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Gauge five-brane moduli in four-dimensional heterotic models
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We present a Kähler potential for four-dimensional heterotic M-theory which includes moduli
describing a gauge five-brane living on one of the orbifold fixed planes. This result can also be thought
of as describing compactifications of either of the weakly coupled heterotic strings in the presence of a
gauge five-brane. This is the first example of a Kähler potential in these theories which includes moduli
describing background gauge field configurations. Our results are valid when the solitons width is much
smaller than the size scale of the Calabi-Yau threefold and can be used to provide a more complete
description of some moving brane scenarios. We point out that, in general, it is not consistent to truncate
away the gauge five-brane moduli in a simple manner.
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I. INTRODUCTION

Heterotic M-theory [1,2], the compactification of the
Hořava-Witten strongly coupled limit of the E8 � E8

heterotic string [3,4] on a manifold of SU(3) holonomy,
is one of the most promising corners of the M-theory
moduli space studied to date from a phenomenological
point of view. The theory combines phenomenological
successes of its weekly coupled counterpart [5] with a
natural mechanism for obtaining the correct strength of
gravitational interactions, through a kind of ‘‘large extra
dimensions’’ mechanism [1,6].

The vacua associated with heterotic M-theory, which
were presented in [1,2,7], are nontrivial domain wall
solutions with a warping in the direction of the bulk
and, more importantly from the point of view of this
paper, gauge field expectation values on at least one of the
fixed planes (other papers written on the vacua of this
theory include [8,9]). This gauge field background is
taken to live entirely within the Calabi-Yau threefold
(i.e., it is not allowed to depend on the four external
directions and is taken to be zero when its index is
external) in order to maintain four-dimensional
Poincaré invariance. It is this vacuum which has been
used in the study of four-dimensional phenomenology
and modulus evolution. Because of the model’s many
successes from a particle physics standpoint extensive
studies have been made of the moduli evolution about
this vacuum, the basic solutions being provided in [10].
However, to the authors’ knowledge, no one has included
any of the moduli describing the background gauge field
configuration in obtaining such cosmological solutions.
The reason for this is quite simple —the relevant kinetic
terms are not known (although some other information
about these moduli has been obtained in [11–15]). The
reason for this lack of a four-dimensional theory is quite
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simple to understand. The most straightforward way to
calculate such kinetic terms would be to start with a
background solution which described a Calabi-Yau com-
pactification of the theory, including the sections of the
gauge bundles living on the fixed planes. One would then
take the integration constants in this solution, promote
them to be four-dimensional fields, and plug the result-
ing configuration into the higher dimensional action.
Integrating out the internal dimensions would then
naively result in the desired terms in the four-dimensional
effective action. However, such exact solutions on a com-
pact Calabi-Yau threefold are not known rendering this
calculation impossible.

The advent of some recent scenarios based upon mov-
ing and colliding M5 branes [16,17] has made the need to
include some of the gauge bundle moduli in our cosmo-
logical analysis even more pressing. The M5 branes con-
cerned can be included in the vacuum solution without
breaking N � 1 supersymmetry if they are oriented par-
allel to the fixed planes in the bulk with two of their world
volume directions wrapping a holomorphic curve within
the Calabi-Yau [1,18]. The scenarios mentioned above are
based upon the position modulus of an M5 brane evolving
in such a way that the object collides with an orbifold
fixed plane [19–21]. However it is not the case that during
such a collision the M5 brane disappears with nothing
else in the situation changing—this would result in an
inconsistency in the cohomology condition, for example,
which essentially says that the charges on the fixed planes
and M5 branes should sum to zero. Various considera-
tions, including study of the cohomology condition and
examination of extra light states which appear at colli-
sion, lead us to believe that one thing that might happen
on collision is a so-called small instanton transition
[22,23]. Here, during collision, the M5 brane disappears
and is replaced with a gauge five-brane living on the
relevant orbifold fixed plane. A gauge five-brane is a
solitonic object made completely out of low-energy
fields—including gauge fields [24]. The object appears
03-1  2004 The American Physical Society
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with fundamental length scale width just after the colli-
sion and then could spread out with time to become more
diffuse. The moduli which describe the gauge five-brane
are examples of gauge bundle moduli. The easiest way to
understand this is to observe that the soliton is essentially
a Yang-Mills instanton with various gravitational field
dressings. Once the gauge field core of the object is known
the dressing can be determined completely in terms of
this (up to certain discrete choices which are available)
and so the moduli describing the gauge five-brane are
simply the moduli of the Yang-Mills instanton—i.e.,
moduli associated with gauge bundle on that fixed plane.

As we shall see, bundle moduli cannot in general be
consistently truncated off and, therefore, represent an
essential part of heterotic low-energy effective theories
which have been widely neglected so far. In particular,
they must be included in cosmological scenarios, such as
those mentioned above, where the gauge bundle may
evolve in time. For example, one would like to understand
whether or not the gauge five-brane does spread out after
a small instanton transition. A prerequisite for such an
investigation would be knowledge of the kinetic terms for
the appropriate moduli.

Given this situation in this paper we present a calcu-
lation of the effective four-dimensional theory which
describes the centered moduli space of the gauge five-
brane (neglecting nonperturbative potentials). This the-
ory contains, for instance, the size modulus for the soli-
ton mentioned above. To our knowledge this is the first
example of a Kähler potential which includes gauge
bundle moduli describing the background configuration
of gauge fields in Heterotic M-theory.

In obtaining this four-dimensional action we circum-
vent the problem of obtaining an explicit background
solution with which to work by realizing that the gauge
five-brane, at least when its width is small with respect to
the curvature scale of the Calabi-Yau, is in some sense a
very localized object. In such a regime the five-brane
does not, outside of its core, probe the directions trans-
verse to it to any significant degree [22]. In particular, in
some senses, it does not know if the transverse space is
compact or asymptotically flat. The idea then is to con-
struct an approximate solution for the gauge and gravi-
tational fields which is only valid close to the gauge five-
brane (in a manner to be made explicit later). One then
has to see if the effective action can be reliably calculated
with only this limited information—i.e., can we calcu-
late the effective theory describing the object without
knowing what happens far from its world volume in the
transverse space. We find that the answer is, as one might
expect physically, in the affirmative.

Although we will be working in the heterotic M-theory
set up here it should be stressed that similar configura-
tions to the gauge five-brane appear in many other
phenomenologically viable compactifications of string
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theory. Many of the comments made above would equally
well apply to these cases and one would expect the
method we present to be viable there as well. For example
one could consider a situation in type I where we have an
instanton based configuration living on a stack of Dp

branes. Such a configuration could have been created by
the collision of a Dp�4 brane [25]. We would like to stress
that these solitonic objects, as well as the ones we con-
sider directly in this paper, do not have to be created by
brane collisions. They can exist in these vacua indepen-
dently of such considerations.

The outline of this paper is as follows. In Section II we
shall introduce the higher dimensional action upon which
our analysis is based. We will review Strominger’s solu-
tion [24] describing a gauge five-brane in flat space and
shall then proceed to generalize this solution to give an
approximate configuration upon which we can carry out
our dimensional reduction. In Section III we proceed to
the calculation of the effective action in four dimensions,
first outlining a subtlety associated with promoting the
integration constants of the background configuration to
be four-dimensional moduli fields, and then performing
the dimensional reduction necessary to obtain the four-
dimensional theory. In Section IV we present our results,
in particular, couching our findings in terms of a Kähler
potential. In Section V we comment on possible direc-
tions of future work.

Our index conventions are as follows. Indices �, �, . . .
and M, N, . . . label world volume directions of the gauge
five-brane with �, � � 0, 1, 2, 3, and M, N � 4, 5. The �
directions will eventually correspond to four-
dimensional uncompactified space while the M directions
will be associated with a holomorphic 2 cycle in a Calabi-
Yau threefold. Indices A, B, . . . label the transverse di-
mensions with A, B � 6, 7, 8, 9. These directions will
eventually correspond to directions in the compactified
space transverse to the gauge five-brane. We shall use
indices a, b � 4; ::; 9 to denote a general direction in the
internal space.

II. HIGHER DIMENSIONAL ACTION AND
BACKGROUND SOLUTION

Our starting point is the low-energy effective action of
the E8� E8 heterotic string. This action also provides an
effective description of ten-dimensional heterotic M-
theory [26] and, with a suitable change of gauge group,
the weakly coupled SO(32) heterotic string at low ener-
gies. Thus the discussion and results presented in this
paper are equally valid in these corners of the M-theory
moduli space. Working with this description of these
theories is valid to the approximations we shall be making
and results in considerable simplification as compared to
carrying out the analysis, for example, in the 11-
dimensional picture of heterotic M-theory. One obvious
simplification as compared to that case is that we no
-2
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longer have to worry about warping in the Hořava-Witten
orbifold direction as this is already included in the effec-
tive theory we are using to the approximation we require.
The action is given by

S10 �
1

2�2
10D

Z
d10x

�������
�g

p
e2�

�
�R � 4�@��2 �

1

3
H2

�
�0

30
TrF2 � . . .

�
; (1)

where the field strength H takes the usual form

H � dB �
�0

30
!3YM � . . . : (2)

The . . .’s here express the fact that we have dropped some
terms which we will not need, for the particular calcu-
lation we are interested in, to our approximations. The
traces in this expression are in the adjoint of E8 � E8. The
Chern-Simons three-form associated with the E8 � E8

gauge fields is denoted by !3YM and B is a two-form
potential. The field strength of the E8 � E8 gauge fields
is F and � is the ten-dimensional dilaton. The action is
valid to first order in �0 which is the order we will be
working to throughout this paper.

A. Gauge five-brane solution in asymptotically flat
space

There is a solution of this theory due to Strominger
[24] which describes a gauge five-brane in ten-
dimensional asymptotically flat space (the 11-
dimensional counterpart of this solution in the heterotic
M-theory case was given in [27]).While as it stands this is
obviously not a suitable background solution for our
purposes it will be very important in the following analy-
sis and so we take the time to describe it in some detail.
The solution assigns values to the ten dimensional fields
as follows

AB � ���� 2i!2rC ��CB

R2�R2 � !2�
��$�$; (3)

e�2� � e�2�0

�
1� 8�0 R2 � 2!2

�R2 � !2�2

�
; (4)

ds210 � &��dx�dx� � $MNdxMdxN

� e2�0�2��$ABdxAdxB�; (5)

HABC � 'ABC
D@D�: (6)

In these expressions �0, !, and �� are constants and we
make use of the following definitions

�rC� � �x6; x7; x8; x9�; (7)

R2 � $ABrArB: (8)
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We also have the constraint

X4
��1

����2 � 1 (9)

on the quantities ��.
Indices �, �, . . . and M, N, . . . label world volume

directions with �, � � 0, 1, 2, 3 and M, N � 4, 5.
Indices A, B, . . . label the transverse dimensions with A,
B � 6, 7, 8, 9. We have split the world volume indices into
two groups like this and have introduced r and R to make
our notation compatible with the discussion in later sec-
tions when we will wrap two of the world volume direc-
tions of the gauge five-brane up on a holomorphic cycle in
a Calabi-Yau threefold.We define �A � �1	2
�	2
; i ~)�where
)i, i � 1, 2, 3 are the Pauli matrices. The Hermitian
conjugate matrices are ��A � �1	2
�	2
;�i ~)� and we define
the self dual and anti self dual two index objects, �AB �
1
4 ��A ��B � �B ��A� and ��AB � 1

4 � ��A�B � ��B�A�. The
completely antisymmetric symbol in four dimensions is
denoted 's

ABCD, and 's
6789 � 1. The associated tensor is

denoted 'ABCD.
It should be noted that while this solution is in a

singular gauge [28] (the gauge field given above is diver-
gent at rC � 0) any physical (i.e., gauge invariant) quan-
tity associated with it is everywhere finite.

The solution is accurate, as is the action we have
presented, to first order in �0. It describes a soliton with
six world volume dimensions and four transverse ones.
The object is, at its core, a Yang-Mills instanton em-
bedded within some SU(2) subgroup of the E8 associated
with the fixed plane on which it exists in the higher
dimensional picture. This Yang-Mills configuration has,
as is well known, several collective coordinates. These
are integration constants of the solution which describe
flat directions in the object’s moduli space. For example
the object has some finite width in the four transverse
directions which is determined by the constant ! in the
solutions given above. The instanton has an orientation
within the SU(2) which is determined by the parameters
��. Although there are four �’s they are subject to one
constraint (24), and so the size and SU(2) orientation
together makes a total of four parameters which span
the so-called centered moduli space of the instanton. In
addition to the centered moduli space the object has four
collective coordinates which describe its motion in the
transverse space and 112 zero modes associated with the
embedding of SU(2) within E8. We shall concentrate on
the centered moduli space in this paper and leave the
analysis of these extra degrees of freedom for future
work. It is fairly easy to see why this is a consistent thing
to do, at least in the case of the translation moduli. The
first nontrivial test that it is possible to consistently trun-
cate off the position moduli is given by the observation
[28] that the moduli space of a pure Yang-Mills instanton
factors into a product of the centered moduli space and
-3
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the space of the position moduli. Since this result must be
regained in the limit where we ‘‘freeze’’ the other moduli
this is a necessary condition for our truncation to be
consistent. The real test for consistent truncation however
comes from checking that the position moduli enter the
effective four-dimensional theory bilinearly. We have in-
deed checked that this is the case and so we are justified in
truncating to the centered moduli space.

In any case one may wonder whether these gauge
bundle moduli span the moduli space of the gauge five-
brane or whether there are other moduli associated with
the ’’Neveu-Schwarz’’ (NS) dressing. As was demon-
strated in [24] however, given the gauge field configura-
tion presented in (3) we can determine the gravitational
dressing, also given in Eqs. (3), and no more integration
constants appear (although different discrete choices are
possible [29–31]). The fact that this object is based upon a
self-dual solution to the Yang-Mills equations will be of
central importance when we come to talk of generalizing
the work presented in this paper. There exists a powerful
tool for obtaining such configurations, in the form of the
Atiyah Drinfeld Hitchin Manin (ADHM) construction
[28], which we can use as a starting point for the analysis
of more complicated situations.

B. Wrapping up the gauge five-brane

As we have already mentioned, the solution given in
the previous section is, as it stands, of no use for our
current purposes as the gauge five-brane described therein
lives in asymptotically flat ten-dimensional space. We
wish to describe a situation where the manifold we are
working on is not M10 but M4 � X where X is a compact
six-dimensional manifold. To preserve N � 1 super-
symmetry in four dimensions X has to have SU(3)
holonomy with respect to the generalized connec-
tion including the three-form field strength [32]. In addi-
tion, for N � 1 supersymmetry and four-dimensional
Poincaré invariance we require that four of the world
volume directions of our gauge five-brane span M4

with the remaining two wrapping a holomorphic 2 cycle
within X [1].

Now obtaining an exact solution describing a compact
Calabi-Yau manifold with an associated gauge bundle
which includes a piece of the background configuration
which can be identified as a wrapped gauge five-brane is,
as was mentioned in the introduction, beyond the capa-
bilities of current technology. However we can obtain an
approximate solution which describes such a situation
and which is valid only near the cycle which the five-
brane wraps. We shall find in the next section that this
approximate solution is all that we require, as might have
been expected on physical grounds, to calculate the terms
due to the presence of the five-brane in the desired effec-
tive action.

So how do we construct this approximate solution? We
shall really only require one property of our compactifi-
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cation manifold in order to construct such an approxima-
tion as a generalization of the solution we have already
encountered. That property is,
(i) N
-4
ear the 2 cycle which the gauge five-brane wraps
the compact space may be written as X � C2 � C4,
where C2 is a Riemann surface and C4 is a complex
four-dimensional space.
However, in order to demonstrate the existence of
Calabi-Yau threefolds with this property and to give us
a concrete context in which to carry out our calculation
we shall concentrate on the class of compact metric
configurations which can be obtained by blowing up
six-dimensional orbifolds of SU(3) holonomy. Note
‘‘SU(3) holonomy’’ here denotes the holonomy of the
metric neglecting the back reaction due to the presence
of the gauge five-brane. Our analysis, of course, includes
this back reaction and so our full metric is not of SU(3)
holonomy.

We shall therefore start with some six-dimensional
orbifold which in addition to having SU(3) holonomy
has the factorization property mentioned above near the
2 cycle on which we shall wrap our gauge five-brane. In
order to simplify the following calculation we shall also
require that the point group of our orbifold is such as to
project out off diagonal metric moduli. This is not neces-
sary for our method to work but results in considerable
simplification of the calculation, in particular, in keeping
the number of moduli we have to deal with at a manage-
able level, while still retaining the essential ingredients
we are interested in.

An example of an orbifold which has all three of these
properties is a Z8 � I Coxeter orbifold with an SO�5� �
SO�9� lattice [33]. The orbifold is constructed as follows.
We define three complex coordinates

z1 � x4 � ix5; (10)

z2 � x6 � ix7; (11)

z3 � x8 � ix9: (12)

To construct the orbifold we start with flat space spanned
by these complex coordinates. We then make identifica-
tions under the point group. In our case the action of the
point group can be written as follows

z1 ! e21i�1=4�z1; (13)

z2 ! e21i�1=8�z2; (14)

z3 ! e�21i�3=8�z3: (15)

As we have said, this particular choice is an example
where the off diagonal metric moduli are projected out by
the orbifolding. This can be seen by considering the
action of the point group on an off diagonal component
of the metric such as gz1 �z2 .
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Having gauged the point group we then perform iden-
tifications under a lattice to obtain a compact manifold.
We use the root lattice of SO�5� � SO�9�, which is com-
patible with our choice of point group and with our need
for a suitable 2 cycle on which to wrap the brane [33]. C2

will be identified with the space which is compactified by
modding out by the SO(5) lattice and C4 with the space
which is modded out by the SO(9) lattice. The orbifold
fixed loci in this compactification are then blown up using
some appropriate resolutions [34] leaving us with a class
of Calabi-Yau manifolds with the desired properties.

Wrapping the gauge five-brane solution up on a 2 cycle
is then simple. We shall work in the ‘‘downstairs’’ picture
where we simply consider the fundamental region of the
orbifold. We choose the size of the fixed loci blow ups and
the gauge five-brane width to be much smaller than the
overall size of the orbifold.We then choose a holomorphic
2 cycle to wrap around which is determined by choosing a
point in C4 which is far from any of the orbifolds resolved
fixed loci and the rest of the bundle which is also assumed
to be localized (perhaps in the form of more gauge five-
branes). The solution given in Section II A can then be
generalized to wrap this cycle with the trivial modifica-
tion of making the identifications that turn two of the
world volume directions into the cycle (the solution has
symmetries which are compatible with this).

All we then have to do is use coordinate transforma-
tions to introduce the constants which will form the
metric moduli of X and introduce constants which will
become the imaginary parts in their complexifications.
We then have a solution which is valid near to the 2 cycle
which will be appropriate to use in our dimensional
reduction. Of course the solution differs substantially
from the real situation we are interested in far from the
gauge five-brane in the transverse space, our approximate
solution being asymptotically flat in these directions.
However as we shall see in the next section we can
show that this approximate solution, valid in this re-
stricted volume to an approximation to be made more
concrete later, is all we require to compute the effective
theory we desire.

The coordinate transformations we use to introduce the
metric moduli are, in real coordinates

xA ! V 1=6
�A�xA; (16)

where we have introduced the notation V �A�. This is taken
to mean V �1� � V �2� � V 1, V �3� � V �4� � V 2. We
have chosen to use this notation as each volume modulus,
while associated with one component of the metric in
complex coordinates (gzi �zi

for i � 1 . . . 3), is associated
with two real coordinates.

The constant two-form potential contributions which
will form the completion of the complex volume moduli
can simply be added to the configuration and it will
remain a solution. These can be seen in the equation for
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the two-form below (they are the 2’s). It should be noted
however that the off diagonal components of the two-
form are projected out for our choice of point group in
exactly the same way as we saw above for the metric
moduli.

Combining all of this information we may now write
down our approximate background solution including all
of the necessary integration constants.

AB � ����
2i!2rC ��CBV

1=6
�B�

R2�R2 � !2�
��$�$; (17)

e�2� � e�2�0

�
1� 8�0 R2 � 2!2

�R2 � !2�2

�
; (18)

ds210 � fg��dx�dx� �V 1=3
3 $MNdxMdxN

� e2�0�2��V 1=3
�A� $ABdxAdxB�; (19)

BAB � Bbg
AB �

1

6
2�1��

�1�
AB �

1

6
2�2��

�2�
AB; (20)

BMN � Bbg �
1

6
2�3��

�3�
MN: (21)

We have denoted three harmonic two-forms
on a flat orbifold of our type as (in the absence
of the instanton) ��1�

ab � ��1ja�1;b�2;�1ja�2;b�1�,
��2�

ab � ��1ja�3;b�4;�1ja�4;b�3�, and ��3�
ab �

��1ja�5;b�6;�1ja�6;b�5�. In addition, Bbg is the order �0

background contribution to the two-form due to the
presence of the five-brane.

We now have the following definitions for rC and R

�rC� � �V 1=6
1 x6;V 1=6

1 x7;V 1=6
2 x8;V 1=6

2 x9�; (22)

R2 � $ABrArB: (23)

We also still have the constraint on the ��’s

X4
��1

����2 � 1: (24)

V 3 is a metric modulus associated with the size of the
2 cycle the five-brane wraps, i.e., it is the size modulus
associated with C2, and 23 is its corresponding axion. V 1

and V 2 are metric moduli associated with the size and
shape of the four-dimensional transverse space C4 and 21

and 22 are their corresponding axions. f is a Weyl rescal-
ing factor which will be chosen by demanding that the
Einstein Hilbert term in four dimensions is canonically
normalized in terms of the four-dimensional metric g��.

Now that we have this approximate solution one might
naively think that it is easy to compute the four-
dimensional effective action describing the gauge five-
brane. The ‘‘usual’’ procedure would be to take integra-
tion constants in this approximate solution and promote
-5
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them to be four-dimensional fields. One would then take
the resulting configuration, substitute it into the higher
dimensional action, and integrate out the six compactified
dimensions. If our physical argument that the effective
theory can be calculated without knowing what happens
far from the gauge five-brane’s world volume is true then
we should be able to do all of this without picking up non-
negligible contributions from the part of the transverse
space on which we cannot trust our solution. We would
then end up with a four-dimensional effective action
which would be valid to some well controlled approxima-
tions. In fact we shall see that, while this is broadly
speaking how the calculation proceeds, a few subtleties
arise which we have to deal with before we can obtain our
result.

III. THE FOUR-DIMENSIONAL MODULI SPACE
EFFECTIVE ACTION

As just stated the dimensional reduction we will now
proceed to carry out is not completely straightforward.
There are essentially three different subtleties involved in
the calculation. The first of these arises in the promotion
of ten-dimensional integration constants to become four-
dimensional moduli fields.We find in the situation at hand
that it is necessary to introduce the concept of compen-
sators in this process as explained in Subsection III A.
The second subtlety involves using small amounts of
information we have about the exact vacuum solution
under consideration to show that certain terms from the
higher dimensional action do not contribute to the four-
dimensional effective theory to the approximations at
hand. This is explained in detail in the first half of
Subsection III A. The final subtlety, which we discuss in
the second half of Subsection III B, has to do with mak-
ing sure that we make sensible definitions of our moduli
fields.

Throughout this section the reader should bear in mind
that our goal is to obtain the four-dimensional effective
action which is presented in Eq. (65).

A. Promoting constants in the background solution
and the inclusion of compensators

The first thing we have to do in the calculation of the
effective action is to take the constants which will be-
come the moduli we wish to describe and replace them
with four-dimensional fields.We immediately encounter a
subtlety in doing this, albeit one that is well known in
other contexts [28]. Consider the following contribution
to the gauge field

A� � ��A�
m @�m: (25)

Here m is some modulus, a sum over moduli being
implied on the right hand side, and we recall that � labels
an external four-dimensional direction.

Now let us construct a configuration by taking some
background solution, promoting its integration constants
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to be four-dimensional fields, and adding to it contribu-
tions to the gauge field of the form given in Eq. (25).
When we then take the four-dimensional fields m to be
constant we recover the background solution for any
value of the so-called compensators ��A�

m . Similar points
could be made for the metric and two-form fields. We
could have

gcomp
�a � ��g�

�ajmj
@��m; (26)

Bcomp
�a � ��B�

	ajmj
@�
m: (27)

The reason for only considering one four-dimensional
index in these expressions will become clear in a moment.
It is clear then that we need some way of determining
what values these compensators should take when we
promote the integration constants of our background so-
lution to be four-dimensional moduli fields.

The idea of a moduli space approximation such as the
one we are going to make is that a solution to the resulting
four-dimensional effective action can be raised, using the
ansatz used for dimensional reduction, to give a solution
to the higher dimensional equations of motion to some
approximations. One of the approximations that is always
made is the slowly changing moduli approximation. This
is that the higher dimensional equations of motion will
only be solved by such a configuration up to second order
in four-dimensional derivatives. Expanding the higher
dimensional equations of motion in powers of four-
dimensional derivatives we obtain the following.

Zeroth Order T
-6
hese equations are simply the background
equations of motion—if we have chosen
our background configuration correctly
these are automatically satisfied to our
approximations.
First Order T
hese are the equations which determine the
compensators—see below.
Second Order T
hese are the higher dimensional mani-
festations of the moduli equations of
motion.
Thus the first order equations determine the compen-
sators. This is best demonstrated by an example so let us
consider the gauge field compensators. The contribution
to the higher dimensional equation of motion for the
gauge field at first order in four-dimensional derivatives is

V ��1=3�
�a� V��1=3�

�b�

1

3
@�2�a��

�a�
abFab�

0

� �0Da�V
��1=3�
�a� 	�@mAa@�m �D��A�

m @�m
�

� 0: (28)

Here D is a gauge covariant derivative and summation
is implied over repeated indices.We recall that the indices
a; b . . . cover the entire Calabi-Yau threefold, i.e.,
a; b � 4; . . . ; 9.
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Now for this equation to be satisfied the coefficient of
@�m has to vanish for each m. This leads to a separate
equation for each gauge compensator. For m � 2 we have

D a�V
��1=3�
�a� Da�

�A�
m � � Da�V

��1=3�
�a� @mAa�: (29)

However, for m � 2�A� we have

D a�V
��1=3�
�a� Da�

�A�
2�a� � � �V��1=3�

�a� V��1=3�
�b�

1

3
��a�

abFab:

(30)

We see from the structure of the source terms in these
equations that the general rule is that if the background
gauge field depends on a certain modulus then we have to
include a gauge field compensator for that degree of free-
dom when we promote integration constants to be moduli.
The exceptions to this rule are the fields 2�i� (i � 1 . . . 3)
which have an additional source term causing them to
give rise to compensators even if (as is indeed the case)
the background gauge field is not dependent on them.
Given these equations and our approximation to the back-
ground solution given in the previous section we can
calculate expressions for the gauge field compensators.
Of course, as before, our results will only be valid near
the world volume of the gauge five-brane. In addition we
will need two boundary conditions to fix the compensa-
tors uniquely (due to them being determined by second
order differential equations). The next question then is
how do we choose these boundary conditions.

The first boundary condition is simply that when we
compute any physical (i.e., gauge invariant) quantity we
require it to be nonsingular at the core of the gauge five-
brane. This condition is enough to determine one of the
integration constants that is present in the general solu-
tions to Eqs. (29) and (30). The second boundary condi-
tion is that we require that, in our approximate solution
where the transverse space is asymptotically flat, the
compensator does not diverge at large distances from
the gauge five-brane. This second condition is clearly
necessary if our approximation is to work but can also
be justified on physical grounds. The need for compensa-
tors here is a direct consequence of the presence of the
five-brane —they are not needed in the case where we
ignore the instanton moduli. As they are sourced by the
gauge five-brane we would not expect the compensators
to diverge as we go away from the soliton core in the
transverse space.

Using our Eqs. (29) and (30) and these boundary con-
ditions we can then compute the approximations to the
gauge field compensators associated with the configura-
tion presented in the previous section. The result is given
below for those moduli whose compensators do not ob-
viously vanish

��A�
! � 0; (31)
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��A�
��

�
�i!2�� ��$�$

r2 � !2 ; (32)

��A�
V 1

����� i

3V 1

�

�
� ��CrC�B7r

Br7�DrD � ��CrC�B6r
Br6�DrD�

R2�R2 � !2�

�
� ��6r6�CrC � ��7r7�CrC�

2R2

�
	�r6�2 � �r7�2


2R2

�
��$�$; (33)

��A�
V 2

����� i

3V 2

�

�
	 ��CrC�B9rBr9�DrD � ��CrC�B8rBr8�DrD


R2�R2 � !2�

�
	 ��3r

3�CrC � ��9r
9�CrC


2R2

�
	�r8�2 � �r9�2


2R2

�
��$�$; (34)

��A�
21

� ���� i!2

3

��CrC ��67�DrD

V 1=3
1 R2�R2 � !2�

��$�$; (35)

��A�
22

� ���� i!2

3

��CrC ��89�DrD

V 1=3
2 R2�R2 � !2�

��$�$: (36)

Thus when we promote integration constants to moduli
fields in our background solution, prior to dimensional
reduction, we must include these compensators when we
write down the gauge field using the form shown in (25).
It should be noted that, while our boundary conditions are
enough to give isolated values to the integration con-
stants, in one case at least a different discrete choice for
the compensator is possible. The expression ��A�

�� �

�i�� ��$�
$ also fits all of the above criteria for our

compensators. However, this choice turns the �’s into
the parameters of a local gauge transformation and so
they drop out of the four-dimensional effective action
altogether. In short this choice means we are not includ-
ing enough true integration constants in our ansatz —the
ansatz is incomplete.

We should say a few words about gauge invariance at
this point. Despite the compensators being gauge depen-
dent quantities it is easy to show that the result they
contribute to, i.e., the moduli space metric, is a gauge
invariant quantity. This is essentially because the com-
pensators are parts of gauge fields and so transform
appropriately. The action of course is made out of gauge
invariant quantities, a point we will return to briefly later,
-7
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and thus leads to an invariant moduli space metric for our
result.

We mentioned that we will also obtain compensators
for the metric and two-form field in very similar ways.
Fortunately, for the calculation we are interested in in
this paper, the explicit forms of these compensators are
not required and so we shall not give them here.

Collecting all the information we have presented in
this section together we can now write down an approxi-
mation to the promoted background solution, where all of
the integration constants have been replaced with four-
dimensional fields, which is valid near the gauge five-
brane’s world volume. This is the configuration which it is
appropriate to use in performing a reliable dimensional
reduction to obtain the effective theory that we desire.

AB � ����
2i!2rC ��CBV

1=6
�B�

�B�R2�R2 � !2�
��$�$; A� � ��A�

m @�m;

(37)

e�2� � e�2�0

�
1� 8�0 R2 � 2!2

�R2 � !2�2

�
; (38)

ds210 � fg��dx�dx� �V 1=3
3 $MNdxMdxN

� e2�0�2��V 1=3
�A� $ABdxAdxB�

� 2��g�
�ajmj

@��mdxadx�; (39)

BAB � Bbg
AB �

1

6
2�A��

�A�
AB; (40)

BMN � Bbg �
1

6
2�3��

�3�
MN; (41)

Ba� � ��B�
	ajmj

@�
m; (42)

B�� � constant: (43)

B. Calculating the moduli space effective action

We are now in a position to calculate the centered
moduli space metric of the gauge five-brane. Our proce-
dure for this calculation comes in several parts.

Firstly we must make sure that we use all of the
information we have at our disposal. By a careful exami-
nation of what we know about the nature of the exact
background configuration being considered we can show
that some of the terms that could contribute to the moduli
space metric in fact do not. Although we do not have a
complete solution to first order in �0 describing the
Calabi-Yau and its associated gauge bundle we do know
a small amount of information about this ‘‘complete
solution’’ (as opposed to the approximate one which we
do have which is valid near to the five-brane’s world
volume).
 X
 is compact.
086003
(i) E
-8
xcept for near to the resolved orbifold fixed points
we know the solution for the NS fields everywhere
on the compact manifold to zeroth order in �0. It is
simply the relevant zeroth order parts of the ap-
proximate ansatz given in Eqs. (37)–(43).
(i) W
e know what order in �0 various contributions
come in at. This information can be gleaned from
an examination of the equations of motion. For
example gauge field compensators come in at zeroth
order in �0, as can be seen from Eqs. (29) and (30)
(and we do not need any higher order corrections to
them to our approximations). The metric compen-
sators, however, are first order, their zeroth order
contribution vanishing.
(i) W
e have a small amount of information about the
index structure of the full solution. In particular we
know that the compensators that we have to in-
clude, to our approximations, have one four-
dimensional and one Calabi-Yau index.
We can use this information to eliminate terms (i.e.,
show that they are zero) in our effective action calculation
as follows. We start with the ten-dimensional effective
action which we repeat here for convenience

S10 �
1

2�2
10D

Z
d10x

�������
�g

p
e2�

�
�R � 4�@��2 �

1

3
H2

� 2�0trF2 � . . .
�
: (44)

We have changed our convention here so that all traces
from now on will be taken in the fundamental of SU(2).
This results in the changed coefficient of the Yang-Mills
kinetic term, for example, as compared with Eq. (1).

We are now going to imagine that we have a full
solution which describes the Calabi-Yau compactification
and the full gauge bundle, including the gauge five-brane.
We imagine plugging this solution into the different
terms of the ten-dimensional action and performing the
integration over the compact space. Using only the infor-
mation given above about this solution, and working only
up to first order in �0, we start to eliminate terms.

Let us start with the ten-dimensional dilatonic
Einstein Hilbert term. Consider the O��0� contributions
to this term due to the presence of the O��0� gravitational
compensators. Using the known zeroth order parts of the
reduction ansatz and the fact that the gravitational com-
pensators are of order �0 we find that this term has the
following form

�
1

2�2

Z
d10x

�������
�g

p
e2�Rjgravitational compensators

� �
1

2�2

Z
d10xf2V 1=3

1 V 1=3
2 V 1=3

3 e2�0	RIJj�0�0gIJ
comp

�rI�rJgcomp
IJ � gKL

�0�orIg
comp
KL �
: (45)

Now we use the index structure of the compensator and
the zeroth order solution to eliminate the first and last
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terms on the right hand side

�
1

2�2

Z
d10x

�������
�g

p
e2�Rjgravitational compensators

��
1

�2

Z
d10xf2V 1=3

1 V 1=3
2 V 1=3

3 e2�0	rI�rJgcomp
IJ �
:

(46)

Using some standard identities, some information about
our zeroth order solution, remembering that our internal
manifold is compact and working to first order in �0 we
obtain

�
1

2�2

Z
d10x

�������
�g

p
e2�Rjgravitational compensators

� �
1

�2

Z
d10x

�������
�g

p
e2��@��0��rag

�a
comp�: (47)

This can be written, using the same information, as the
integral of a divergence over the compactification mani-
fold and so vanishes.

Note, in particular, in the above that the gravitational
compensators do not contribute to

�������
�g

p
to first order in

�0. Combinations such as ga�
comp@��@a� are likewise

higher order in �0. This means finally that, as promised
in Section III A, the gravitational compensators com-
pletely drop out of the calculation and need not be con-
sidered in what follows.

Next we consider the O��0� contribution which is due
to the two-form compensators. The relevant term in the
ten-dimensional action is the following one

1

2�2
10D

Z
d10x

�������
�g

p
e2�

�
1

3
H2

	
: (48)

This has a contribution due to the B field compensators
which becomes, when we use the fact that the two form
compensators are O��0�, work to O��0�, use our knowl-
edge of the zeroth order solution, and use Eq. (2),

1

2�2
10D

Z
d10x

�������
�g

p
e2�

�
1

3
H2

	
jcompensators

�
1

2�2
10D

Z
d10xV�2=3

�a�

�
1

3
@�2�a��

�a�
ab �dBcomp

ab� �2
�
: (49)

Then we use our knowledge of the compensators index
structure to obtain

1

2�2
10D

Z
d10x

�������
�g

p
e2�

�
1

3
H2

	
jcompensators

�
1

2�2
10D

Z
d10xV�2=3

�a�

�
1

3
@�2�a��

�a�
ab �4@aB

comp
b� �2

�
:

(50)

This is again the integral of a total divergence over a
compact manifold and so vanishes. It should be noted that
since we are working with a gauge dependent term in
singular gauge there is a risk of obtaining nonzero bound-
ary terms when performing such integration by parts.
086003
Fortunately in our case we find that they all vanish. We
shall return to the subject of gauge invariance of our
results shortly. At any rate, we see that, as was the case
with the gravitational compensators, the two-form com-
pensators drop out of our calculation and as was men-
tioned earlier we do not need to know their precise form,
even in the region near to the gauge five-brane’s world
volume.

Having eliminated the terms which arise due to the
presence of the metric and two-form compensators we
can now go on to the next stage of our procedure to obtain
a reliable calculation (one that we can show only depends
on the form of the reduction ansatz near the gauge five-
brane) of the four-dimensional effective action. This next
stage is to deal with some problematic terms which do
seem to depend on the form of the reduction ansatz in the
region where it is not a good approximation to the true
configuration.

Consider, for example, the dilaton

� � ~�0 � �0 ~!: (51)

Here, ~�0 is some constant —the zeroth order part of
the solution and �0 ~! is a correction due to the presence of
the gauge five-brane which is some complicated function
of moduli and Calabi-Yau coordinates. This expression
should be compared to Eq. (38) which describes our
approximation to this solution near to the gauge five-
brane’s world volume. An example of the problematic
terms mentioned above would be an O��0� correction
term to the four-dimensional effective action which is
proportional to the integral over the transverse space of
~!. If we try and perform this integral using our approxi-
mate solution we find that we get a divergent answer—a
clear sign that this correction term receives significant
contributions from portions of the compactification
manifold which are far from the gauge five-brane’s world
volume where our approximate solution is valid. This
might naively be thought to be an indication that our
method cannot be made to work. However, the problem
can be solved by making a sensible definition of the
constant/modulus ~�0. We denote the average of this cor-
rection over the compact space as follows

�
R

d6x�0 ~!�

VCY3

� �0h ~!i: (52)

Here, VCY3
is the coordinate volume of the Calabi-Yau.

The trick is to define our dilatonic modulus so as to
absorb our ignorance of the situation far from the gauge
five-brane’s world volume into this already arbitrary con-
stant. We perform the following manipulations

� � ~�0 � �0h ~!i � 	�0 ~!� �0h ~!i
 (53)

� �0 � 	�0!
: (54)
-9



JAMES GRAY AND ANDRÉ LUKAS PHYSICAL REVIEW D 70 086003
In other words we absorb the average of the correction
over the internal space into the definition of the constant
�0. Since this constant takes an arbitrary value in the
background solution this is something we are perfectly
entitled to do. With the dilaton in this form some of the
potentially problematic terms which we could not calcu-
late in the four-dimensional effective theory vanish. For
example, the analogue of the term we mentioned above is
proportional to the integral over the transverse space of !
which is zero. We will deal with the remaining trouble-
some terms with a similar trick involving the axions in a
short while. But first let us make a digression to work out
the four-dimensional Einstein Hilbert term and so fix f,
the Weyl rescaling factor in the metric.

Using all we have learned so far we find for the four-
dimensional Einstein Hilbert term

�
1

2�2
4

Z
d4x

����������
�g4

p
fV 1=3

1 V 1=3
2 V 1=3

3 e2�0R4D: (55)

From this we see that for a canonically normalized
Einstein Hilbert term in four dimensions we must choose

f � V��1=3�
1 V��1=3�

2 V��1=3�
3 e�2�0 : (56)

We now return to the examination of possible problem-
atic terms in our calculation. The only remaining terms
which require knowledge of the field configuration far
from the gauge five-brane’s world volume come from the
H2 term in the ten-dimensional action. These terms are
due to the background B field configuration as opposed to
the B field compensators whose contributions to the ef-
fective action have already been shown to vanish. The
terms are again of order �0 and are given by

1

2�2

Z
d10xV��2=3�

�a�

4

3
@�2�a��

�a�
ab@�Bbg

ab: (57)

This is an O��0� term as the background two- form field
is of that order. As with the terms we examined previously
if we try and calculate this integral using our approximate
solution we obtain an answer which depends on the form
of the solution in the region of the transverse space where
our approximation breaks down. As before we can deal
with this problem by making a judicious, and perfectly
legitimate, redefinition of our moduli. This time we re-
define the geometrical axions to absorb the average of the
background two-form over the transverse space

��c�abBab �
1

6
2�c�2���c�abBbg

ab; (58)

��c�abBab �
1

6
�2�c�2� 6h��c�abBbg

abi� � 	��c�abBbg
ab

� h��c�abBbg
abi
: (59)

We redefine 2�c� to be the terms in the first set of
(nonsquare) brackets in the second line of Eq. (59). As
was the case in our redefinition of the dilatonic modulus
086003
this completely eliminates the problematic O��0� correc-
tions by absorbing our ignorance of the ‘‘asymptotic’’
configuration into the arbitrary constant associated with
the modulus.

We may now, finally, proceed to plug our approximate
reduction ansatz into the remaining terms in the-ten
dimensional effective action. We then find that in the
calculation of the 4d effective action—i.e., in performing
the integration over the compact dimensions of the
Calabi-Yau threefold—that we do not need to know the
reduction ansatz to an accuracy beyond that provided by
our approximation. In other words the terms involving
five-brane moduli only depend on the form of the reduc-
tion ansatz close to the gauge five-brane’s world volume.

Let us be a little more precise about what we mean by
this. Consider patching our instanton into the transverse
space by multiplying all of the fields by some smoothing
function which is one inside some radius r1 which in-
cludes the core, 0 outside some radius r2 > r1 and which
smoothly interpolates between these values between these
two radii. We find that our results would be unchanged by
such a procedure —whatever the specific form of the
smoothing function—provided that r1 � !. Our ap-
proximation neglects terms which are suppressed with
respect to the ones which we keep by factors of !2

r21
.

We find that all of the terms in the four-dimensional
action involving instanton moduli come from just two
terms in the higher dimensional action. They are

1

2�2

Z
d10x

�������
�g

p
e2�

�
�
4

3
�0dB!3YM � 2�0trF2

	
; (60)

where we have suppressed the index structure in these
expressions for conciseness. So all we have to do is to plug
the zeroth order ansatz into this expression and perform
the appropriate integrals.

The reader may be wondering what has happened to
gauge invariance in all this. The trF2 term is clearly gauge
invariant. However at first sight the dB!3YM term is not as
it usually pairs with a �dB�2 term to form a gauge invari-
ant object to first order in �0. In fact we can show that, to
the degree that is needed for our calculation, this term in
the action is indeed gauge invariant in its own right to
first order in �0, up to our approximations. The proof is as
follows. Schematically the two-form and gauge field
change in the following manner under an infinitesimal
gauge transformation

$A � d$� 	A;$
; (61)

) $!3YM � dtr�$dA�; (62)

$B � 2�0tr�$dA�: (63)

Here $ is an infinitesimal parameter describing the gauge
transformation. This means that, to first order in �0, our
dB!3YM term undergoes a change under such a trans-
-10
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formation proportional toZ
d6x�0d	dBtr�$dA�
: (64)

This is the integral of a total derivative. If we are
working at the level of our approximate solution this leads
to two possibilities. Either the gauge transformation we
are considering dies off sufficiently quickly away from
the five-brane’s world volume that we can still perform
our calculation reliably in the resultant gauge or it does
not. In the first case due to the total derivative structure of
the integrand in Eq. (64) we find that our moduli space
effective action indeed will not change if we perform this
gauge transformation on our reduction ansatz. In the
second case we will find that we simply cannot reliably

�
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perform the calculation in this gauge. Thus we find that in
any gauge where we can actually compute the answer we
desire our answer is unique and so our results are com-
patible with gauge invariance.

IV. THE RESULT

When we apply the procedure detailed in the previous
section, taking into account all of the various subtleties,
we find we can indeed reliably calculate the moduli space
effective action of the gauge five-brane without knowing
the exact form of the solution far from the instanton core
in the transverse space. The effective theory including the
geometric moduli and the gauge five-brane moduli is the
following
S �
1

2�2
4

Z
d4x

�������
�g

p
�R �

1

2
�@’�2 �

1

2
	�@<1�

2 � �@<2�
2 � �@<3�

2
 � e�2’�@��2 �
2

9
	e�2<1�@21�

2 � e�2<2�@22�
2

� e�2<3�@23�
2
 � qG5f8e�<1�<2	�@!�2 � !2�@��2
 � !2e�<1�<2	�@<1�

2 � �@<2�
2
 � 4!e�<1�<2@!�@<1

� @<2� �
2

9
!2e�<1�<2	e�2<1�@21�

2 � e�2<2�@22�
2
 �

4

9
!2e�2<1�2<2@21@22 �

8

3
!2e�<1�<2��2@�1 � �1@�2

� �3@�4 � �4@�3��e�<1@21 � e�<2@22�g

	
: (65)

This expression employs the following definition Let us recap the approximations we have made and thus

4

�@��2 �
X
��1

�@���2: (66)

We have also introduced qG5 �
�0�21�2

Vtrans
and Vtrans is the

coordinate volume of the transverse space to the five-
brane. To get the result in this form, which exhibits the
usual normalizations of low-energy heterotic M-theory,
we have made a number of field redefinitions. We have
V a � e3<a , and �0 �

1
2’ � 1

2 �<1 � <2 � <3�. In par-
ticular these choices ensure that the zeroth order (in �0)
kinetic terms have the usual form and normalization.

The terms on the first line of the action then form the
usual result for the four-dimensional effective action of
heterotic M-theory (or indeed weakly coupled heterotic
string theory) accurate to first order in �0. To recap <3 is a
volume modulus for the 2 cycle our gauge five-brane
wraps and 23 is its associated axion. <1 and <2 are
volume moduli associated with the four-dimensional
transverse space and 21 and 22 are their associated axi-
ons. Finally ’ here is the four-dimensional dilaton and �
is its axion.

The remaining terms, which are contained within the
square brackets, contain the kinetic terms of, and cross
couplings to, the gauge five-brane moduli.We recall that !
is the solitons width while the �’s describe its SU(2)
orientation. So, for example, if we want to describe how
a gauge five-brane spinning in SU(2) space generates the
axions 2�i� from a four-dimensional viewpoint all we
have to do is obtain an appropriate cosmological solution
of this action.
when our effective action is valid. We have made all of the
standard approximations employed in obtaining four-
dimensional actions in this context. These are the slowly
changing moduli approximation, working to first order in
�0 (or more precisely to first order in 'w in the language of
[18] ) and ignoring towers of massive states (which cor-
responds to ‘‘the other’’ ' expansion of [18]). The action
also does not include contributions from nonperturbative
corrections.

The new approximation that we have made here is that
! � V1=6

trans (there could be corrections to our action which
are suppressed by powers of !2

V1=3
trans

). In addition, in order for

our supergravity description to be valid we require
!2 � �0.

The first thing to notice about this result is that if we
artificially ‘‘turn off ’’ gravity—i.e., if we drop all the
metric moduli we obtain the Lagrangian density �@!�2 �
!2�@��2. The moduli space associated with these kinetic
terms is simply the usual centered moduli space of a
single Yang-Mills instanton [28]. One might think, re-
membering the constraint (24) on the �’s, that this moduli
space is simply R4. However it is in fact R4

Z2
. This is

because the physical situation is unchanged by the trans-
formation �� ! ���. Hence we should make the identi-
fication �� � ��� which results in the moding out by Z2

in the moduli space. Because of this identification the
Yang-Mills instanton moduli space has a conical singu-
larity at the point where the size modulus vanishes. In fact
it is clear that this conical singularity survives in our full
result and this pathology at ! � 0 is one of the indicators
-11
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that we cannot trust our effective action down to arbi-
trarily small gauge five-brane widths. Another indication
of this is that if we examine the curvature at the core of
the object it diverges as we take the size to zero. It should
be noted that the moduli space of a single Yang-Mills
instanton is, from the above discussion, obviously hyper-
Kähler as it is locally simply four-dimensional flat space.

We can see that the Yang-Mills instanton moduli space
is embedded within our result in a highly nontrivial way
involving many prefactors and cross terms. A very good
check that we have got the calculation of all of these
terms correct is that the result is compatible with N � 1
supersymmetry. In other words we should check that the
full moduli space is Kähler.

We have checked this in two different ways. First we
have directly calculated the holonomy of the moduli
space. This is achieved by using the Riemann tensor to
obtain the generators of the holonomy group. One may
then count the number of linearly independent generators
to obtain the dimensionality of the group. By examining
the dimensionality of all the different possible subgroups
of SO(N), where N is the dimensionality of the manifold
under consideration, one can then in many cases show
that only one subgroup has the dimensionality that we
find—giving us the holonomy.

Now the moduli space is a direct product of a manifold
spanned by (’, �, <3, 23) and one spanned by (<1, 21, <2,
22, !, ��). We know from standard results that the first
manifold is Kähler so we just need to find the holonomy of
the second one. We find that its holonomy group fills out
the entirety of U(4) and hence our result is indeed com-
patible with N � 1 supersymmetry. We also see that the
hyper-Kähler moduli space of theYang-Mills instanton is
reduced to being merely Kähler when embedded within
this context.

The second way in which we can demonstrate that our
result is Kähler is to write down a Kähler potential and
complex structure which is associated with our compo-
nent action (65). We find the following

K �� ln�S � �S� � ln�T1 � �T1� � ln�T2 � �T2� � ln�T3

� �T3� �
16�0�jC1j

2 � jC2j
2������������������������������������������

�T1 � �T1��T2 � �T2�
p ; (67)

C1 � e��<1=4���<2=4��Y1 � iY2�; (68)

C2 � e��<1=4���<2=4��Y3 � iY4�; (69)

T1 � e<1 �
2

3
i21 � 4�0e	�<1�<2�=2
�jC1j

2 � jC2j
2�; (70)

T2 � e<2 �
2

3
i22 � 4�0e	�<2�<1�=2
�jC1j

2 � jC2j
2�; (71)

T3 � e<3 �
2

3
i23; (72)

S � e’ �
���
2

p
i�: (73)
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Here we have defined the fields Y� as Y� � !��.We see
that we have the usual Kähler potential of heterotic -
string/M-theory with an additional term, the final one,
which is due to the presence of the gauge five-brane. This
additional term is just the Kähler potential for a simple
Yang-Mills instanton, modified by the addition of some
factors of real parts of T superfields. Similarly the defi-
nition of the T superfields in terms of component fields is
just the usual one with a couple of modifications at O��0�
due to the presence of the gauge five-brane. C1 and C2 are
again just the usual Yang-Mills instanton expressions
modified by some overall factors of different e<’s.

We can make a number of comments about the physics
that follow from these results purely from an examination
of the component action and Kähler structure.
(i) F
-12
irst of all it is clearly not consistent, in the case of
the compactifications considered here, to take the
universal case for the metric moduli in the presence
of a generic changing instanton configuration. In
other words, due to the nontrivial factors of e<1 and
e<2 in the gauge five-brane moduli kinetic terms,
for example, it is inconsistent to set <1 � <2 � <3

(however as we shall see shortly we can set <1 �
<2 if we make some compatible truncations of the
other fields).
(i) T
he dilaton and the size of the 2 cycle (’ and <3) do
not feel the presence of the gauge five-brane from
the point of view of the four-dimensional theory.
The terms in which they appear are not modified
from the results where the bundle moduli are
ignored.
(i) I
t can be seen from the last five terms in Eq. (65)
that it is not consistent to truncate off the gauge
five-brane moduli by setting them to be nonzero
constants. In fact it is not possible to truncate them
away by setting all the Y’s to zero either, even
though they appear bi-linearly in the above expres-
sions. This is because setting all the Y’s to zero in
this manner corresponds to setting ! to zero and as
mentioned above our effective description is not
valid in this region of moduli space. This result is
in contrast to the case of matter fields for example
[2]. In that case there is no analogue of our Z2

identification and so the matter fields (which appear
bi-linearly as well) can be truncated away by sim-
ply setting them to zero. Returning to the gauge
five-brane case, more complicated forms of trunca-
tion are possible in certain special cases. We shall
see such a special case where we can clearly trun-
cate off the instanton moduli, in certain combina-
tions with other fields, in a moment.
(i) T
he form of the instanton corrections to the Kähler
potential and complex structure is reminiscent of
the analogous corrections obtained by the inclusion
of matter fields. This is perhaps not particularly
surprising given that there are some similarities in
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the origins of these four-dimensional fields. It
should be emphasized, however, that many qualita-
tive differences exist in how these two types of
moduli arise.
Now the result presented above appears fairly compli-
cated and depends on a reasonably large number of fields
(twelve real moduli). However, we can consistently trun-
cate away many of the moduli to leave a simpler system
with fewer degrees of freedom. For example the simplest
nontrivial truncation which includes at least one instan-
ton modulus is the following

K � �2 ln�T � �T� �
32�0jCj2

�T � �T�
; (74)

T � e< �
2

3
i2 � 8�0jCj2; (75)

C � e��<=2��Y1 � iY2�: (76)

Here we have taken the situation where <1 � <2 � <,
21 � 22 � 2, �, �, <3, and 23 are taken constant, Y1 �
Y3 and Y2 � Y4. We can obtain a component action from
this Kähler potential and consistently truncate off the
axions to obtain the following 4d theory.

S�
1

2�2

Z
d4x

�������
�g

p
	�R��@<�2�8q5e

�<�@!̂�2
: (77)

We have defined !̂ � e��<=2�!. Since this simplification
was obtained via consistent truncation a solution to this
simple theory corresponds to a solution to the full higher
dimensional equations of motion to our approximations.
One could obtain cosmological solutions to such an action
with ease. These solutions are the simplest examples of
what we need to make the brane collision scenarios
mentioned in the introduction more complete. We have
obtained such solutions and these will be presented as
part of some future work [35].

V. FURTHER WORK

There are many ways in which this work can be used as
a basis for future study. Here we will list a few of the more
interesting possibilities.
(i) O
ne could generalize the results presented here to
the case where we consider more than one gauge
five-brane. It would not even be necessary to restrict
such a study to the case where the gauge five-branes
do not overlap (a trivial modification of the above
results). Such complicated situations are probably
tractable due to the fact that we have a very power-
ful mechanism for obtaining self-dual gauge field
configurations in the form of the ADHM construc-
tion [28]. This construction can provide us with
analytic solutions for configurations containing
many instantons. These can overlap, have different
positions and sizes as well as different SU(2) ori-
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entations. Following the procedure outlined in [24]
we can then use these gauge field configurations as
the core for a system of gauge five-branes. The NS
dressing can be determined once the gauge field
configuration is known. Similar calculations to the
one presented here could then be performed for
these more complicated situations. Indeed by using
a Kummer style construction for the Calabi-Yau
threefold, such as the one we have employed here,
and by taking the case where the gauge field back-
ground is entirely in the form of (either overlapping
or not overlapping) gauge five-branes one could
write down a four-dimensional theory which
includes all of the moduli present in the
compactification.
(i) T
here are other parts of the gauge bundle which
would yield to our approach. For example there is
another object which takes a Yang-Mills instanton
as its core —the so-called symmetric solution [29–
31] (this is related to the discrete choices in deter-
mining the NS dressing that we mentioned earlier).
We could equally well apply our method to this
object and obtain the low-energy effective theory
which includes its moduli. Unlike our case this
object is an example of a standardly embedded
configuration. Another difference to the object we
have considered in this paper is that the size modu-
lus of the symmetric solution is quantized. This
would mean that there would not be analogues of
the particular continuous moduli we have consid-
ered here for that case.
(i) O
ne could try to obtain a more complete descrip-
tion of the gauge five-brane’s four-dimensional ef-
fective theory by combining the kinetic terms
described here with the work which has been done
on obtaining nonperturbative potentials for gauge
bundle moduli [11–14]. In particular it would be
interesting to identify the moduli in these papers
which correspond to those described here, for ex-
ample, the instanton size.
(i) T
he action presented in this paper could be used to
derive a number of different types of cosmological
solutions. For example one could seek to describe
the cosmological effects of a gauge five-brane
spreading out with time [35] or spinning in SU(2)
space. Such solutions could be of critical impor-
tance in certain cosmological scenarios [16,17].
(i) W
e have already described how our results could be
used to improve the description of cosmological
scenarios based upon small instanton transitions.
However we would also like to stress that gauge
five-branes can live on the orbifold fixed planes
irrespective of whether or not the system has under-
gone such phase transitions. Therefore it is possible
to base scenarios purely on the dynamics of such
objects. For example, if we were to include the
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position moduli of the five-brane in our analysis we
could imagine basing some kind of brane inflation
scenario on gauge five-branes and anti gauge five-
branes. This soliton-antisoliton inflation could po-
tentially have some quite nice properties. For ex-
ample when inflation ends with the collision of the
instanton and anti-instanton they would presum-
ably annihilate in a manner which is describable
within the regime of low-energy field theory—
both objects simply being made out of low-energy
fields 1. The energy from such an annihilation could
reheat the universe —the fact that the colliding
objects are annihilating on an orbifold fixed plane
hough some caution is called for with this statement
the results presented in [36] for a situation which one
think would be subject to similar arguments. The two

ons are different however. In particular in our case the
lliding objects would have no net five-brane charge.
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presumably means that it would be natural for a
sizable proportion of the resulting energy to be
dumped into matter fields.
In other words gauge five-branes can be every bit as
useful in developing various scenarios as their
‘‘fundamental’’ counterparts—and in addition
these solitonic objects have extra attractive features
such as variable widths and the fact that they are
entirely built out of low-energy fields.
In short it is now possible to start an analysis of the
effect of certain types of gauge bundle moduli on differ-
ent cosmological scenarios for the first time.
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