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Duality and central charges in supersymmetric quantum mechanics
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We identify a class of point-particle models that exhibit a target-space duality. This duality arises
from a construction based on supersymmetric quantum mechanics with a nonvanishing central charge.
Motivated by analogies to string theory, we are led to speculate regarding mechanisms for restricting
the background geometry.
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One phenomenon that is often viewed as especially
‘‘stringy’’ is that of space-time duality. The simplest
instance occurs when a quantum string propagates in a
ten-dimensional target space involving one compact cir-
cular spatial dimension having radius R. In this case, T
duality [1] exchanges quantized Kaluza-Klein momen-
tum modes with wrapping modes of the string, and at the
same time replaces R! �0=R. Since wrapping modes are
characteristic of extended objects, one might not expect
to find a similar duality connecting ostensibly distinct
point particle models with different classical background
geometries. In this letter, we demonstrate that, in fact, a
similar duality does hold for the case of a supersymmet-
ric point-particle propagating on a manifold with the
topology of a cylinder, provided one incorporates a non-
trivial central charge into the supersymmetry algebra. In
this context, Kaluza-Klein modes are clearly present, and
correspond to momenta of the particle directed around
the cylinder, making clear that the presence of a compact
dimension, more than the presence of an extended object,
plays a key role in the appearance of space-time dualities.
The wrapping modes of the string are, in essence, re-
placed in the point-particle model with a central charge
parameter.

Supersymmetric quantum mechanics [2] can be formu-
lated as a one-dimensional supersymmetric quantum field
theory; the lone dimension in this context is time. A
bosonic field is, then, a real-valued function of time,
and a fermionic field is a Grassman-valued function of
time. The d � 1, N � 1 superalgebra with a central
charge is specified by the following relations:

fQ;Qyg � 2H; �H;Q� � 0; Q2 � Z; (1)

where Q is the complex supercharge, Z is the complex
central charge, and H is the Hamiltonian. A consequence
of the super-Jacobi identity is that Z and Zy each com-
mute with Q and with Qy. Note that �H;Q� � 0 must be
specified as an independent condition when Z � 0.

In higher dimensional field theories, central charges
can appear in superalgebras owing to topological features
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of solitonic background field configurations [3,4]. In prac-
tice, these quantities arise as surface terms in integrals
appearing in superalgebra anticommutators. When for-
mulating quantum mechanics as a field theory, however,
there are no spatial integrals to produce such boundary
terms. Therefore, a topological explanation for the ap-
pearance of the central charge in (1) would require a
suitably modified version of the usual field-theoretic ex-
planation. One possibility in this regard would involve
centrally extended supersymmetric quantum mechanics
as the natural description of effective physics localized on
topological zero-branes present in higher dimensional
field theories, such as a ‘‘kink’’ soliton in a two-
dimensional Wess-Zumino-Witten (WZW) model which
has degenerate classical vacua [5], or a pointlike inter-
section of two one-dimensional domain walls in a three-
dimensional WZW model [6,7].

When a charge is topological in origin, it is naturally
quantized. For this reason, the scenarios described above
conceivably provide a rationale for the quantization of the
central charge term in (1). In this paper, however, we view
this charge simply as an allowable extension to the alge-
bra, and investigate the ramifications. There is no a priori
reason, from an algebraic perspective, that this charge
should be quantized. Nevertheless, a duality we uncover
in this paper suggests the existence of a construction in a
point-particle context underlying the class of models we
introduce, in which the central charge is naturally quan-
tized, perhaps in a manner similar to the examples de-
scribed above. We note that there is a connection to higher
dimensional sigma models which only works in the case
of a quantized central charge parameter, which we com-
ment on later.

In this letter, we restrict attention to the case that the
central charge Z is real. We do this for two reasons, which
we believe may be related to each other. First, this re-
striction appears naturally when a two-dimensional (1,1)
superalgebra is compactified to one dimension; in this
case, the real central charge in the compactified algebra
corresponds to the two-dimensional momentum compo-
nent directed around the compactified dimension.
Second, as we show in [8], the above superalgebra with
real central charge supplies a natural setting for under-
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standing the shape invariance approach to exact solubility
[9–12].

In terms of ‘‘prequantum’’ classical constructions,
superalgebras are represented by transformation rules
interrelating components of irreducible multiplets. A su-
persymmetry transformation is expressed as �Q	�
 �
�Q� �yQy, where � is a complex Grassman parameter.
In terms of this operation, the N � 1 superalgebra can be
written, in the case of a real central charge, as

��Q	�1
;�Q	�2
���4i�y
�1�2�@t�2i	�1�2��

y
1�

y
2 
�Z; (2)

where we have used the canonical representation of the
Hamiltonian as the generator of time translations, H �
i@t, and have defined a ‘‘central charge transformation’’
�Z via Z � Zy � i�Z. That irreducible representation
which most economically includes a real central charge
includes off-shell, one real boson T, one complex fermion
�, and one real auxiliary boson B. The supersymmetry
transformation rules are given by

�QT � i��� i�y�y;

�Q� � �y	 _T � iB
 ���;

�QB � � _�� �y _�y;

(3)

where a dot represents a time derivative. The inhomoge-
neous term, which appears in the transformation rule
�Q�, includes a real parameter �, and is a feature novel
to this paper, we believe. This term is associated with the
central charge transformation �ZT � �. The fields � and
B are invariant under the central charge.

An interesting model involves two real multiplets, the
first having a vanishing central charge and the second
having a nonvanishing central charge implemented as in
(3). By denoting the components of the first of these
multiplets using a subscript ‘‘1’’ and the second using a
subscript ‘‘2,’’ we therefore consider the following trans-
formation rules:

�QT1� i��1� i�y�
y
1 ; �QT2� i��2� i�y�

y
2 ;

�Q�1��
y	 _T1� iB1
; �Q�2��

y	 _T2� iB2
���;

�QB1�� _�1��
y _�y

1 ; �QB2�� _�2��
y _�y

2 :
(4)

In order to find an invariant action functional, we start
with a supersymmetric sigma model, invariant when
there is no central charge, and then append additional
terms as needed to maintain supersymmetry invariance
when the central charge parameter � is nonzero. The
action therefore is described by the superspace expression

S �
Z
dt d� d�y�Gij	V

1; V2
DyViDVj� �    : (5)

where V1 and V2 are superfields associated with the two
vector multiplets, � is a complex Grassman superspace
coordinate,D � @=@�� i�y@t is a superspace derivative,
Gij	T1; T2
 describes a metric on the target space, and the
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ellipsis represents terms, at higher orders in �, needed to
maintain supersymmetry in the presence of the central
charge. The zeroth-order action, i.e., terms at order �0,
are straightforward to determine using standard super-
field techniques. The correction terms, appearing at
higher orders in �, can be determined by careful analysis
of the component action, using the transformation rules
(4).

For this paper, we specialize to the following class of
Euclidean metrics:

ds2 � dT2
1 � h	T1
dT

2
2 ; (6)

where h	T1
 is an arbitrary non-negative function. Thus,
Gij � diag�1; h	T1
�. Furthermore, we take T2 to be an
angular coordinate, T2 2 �0; 2��, with end points identi-
fied. In this case, the target space has the topology of a
cylinder, having axial coordinate T1 and a radius which
depends on T1 according to h	T1
1=2. Thus, our model
describes a supersymmetric particle propagating on a
rigid wiggly cylinder, as shown in Fig. 1.

In this case, the complete supersymmetric Lagrangian
turns out to be

L � 1
2
_T2
1 �

1
2i�

y
1 @
$

t�1 �
1
2B

2
1

�h	T1
	
1
2
_T2
2 �

1
2i�

y
2 @
$

t�2 �
1
2B

2
2


�ih0	T1
�
y
�1�2�

_T2 �
1
2h

00	T1
�
y
2�2�

y
1�1

�1
2h

0	T1
	�
y
1�2B2 � �y

2�1B2 � �y
2�2B1


�1
2�ih

0	T1
	�1�2 � �y
1�

y
2 
 �

1
2�

2h	T1
: (7)

The final line in (7) describes those special terms needed
to maintain supersymmetry in the presence of the inho-
mogeneous term in the transformation rules (4). At this
point, the real parameter � enters the action as an arbi-
trary coupling strength; it has been introduced for the
express purpose of inserting a central charge into the
superalgebra. A model of our sort is specified by a choice
of the parameter � and by a choice of the background
‘‘wiggle’’ function h	T1
.

Before quantizing this action, we wish to comment on
the relation between this action and higher dimensional
sigma models, which have been more extensively studied.
In fact, one way to obtain the models constructed above,
in the case that the parameter � is integral, is by dimen-
sional reduction from a standard sigma model in 	1� 1

dimensions. We note that we have a formalism for obtain-
ing centrally extended supersymmetric quantum me-
chanical models that does not depend on higher
dimensional constructions; this is why we are able to
write down models in which � is not an integer. Thus,
this gives us a way to study centrally extended super-
symmetric quantum mechanics without reference to
higher dimensional models.

However, the connection between our models and these
	1� 1
-dimensional sigma models is informative and
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FIG. 1 (color online). A supersymmetric particle propagating
on a rigid wiggly cylinder. The bosonic degrees of freedom
describe the position of the particle on the cylinder, T1 is the
axial coordinate, and T2 is the angular coordinate. The fermi-
onic degrees of freedom �i describe an internal ‘‘state’’ of the
particle, which one can interpret in terms of target-space
spinor components. The radius of the cylinder is R	T1
 �
h	T1
1=2.
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valuable. First, we think this makes the quantum me-
chanical models a useful testing ground for related higher
dimensional theories. While we fully expect the standard
results for sigma models and string theory to hold, the
level of mathematical control one has in quantum me-
chanics is much stronger. Thus, for example, demonstrat-
ing (as we do, later in this paper) that these point-particle
models exhibit dualities that survive quantization pro-
vides a valuable way to test the duality notions that
have been argued less rigorously in higher dimensional
theories. Second, by exploring ideas such as central
charges, supersymmetry, and duality in this stripped
down setting, we expect to be able to tease apart more
effectively how these various notions are related to each
other, in a way that could help us understand better what
is going on in higher dimensional theories. Thus, the
point-particle models we are studying may function not
simply as arenas to test the existing analysis of higher
dimensional theories, but also as a source of insights into
the physics of these theories, by enabling us to examine
some of the essential notions in a simplified context.

With this orientation in mind, we now proceed to
quantize the point-particle Lagrangian (7). The Dirac
brackets derived from (7) provide the basic commutator
and anticommutator relationships which must be satisfied
by the quantum operators corresponding to the canonical
variables Ti, Pi, �i and �iy . In our case, the relevant
expressions are1
1N.B. The indices on Ti and �i are lowered by �ij, not by Gij.
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�Pi; T
j� � �i�i

j;

f�i; �jyg � Gij;

�P1; �
2� �

1

2
i
h0

h
�2; (8)

whereGij is the inverse of the target-space metric Gij. All
other basic (anti)commutators vanish. The first two lines
in (8) are generic, and the third is specific to the cylin-
drical geometry we have chosen in (6). Together, these
determine Pi � �i@i and

�1 � 1
2	


3 � i
4
; �2 � 1
2h

�1=2	
1 � i
2
; (9)

where 
� are Euclidean Dirac matrices, which satisfy the
four-dimensional Clifford algebra f
�;
�g � 2���.

We determine the quantum operators corresponding to
the conserved charges after first eliminating the auxiliary
fields B1 and B2. The supercharge operator, in this case, is
given by

Q � P1�1 � P2�2 �
1
2ih

0:�2�
y
2�1:��h�y

2 ; (10)

and the central charge operator is given by

Z � �P2: (11)

These are the operator analogs of the classical super-
charges determined from (7) using the Noether proce-
dure. The ordering ambiguity in the fermion cubic term is
resolved by imposing the superalgebra on the quantum
operators. The quantum Hamiltonian is

H �
1

2
P2
1 �

1

2h
P2
2 � i

h0

h
P2�

y
�1�2�

�
1

2
:h
�
h00

h
�

�
h0

h

�
2
�
�y
1�1�

y
2�2:

�
1

2
i�h0	�1�2 � �y

1�
y
2 
 �

1

2
�2h: (12)

The term in the Hamiltonian (12) implicitly proportional
to h00 arises from the explicit fermion quartic in the
Lagrangian (7), while the other fermion quartic term
arises after elimination of the auxiliary fields Bi.
Accordingly, there are two independent ordering ambi-
guities in the fermion quartic terms in (12). These, too,
are resolved by imposing the superalgebra (1) on the
quantum operators. (This determines Weyl ordering on
the fermion cubic term inQ and determines the particular
ordering on the fermion quartics in H reflected in the
expressions which follow.)

It is useful to choose a particular representation for the
fermions. A convenient choice is given by
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1;2;3 �

�
 1;2;3

 1;2;3

�
; 
4 �

�
�i1

i1

�
; (13)

where  1;2;3 are the Pauli matrices. However, the properly
ordered Hamiltonian is not diagonal in this basis. A
diagonal Hamiltonian is obtained by first computing the
Hamiltonian in the basis Eq. (13), resolving the ordering
ambiguities as described above, and then performing on
all operators O the similarity transformation O ! �O �
��1O�, where
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� �
1���
2

p

0
BBB@
1 0 �i 0
i 0 �1 0
0 1 0 i
0 i 0 1

1
CCCA: (14)

Now, since h	T1
1=2 is the radius of the cylinder, define
R	T1
 � h	T1
1=2. Also, since T2 is an angular coordinate,
it follows that the angular momentum P2 is quantized,
P2 � � 2 Z. In terms of these definitions, after some
algebra, one can write the Hamiltonian associated with
the sector having angular momentum � as
�H �

0
BBB@
Ay
�A� ���

A�A
y
� ���

Ay
�A� ���

A�A
y
� ���

1
CCCA; (15)
where the operators A� are given by

A� � @1 �W0
�	T1
; (16)

and the functions W�	T1
 are superpotentials induced by
the background wiggle function h	T1
 and also by the
central charge. These are given by

W0
�	T1
 � �

1

2

R0

R
�

�
�
R
��R

�
: (17)

The four ‘‘sectors’’ of the Hamiltonian (12), which we
enumerate using an index n, each include a distinct scalar
potential Vn	T1
, determined from one of the superpoten-
tials described by (17). There is an analogous four-sector
Hamiltonian for each angular momentum sector, as
labeled by the quantum number �.

The Hamiltonian (15) has several features worthy of
note. First, and foremost, the class of models we have
introduced includes a manifest target-space duality.
Under the simultaneous transformations

R!
1

R
; �$ �; T1 ! �T1; (18)

all of the operators presented above transform simply. In
particular, when R	T1
 � R	�T1
, the transformation
(18) leaves each of the operators A� multiplied by an
overall minus sign, while for R	T1
 � �R	�T1
, the
operators A� map into each other. Thus, in these two
cases, we have an explicit invariance of the
Hamiltonian (15) under the mapping (18).

Because the duality map (18) includes a swapping of �
and �, a more precise statement is that it connects the
angular momentum sector P2 � � in a model with cen-
tral charge parameter � with the angular momentum
sector P2 � � in a model with central charge parameter
�. If one interprets the quantum Hamiltonian (12) in
terms of the Lagrangian presented previously, � is a
quantized angular momentum, while � is an arbitrary
real parameter neither a priori quantized nor summed
over. The duality relationship, as stated above, makes
sense only if � assumes integer values, however, and
these values are summed over. In such a construction,
the exchange�$ �would shuffle different sectors of the
same theory, and the mapping R	T1
 ! 1=R	�T1
 would
itself describe an invariance, since the theory would
automatically contain separate sums over the � sectors
and the � sectors. The connection to the 	1�
1
-dimensional sigma models offers one way to develop
such a picture, but we are most intrigued by the possi-
bility that there is an intrinsic 	0� 1
-dimensional foun-
dation for such a picture.

Looking at the superpotential functions (17), one is
also struck by the following observation: A global rescal-
ing of R is equivalent to separate rescalings of � and �
which leaves the product �� fixed. In other words, the
Hamiltonian (12) has yet another invariance, as described
by the operation

R! $R; �! $�; �! $�1�; (19)

where $ is an arbitrary real parameter. In this model, the
mapping �! �� 1 already shifts among sectors, and if
there is an overarching theory, there would be a sum over
quantized � values as well. These observations are con-
sistent with the possibility that, in such an über theory,
the quantities � and � appear as an electric and magnetic
charge pair, related to each other by an SL	2;Z
 trans-
formation analogous to a generalized electric-magnetic
duality.

We have exhibited a manifest ‘‘T duality’’ and have
motivated a prospective ‘‘S duality’’ in a context we find
elegant in its simplicity. As we point out, one can connect
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these models to 	1� 1
-dimensional sigma models and,
through the more rigorous analysis possible for point-
particle models, validate the conventional picture we
hold for these sigma models. There are also parallels
with string theory. In string theory, background geometry
is famously restricted by quantum consistency conditions,
conditions which are connected both to T duality and to
modular invariance. In the simpler models described in
this paper, we can pose the question what conditions
might constrain the background geometry. Restrictions
based on the duality structures described above form an
attractive basis for such speculation. Another possibility
we find intriguing is one connected with shape invari-
ance. As described at the beginning of this paper, cen-
trally extended superalgebras, which form the basis of our
investigation, also comprise the natural context for shape
invariance in exactly solvable quantum mechanics [8]. As
085014
it turns out, only particular background geometries can
produce shape-invariant Hamiltonians of the form (12).
Thus, we find that shape invariance, and the exact solu-
bility to which it is associated, forms an appealing
mechanism for restricting the background geometry in
which a supersymmetric particle can propagate. In light
of this, we are led to ponder the possibility of connections
between shape-invariant world line dynamics and an
eventual elemental description of M theory.
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