; (8)

where lpl � � �hGd=c
3�1=�d�2� is the Planck length and � is

a dimensionless constant of order 1. There are many
derivations of the generalized uncertainty principle,
some heuristic and some more rigorous. Equation (8)
can be derived in the context of string theory [18], non-
commutative quantum mechanics [19], and from mini-
mum length consideration [23]. The exact value of �
depends on the specific model. The second term on the
right-hand side of Eq. (8) becomes effective when mo-
mentum and length scales are of the order of Planck mass
and of the Planck length, respectively. This limit is usu-
ally called quantum regime. Inverting Eq. (8), we obtain

xi
2�2l2pl
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1�

�����������������������
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4�2l2pl
x2i

vuut �
�
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�h

�
xi
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�
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�����������������������
1�

4�2l2pl
x2i

vuut �
:

(9)

The corrections to the black hole thermodynamic quan-
tities can be calculated by repeating the above argument.
Setting x � 2rs the generalized uncertainty principle-
corrected Hawking temperature is

T0 �
�d� 3��d

2��2 m1=�d�3�

�
1�

�������������������������������
1�

�2

�2
dm

2=�d�3�

vuut �
Mplc2:

(10)

Equation (10) may be Taylor expanded around � � 0:

T0 �
�d� 3�

4��d
m�1=�d�3�

�
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�2

4�2
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2=�d�3� � 
 
 


�
Mplc

2:

(11)
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III. GENERALIZED UNCERTAINTY PRINCIPLE
CORRECTIONS TO THE CARDY-VERLINDE

FORMULA

The entropy of a �1� 1�-dimensional CFT is given by
the well-known Cardy formula [24]

S � 2�

��������������������������
c
6

�
L0 �

c
24

�s
; (12)

where L0 represent the product ER of the energy and
radius, and the shift of c

24 is caused by the Casimir effect.
After making the appropriate identifications for L0 and c,
the same Cardy formula is also valid for CFT in arbitrary
spacetime dimensions �d� 1� in the form [3]

SCFT �
2�R
d� 2

���������������������������
Ec�2E� Ec�

q
; (13)

the so-called Cardy-Verlinde formula, where R is the
radius of the system, E is the total energy, and Ec is the
Casimir energy, defined as

Ec � �d� 1�E� �d� 2�TS: (14)

So far, mostly asymptotically AdS and dS black hole
solutions have been considered [4–15]. In [21], it is shown
that even the Schwarzschild and Kerr black hole solu-
tions, which are asymptotically flat, satisfy the modifica-
tion of the Cardy-Verlinde formula

SCFT �
2�R
d� 2

������������
2EEc

p
: (15)

This result holds also for the various charged black hole
solution with asymptotically flat spacetime [22].

In this section we compute the generalized uncertainty
principle corrections to the entropy of a d-dimensional
Schwarzschild black hole described by the Cardy-
Verlinde formula Eq. (15). The Casimir energy Eq. (14)
now will be modified due to the uncertainty principle
corrections as

E0
c � �d� 1�E0 � �d� 2�T0S0: (16)

It is easily seen that

2E0E0
c � 2�d� 1�E02 � 2�d� 2�E0T0S0

�
8�d� 1��2T02

�d� 3�2
�

4��d� 2�T02S0

d� 3
: (17)

We substitute expressions (16) and (17) which were com-
puted to first order in �2 in the Cardy-Verlinde formula in
order that generalized uncertainty principle corrections
to be considered:

S0CFT � SCFT

�
1�

�T
�d� 3�EcE

�

�
4�T
d� 3

� �d� 2�TS� 2�d� 2�TS
�
; (18)
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where

T �
�d� 3��2m�3=�d�3�

16��3
d

Mplc2; (19)

and

S �
���2m�d�4�=�d�3�

�d� 4��d
; d > 4: (20)

We would like to express the modified Cardy-Verlinde
entropy formula in terms of the energy and Casimir
energy, therefore rewriting T, S, T, and S in terms of
energy as following:

T �
�d� 3�E

2�
; (21)

S �
2��d� 3�

�d� 2�
�2�d�

3�d�Mplc
2�d�2E2�d; (22)

T �
�d� 3�

2��Mplc
2�2

�2E3; (23)

S �
���2

�d� 4��d

�
2�dE

Mplc
2

�
4�d

: (24)

To obtain the last equation we have used the Eqs. (5) and
(20). Then, Eq. (18) can be rewritten as

S0CFT � SCFT

�
1�

�2

2Ec

�
2E3

�Mplc2�2

��d� 3�E5�d�Mplc2�d�4

��2�d�
3�d

�
d� 2

d� 4
� 2�d� 3�

��
: (25)

As we saw in the above discussion these corrections are
caused by the generalized uncertainty principle.

For the Schwarzschild black holes, the dual CFT lives
on a flat space, and thus the energy has no subextensive
part. Since the Casimir energy vanishes, the Cardy-
Verlinde formula (13) makes no sense in this case.
In the two-dimensional conformal field theory, when
the conformal weight of the ground state is zero, we
have

S � 2�

��������
cL0

6

s
: (26)

If we use EcR � �d� 2�Sc=2� in (13), where Sc is the
Casimir entropy, and drop the subtraction of Ec in anal-
ogy with Eq. (26), we obtain the generalization to �d� 1�
dimensions,

S �
2�

d� 2

��������
cL0

6

s
; (27)
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where L0 � ER and c=6 � �d� 2�Sc=� � 2EcR. Then,
we can take into account the generalized uncertainty
principle corrections of the Cardy-Verlinde entropy for-
mula by just redefining the Virasoro operator and the
central charge as follows:

L0
0 � E0R �

R�d

�2 m1=�d�3�

�
1�

�������������������������������
1�

�2

�2
dm

2=�d�3�

vuut �
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(28)

c0 � 12E0
cR

�
12R�d
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��
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�������������������������������
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�2
dm

2=�d�3�

vuut �
Mplc

2

�
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�
�
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�I
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�dm1=d�3

�

��
: (29)

Also the first order corrections to the L0 and c are given
by

L0 � L0
0 � L0 � �E0 � E�R

�
R�2

8�3
dm

3=�d�3�
Mplc

2 �
�2

4�2
dm

2=�d�3�
L0; (30)

c � c0 � c � 12R�E0
c � Ec�

� 12R
�
�d� 1��2

�3
dm

3=�d�3�
Mplc

2 � �2�d�
3�d

��Mplc2�d�4�2E5�d
�
d� 2

d� 4
� �d� 3�

��
: (31)

Thus, this redefinition can be considered as a renor-
malization of the quantities entering in the Cardy
formula.
IV. CONCLUSION

In this paper we have examined the effects of the
generalized uncertainty principle in the generalized
Cardy-Verlinde formula. The general form of the general-
ized uncertainty principle is given by Eq. (8). Black hole
thermodynamic quantities depend on the Hawking tem-
perature via the usual thermodynamic relation. The
Hawking temperature undergoes corrections from the
generalized uncertainty principle as Eq. (10). Then we
have obtained the corrections to the entropy of a dual
-3
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conformal field theory live on flat space as Eqs. (18) and
(25). We have considered this point that the Cardy-
Verlinde (generalized Cardy-Verlinde) formula is the out-
come of a striking resemblance between the thermody-
namics of CFTs with asymptotically Ads (flat) duals and
CFTs in two dimensions. After that we have obtained the
corrections to the quantities entering the Cardy-Verlinde
formula: Virasoro operator and the central charge. The
087501
corresponding problem for the Schwarzschild-AdS met-
ric is in progress by the author.
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