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Clothed particle representation in quantum field theory: Mass renormalization
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We consider the neutral pion and nucleon fields interacting via the pseudoscalar (PS) Yukawa-type
coupling. The method of unitary clothing transformations is used to handle the so-called clothed
particle representation, where the total field Hamiltonian and the three boost operators in the instant
form of relativistic dynamics take on the same sparse structure in the Hilbert space of hadronic states.
In this approach the mass counterterms are cancelled (at least, partly) by commutators of the generators
of clothing transformations and the field interaction operator. This allows the pion and nucleon mass
shifts to be expressed through the corresponding three-dimensional integrals whose integrands depend
on certain covariant combinations of the relevant three-momenta. The property provides the momen-
tum independence of mass renormalization. The present results prove to be equivalent to the results
obtained by Feynman techniques.
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I. INTRODUCTION

Recently, the so-called unitary clothing transformation
approach put forward in [1] and developed in [2] has been
employed for an approximate treatment of the simplest
eigenstates of the total field Hamiltonian H (see [3–5]
and refs. therein). First of all, we mean the physical
vacuum � (the lowest-energy H eigenstate) and the ob-
servable one-particle states jpi with the momentum p
since the procedure is aimed at reformulating quantum
field theory (QFT) in terms of clothed or dressed parti-
cles. For a moment, the particle spin index is omitted, if
any. By definition, the vector jpi belongs to the H eigen-

value Ep �
������������������
p2 �m2

p
, where m is the mass of a free

particle (e.g., fermion). We call it the physical mass.
Thus, m appears here in a natural way via the relativistic
dispersion law. It is well known that the contemporary
covariant approach uses the other prescription to find the
physical mass, viz., it is determined as a pole of the full
particle propagator (see, e.g., [6] (Chapter 7.1) and [7]
(Chapters 10, 11)). The mass shift is expressed through
the particle self-energy function evaluated in nontrivial
field theories as an expansion in the coupling constants.
The miscellaneous self-energy contributions give rise to
undesirable divergences inherent in the existing applica-
tions of every local field model (at least, when employing
the perturbative methods). Their removal requires con-
siderable intellectual efforts associated with a consequent
regularization of the divergent integrals involved. In the
S-matrix calculations they are encountered as early as in
the first nonvanishing approximation in the coupling con-
stants (in particular, when evaluating the forward-
scattering amplitudes, where the one-loop contributions
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must cancel the occurring mass counterterms). A few
instructive examples of such a situation for the pion-
nucleon and nucleon-nucleon scattering amplitudes can
be found in the excellent exposition [8] both in the frame-
work of the old-fashioned perturbation theory and the
Dyson-Feynman approach.

In this context, we would like to note the paper [9] in
which the one-particle energies have been calculated for
the field model of interacting charged and neutral mesons.
The author [9] has used the customary stationary pertur-
bation theory, introduced a nonlocal extension of the
interaction between the meson fields, and suggested a
fresh look at the regularization problem within the non-
covariant approach.

As shown in Refs. [10,11], the method of unitary trans-
formations (UT’s) can be helpful in this area. Thus, in
[10,11] the Hamiltonian for interacting fields was block-
diagonalized using Okubo’s idea [12]. Note that while in
[10] the �, �, !, and � mesons were coupled with
nucleons via the Yukawa-type interactions, the authors
of [11] dealt with scalar ’’nucleons’’ and mesons with a
simpler coupling. This enabled them not only to derive
the effective (Hermitian and energy independent) inter-
actions (’’quasipotentials’’) between nucleons, as done in
[10], but also to separate the one-nucleon contribution to
the Hamiltonian with the renormalized nucleon mass (cf.,
Eq. (23) of Ref. [10] and Eq. (36) of Ref. [11]).

The authors of [11] have shown that their expression for
the second-order nucleon mass shift coincides with the
corresponding expression found by Feynman technique.
In particular, this shift is independent of the nucleon
momentum. That has led to an expected momentum
dependence (after Weisskopf [13]) of the nucleon energy
shift. Besides, one should point out a direct (apparently,
too sophisticated) way proposed in [11] (Appendix) to
prove the reduction of the energy shift to the mass one.
11-1  2004 The American Physical Society
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Note that the trick employed in [11] has common features
with the so-called w-change of variables in the divergent
integrals of interest (where w is a certain four-
dimensional scalar in the energy-momentum space),
which has been used many years ago in paper [14] de-
voted to the self-energy of a Dirac particle and its rela-
tivistic invariance.

Here we continue a study [5] of the mass renormaliza-
tion problem in the clothed particle representation for the
operatorH. In this representation the primary mass coun-
terterms must be compensated by the proper renormal-
ization (’’radiative’’) parts of the effective interactions
arising in the course of the clothing procedure (see
Sect. II). It is achieved via normal ordering of the creation
(destruction) operators for ’’clothed’’ particles (e.g., me-
sons, nucleons, and antinucleons). Details can be found in
[4,5,15,16]. However, unlike [5], where priority has been
given to deriving an analytic expression for the radiative
correction to the ’’bare’’ pion mass and finding its covari-
ance in the second order in the coupling constant, we will
focus upon the elimination of the nucleon mass counter-
term (see Sect. III).

In Sect. IVour results are compared with the simplest
disconnected contributions to the pion-nucleon forward-
scattering amplitude. They are evidently covariant and
determined by the pion-nucleon one-loop diagram.
II. UNDERLYING FORMALISM: CLOTHED
PARTICLES IN QUANTUM FIELD THEORY

The notion of clothed particles will be considered using
the following model: a spinor (fermion) field  interacts
with a neutral pseudoscalar meson field � by means of
the Yukawa coupling. The model Hamiltonian is H �
H0 � V where

H0 �
Z
dx � �x���i�r�m0
 �x� �

1

2

Z
dx��2�x�

� r��x�2 ��2
0�

2�x�
; (1)
V �
Z
dxV�x� � ig

Z
dx � �x��5 �x���x�: (2)

The Hamiltonian can be expressed through bare de-
struction (creation) operators a�k� �ay�k��, b�p; r�
�by�p; r��, and d�p; r� �dy�p; r�� of the meson, the fer-
mion, and the antifermion, respectively, (see Eqs. (8)
and (16) below). Here k and p denote the momenta, r is
the spin index. In what follows, the set of all these
operators is denoted by a symbol a, while ap is used for
one of them. The state without bare particles �0 and the
one-bare-particle states ay�k��0, by�p; r��0, and
dy�p; r��0 are not H eigenvectors.
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Now, we introduce new destruction (creation) operators

ac�k��a
y
c �k��; bc�p;r��b

y
c �p;r��; dc�p;r��d

y
c �p;r��;8k; p; r

(3)

with the following properties:

i T
-2
he physical vacuum (the lowest-energy H eigen-
state) must coincide with a new no-particle state �,
i.e., the state that obeys the equations

ac�k�j�i � bc�p; r�j�i � dc�p; r�j�i � 0;8k;p; r
(4)

h�j�i � 1:
ii N
ew one-particle states ayc �k�� etc. are H eigen-
states as well.
iii T
he spectrum of indices that enumerate the new
operators must be the same as that for the bare ones
(this requirement has been used when writing
Eq. (3)).
iv T
he new operators satisfy the same commutation
rules as do their bare counterparts. For instance,

�ac�k�; a
y
c �k0�
 � ��k� k0�;

fbc�p; r�; b
y
c �p0; r0�g � fdc�p; r�; d

y
c �p0; r0�g

� �rr0��p� p0�:

(5)
Following [1], [8] (Chapter XII) we shall call the new
operators and states clothed. Note that the name is some-
times used in a sense which differs from that defined by
the points (i)–(iv).

As one can see, the problem of clothing is equivalent to
determination of some H eigenvectors. In fact, the prop-
erty (iii) means that we do not pretend to find all H
eigenstates which are one-particlelike. For example, H
may have a deuteronlike eigenstate with a mass <2m,
wherem is the nucleon mass. The finding of similar states
is considered in [3,5]. Now we intend to deal only with
those one-particlelike eigenstates of H which have bare
counterparts.

By definition, the bare one-fermion eigenstate jp; ri0 of
the operator H0, being simultaneously the eigenstate of

total momentum P, belongs to the H0 eigenvalue E0
p �������������������

p2 �m2
0

q
. Let us consider an H eigenstate jp; ri for

which jp; ri0 is a zeroth approximation (ZA).
Perturbation theory shows that the corresponding H ei-
genvalue Ep differs from E0

p. In the relativistic case the

function Ep must be of the form
������������������
p2 �m2

p
where m is the

mass of an observed free fermion. Analogously, one can
argue the appearance of the meson physical mass �
which differs from the trial mass �0.
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Such an introduction of the masses m and � can be
used to divide the total Hamiltonian into the new free
part HF and the new interaction HI. Namely, let us
rewrite H � H0 � V as H � HF �HI where

HF �
Z
dx � �x���i�r�m
 �x� �

1

2

Z
dx��2�x�

� r��x�2 ��2�2�x�
; (6)

HI � V � �m
Z
dx � �x� �x� �

1

2
��2

Z
dx�2�x�

� V �Mren; (7)

with �m � m0 �m and ��2 � �2
0 ��2.

The operatorHF can be brought to the ‘‘diagonal’’ form

HF �
Z
dk!kay�k�a�k� �

Z
dpEp

X
r

�by�p; r�b�p; r�

�dy�p; r�d�p; r�
; (8)

by means of the standard expansions

��x� � �2���3=2
Z
dk�2!k�

�1=2�a�k� � ay��k�


� exp�ikx�; (9)

��x� � �i�2���3=2
Z
dk�!k=2�1=2�a�k�

�ay��k�
 exp�ikx�; (10)

 �x� � �2���3=2
Z
dp�m=Ep�

1=2
X
r

�u�p; r�b�p; r�

� v��p; r�dy��p; r�
 exp�ipx�; (11)

where u�p; r� and v�p; r� are the Dirac spinors, which
satisfy the conventional equations �p̂�m�u�p; r� � 0
and �p̂�m�v�p; r� � 0 with p̂ � Ep�

0 � p�, in the for-

mulae Ep �
������������������
p2 �m2

p
and !k �

������������������
k2 ��2

p
.
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The operators (3) are the milestones of the clothing
procedure. Its urgent task is to find clothed operators
which should satisfy the requirements (i)–(iv). Now, the
symbol ! will be used for set (3) with !p being one
operator of the set (cf. a and ap). In order to meet the
properties (iii) and (iv), we suppose that the clothed
operators ! are related to the bare ones a via a unitary
transformation

!p � WyapW; WyW � WWy � 1; (12)

where W is a function of all the bare operators a.
Therefore, Eq. (12) represents !p as a function (func-
tional) of a.

Note that W is the same function of either clothed or
bare operators (see [1]). Indeed, if f�x� is a polynomial or
a series of x, the relation f�!� � Wy�a�f�a�W�a� follows
from Eq. (12). Replacing f�!� by W leads to

W�!� � Wy�a�W�a�W�a� � W�a�; (13)

i.e., in the above statement. Hence, the operator ap, when
expressed in terms of !, is given by

ap � W�!�!pWy�!�: (14)

Unitarity of W is automatically ensured if W is repre-
sented as the exponential of an antihermitian operator R:
W � exp�R�. For a given R, the r.h.s. of Eq. (14) can be
evaluated with the help of

eABe�A � B� �A;B
 �
1

2
�A; �A;B

 �

1

3!
�A; �A; �A;B




� . . . ;

(15)

that holds for any operators A and B, and the commutation
rules (5).

In the context, the total Hamiltonian can be written as
H � H�a� � HF �HI where HF�a� is determined by
Eq. (8) and HI � V�a� �Mren�a� with
V�a� �
Z
dp0dpdk

X
rr0
fby�p0; r0�Vk

11�p
0; r0;p; r�b�p; r� � by�p0; r0�Vk

12�p
0; r0;p; r�dy��p; r�

� d��p0; r0�Vk
21�p

0; r0;p; r�b�p; r� � d��p0; r0�Vk
22�p

0; r0;p; r�dy��p; r�g�a�k� � ay��k�


�
Z
dp0dpdk

X
rr0
Fy�p0; r0�Vk�p0; r0;p; r�F�p; r�a�k� � H:c: �

Z
dkFyVkFa�k� � H:c:; (16)

where the operator column F and row Fy are composed of the bare nucleon and antinucleon operators (e.g., Fy�p; r� �
�by�p; r�; d��p; r�
), and we have introduced the c-number matrices (cf., Appendix A of [5]),

Vk�p0; r0;p; r� �
�
Vk
11�p

0; r0;p; r� Vk
12�p

0; r0;p; r�
Vk
21�p

0; r0;p; r� Vk
22�p

0; r0;p; r�

�

�
ig

�2��3=2
m����������������������

2!kEp0Ep
p ��p� k� p0�

�
�u�p0; r0��5u�p; r� �u�p0; r0��5v��p; r�
�v��p0; r0��5u�p; r� �v��p0; r0��5v��p; r�

�
: (17)
-3
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By using Eq. (14), one can replace the bare operators by
the clothed ones

H�a� � H�W�!�!Wy�!�
 � K�!�: (18)

The operator K�!� represents the same Hamiltonian, but
it has another dependence on its argument ! compared to
H�a�. K�!� can be found as follows. First, Eq. (18) can be
written as

K�!� � W�!�H�!�Wy�!�: (19)

Second, puttingW�!� � exp�R�!�� and using Eq. (15) we
have

H � K�!� � eR�HF �HI
e�R �

� HF�!� �HI�!� � �R;HF
 � �R;HI


�
1

2
�R; �R;HF

 �

1

2
�R; �R;HI

 � . . . (20)
III. THE CLOTHING PROCEDURE IN ACTION:
ELIMINATION OF BAD TERMS INCLUDING

MASS COUNTERTERMS

Equation (20) gives a practical recipe for the K�!�
calculation: at the beginning one replaces a by ! in the
initial expression H�!� and then calculates
W�!�H�!�Wy�!� using Eqs. (15) and (5). The above
transition H�a� ! H�!� generates a new operator H�!�
as compared to H�a�, but Eqs. (18) and (19) show that
W�!�H�!�Wy�!� turns out to be equal to the original
total Hamiltonian.

In order to meet the requirements (i) and (ii), the r.h.s.
of Eq. (20) must not contain some undesirable terms that
prevent the no-clothed-particle state � and one-clothed-
particle states to be H eigenvectors. Such terms which we
call bad as in [5] enter in the operator V�!� that is derived
from V�a� by means of the replacement a! !.

Let us eliminate from K�!� the bad terms of the g1 -
order. For this purpose we choose such R that

V � �R;HF
 � 0: (21)

According to [5], the corresponding operator R�!� �
R�Ry with

R �
Z
dkFy

c RkFcac�k�: (22)

In cumbersome formulae summations over the dummy
spin indices are sometimes omitted. Here, unlike the
fermion operators F and Fy in Eq. (16) the operator
column Fc and row Fy

c are composed of the clothed
nucleon and antinucleon operators. The explicit expres-
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sion for c-number matrices Rk can be written as

Rk
i;j�p

0; r0;p; r� � Vk
i;j�p

0; r0;p; r�=���1�i�1Ep0

���1�j�1Ep �!k
;

�i; j � 1; 2�: (23)

Once �R;HF
 � �V, Eq. (20) can be rewritten as

K�!� � HF�!� �Mren�!� �
1

2
�R;V
 � �R;Mren


�
1

3
�R; �R;V

 � . . . (24)

Thus, we have removed fromK�!� all the bad terms of the
g1-order.

However, the r.h.s. of Eq. (24) embodies other bad
terms of the g2- and higher orders. In particular, we imply
the terms bilinear in the meson and fermion operators,
that arise from the commutator

�R;V
 �
Z
dk1dk2F

y
c �Rk1 ; Vk2
Fcac�k1�ac�k2�

�
Z
dk1dk2F

y
c �Rk1 ; V�k2
Fca

y
c �k2�ac�k1�

�
Z
dkFy

c RkFc � F
y
c V�kFc � H:c: (25)

after normal ordering. They may be cancelled by the
respective counterparts from the operator
Mren�!� � Mmes�!� �Mferm�!�.

It has been shown in [5] that in the model under this
consideration the meson mass shift of the g2 -order is
determined by

��2 �
2g2

�2��3
Z dp
Ep

�
p�k

�2 � 2p�k
�

pk

�2 � 2pk

	

�
2g2

�2��3
Z dp
Ep

�
1�

�4

4�pk�2 ��4

	
; (26)

i.e., it is independent of the meson momentum k. Here we
have introduced the 4-vectors p � �Ep;p�, p� �

�Ep;�p�, and k � �!k;k�. Note that the similar formula
(A.20) from [5] contains a misprint in signs.

Now, we will show how the second-order contributions
to the fermion mass counterterm can be cancelled by
certain terms of the commutator �R;V
. In this connec-
tion, we will look for all the terms bilinear in the fermion
operators, which arise from 1

2 �R;V
 (more exactly, the
third integral of Eq. (25)). Like Eq. (16) this fermionic
-4
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two-operator contribution can be written as

1

2
�R;V
2ferm �

Z
dkFy

c XkFc

�
Z
dk

�
bycXk

11bc � bycXk
12d

y
c

�dcX
k
21bc � dcX

k
22d

y
c

	
: (27)

After lengthy transformations (again, with the aid of
normal ordering) one can obtain the following formulae
for evaluation of the c-number matrix elements Xk

ij

2Xk
11 � Rk

11V
�k
11 � V�k

12 R
k
21 � H:c:;

2Xk
12 � 2Xky

21

� Rk
11V

�k
12 � V�k

12 R
k
22 � �Rk

21V
�k
11 � V�k

22 R
k
21�

y;

2Xk
22 � Rk

21V
�k
12 � V�k

22 R
k
22 � H:c::

The fermion mass counterterm has the form

Mferm � �m
Z
dx � �x� �x�; (28)

or

Mferm�!� � m�mFy
cMFc

� m�mfbycM11bc � bycM12d
y
c

�dcM21bc � dcM22d
y
c g; (29)

where the matrix M is given by

M �

�
M11 M12

M21 M22

�

�
��p0 � p�

Ep

�
�r0r �u�p0; r0�v��p; r�

�v��p0; r0�u�p; r� ��r0r

�
:

(30)

Under certain conditions the separate terms in Eq. (29)
will cancel the terms of the same operator structure in
Eq. (27). First of all, we are interested in cancellation of
the byc bc and dcd

y
c terms responsible for the transitions

one fermion ! one fermion to get a prescription in
determining the fermion (nucleon) mass renormalization
(of course, in the g2-order). Doing so, we assume that

m�m�2�M11 �
Z
dkXk

11 � 0;

m�m�2�M22 �
Z
dkXk

22 � 0;
(31)

or in the spinor space,

m�m�2� ��p
0 � p�
Ep

�r0r � �
Z
dkXk

11�p
0; r0;p; r�;

m�m�2� ��p
0 � p�
Ep

�r0r �
Z
dkXk

22�p
0; r0;p; r�:

(32)
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It is evident that these equations impose the following
constraints upon the integrals, viz., each of them must
depend on the fermion momentum and spin as C��p0 �

p��r0r=Ep with a constant C. The further task is to check
this property and find the constant, if any.

As shown in Appendix,

Z
dkXk

11�p
0;r0;p;r���

g2

4�2��3
��p0 �p�
Ep

�r0rI�p�; (33)

where

I�p� � I1�p� � I2�p�;

with

I1�p� �
Z dk
!k

pk
�

1

�2 � 2pk
�

1

�2 � 2pk

	
;

I2�p� �
Z dq
Eq

�
m2 � pq

2�m2 � pq
 ��2 �
m2 � pq

2�m2 � pq
 ��2

	
:

Thus, the mass shift of interest is

�m�2� �
g2

4m�2��3
I�p�

�
g2

4m�2��3
�I1�m; 0; 0; 0� � I2�m; 0; 0; 0�
: (34)

The second relation (32) leads to the same result since
Xk
22 � �Xk

11. The integrals involved in Eq. (34) can be
reduced to the elementary ones.

The crossed byc d
y
c and dcbc terms in Eq. (27) are bad

having nonvanishing matrix elements between the vac-
uum � and two-fermion states. It turns out that they are
not covariant (see Appendix) and, unlike the meson mass
renormalization, are not cancelled with the respective
terms of the operator Mferm�!�.
IV. COMPARISON WITH AN EXPLICITLY
COVARIANT CALCULATION: ELIMINATION OF

DIVERGENCES IN THE S-MATRIX

We have seen that the considered procedure enables us
to remove from the Hamiltonian in the clothed particle
representation not only the ’’bad’’ terms (at least, up to
any given order in the coupling constant g).
Simultaneously, the ’’good’’ two-particle terms are elim-
inated too being compensated with the corresponding
mass counterterms. Along the guideline some ultraviolet
divergences inherent in the conventional form of H can-
not appear in the S-matrix. In the context, let us recall the
Dyson-Feynman expansion for the S operator,

S � 1� i
Z 1

�1
dt1HI�t1� � ��i�2

1

2!

�
Z 1

�1
dt1

Z 1

�1
dt2P�HI�t1�HI�t2�
 � . . . ; (35)
-5
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where, as usual, HI�t� � exp�iHF�a�t
HI�a��
exp��iHF�a�t
 is an interaction in the Dirac picture. To
be definite, we consider the interacting neutral pion and
nucleon fields with the operator HI�a� � V�a� �Mren�a�
(see Eqs. (16) and (29)) and the matrix elements hfjS�2�jii
of the S operator in the g2-order, sandwiched between the
initial and final �0N states,

jii � ay�k�by�p; r��0; jfi � ay�k0�by�p0; r0��0:

(36)

We are interested in competition between the fermion
mass renormalization contribution to S�2� and the so-
called fermion self-energy diagram contribution. The
latter can be written as

hfjS�2�SEjii��
g2

�2��3
m2IF�p�

��p0 �p�
Ep

���k0 �k���Ep0 �!k0 �Ep�!k��r0r; (37)

IF�p� �
Z d4q

q2 ��2 � i0

�
1�

p�p� q�

m2

	

�
1

�p� q�2 �m2 � i0
;

or

IF�p� �
Z
dq

Z 1

�1
dq0

1

q20 �!2
q � i0

�

�
1�

p0�p0 � q0� � p�p� q�
m2

	

�
1

�p0 � q0�
2 � E2

p�q � i0
:

It is pertinent to stress that, unlike the notation p� k �
�Ep�k;p� k� adopted in the Appendix, the vector p� q
here is the difference of the two 4-vectors p and q, i.e.,
p� q � �p0 � q0;p� q�.

The ’’forward-scattering’’ process associated with this
diagram would be responsible for the appearance of cer-
tain infinity in the �N scattering amplitude hfjT jii.
Following a common practice, the divergence should be
compensated by the hfjM�2�

ferm�a�jii piece, viz., it is re-
quired that

2�ihfjM�2�
ferm�a�jii��Ef � Ei� � hfjS�2�SEjii: (38)

At this point, one should emphasize that similar well-
known steps become unnecessary if from the beginning
we operate with the clothed particle representation K�!�
of the Hamiltonian H�a�. This new form of H does not
contain ultraviolet divergences and, being constructed via
the sequential unitary transformations, gives new unitar-
ily equivalent forms of the S operator [17]. It is important
that the approach enables us to evaluate one and the same
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S matrix with nonperturbative methods (cf. an akin ap-
proach elaborated in [16]).

In addition, we would like to note that the crossed
(nondiagonal) terms in (29) do not contribute to
hfjM�2�

ferm�a�jii. In fact,

hfjM�2�
ferm�a�jii� h�0ja�k0�b�p0;r0�M�2�

ferma
y�k�by�p;r�j�0i

�h�0jb�p0;r0�M�2�
fermb

y�p;r�j�0i��k0 �k�

�m�m�2�h�0jb�p0;r0�

�byM11bby�p;r�j�0i��k0 �k�

�m�m�2���p
0 �p�
Ep

�r0r��k0 �k�:

Obviously, this observation is related to all g2n-orders
(n � 1; 2; . . . ).

Now, by taking into account the pole disposition for
the propagators involved and carrying out the
q0-integration, one can get

hfjS�2�SEjii�
�i
2

g2

�2��3
��p0 �p�
Ep

���k0 �k���Ep0 �!k0 �Ep�!k�

��r0r
Z dq
Ep�q!q

�m2�EpEp�q�p�p�q�
Ep�Ep�q�!q

�
m2�EpEp�q�p�p�q�

Ep�Ep�q�!q

	
: (39)

The three-dimensional integral in (39) coincides with the
integral I�p� defined by Eq. (44). Hence, one can write

hfjS�2�SEjii�
�i
2

g2

�2��3
I�p�

��p0 �p�
Ep

���k0 �k���Ep0 �!k0 �Ep�!k��r0r: (40)

It follows from (37) and (40) that

IF�p� � �
�i

2m2 I�p�; (41)

i.e., we have found another proof of the p-independence of
I�p� since IF�p� is the explicitly covariant quantity.
Besides, we have expressed the Feynman one-loop inte-
gral IF�p� through other covariant quantities (see formula
(47)).

Finally, Eqs. (37) and (38) yield the result (34) found
alternatively.
V. SUMMARY

We have demonstrated here how the mass shifts in the
system of interacting pion and nucleon fields can be
calculated by the use of the clothed particle representa-
tion, where the total Hamiltonian and other generators of
the Poincaré group take on a certain sparse structure in
-6
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the Hilbert space. This application of the method of
unitary clothing transformations refers to the Yukawa-
type �N interaction with the PS coupling. The respective
mass counterterms are compensated and determined due
to normal ordering of the clothed creation (destruction)
operators involved in the commutator �R;V
 of the model
interaction V and the generator R of the corresponding
clothing transformation.

The procedure described above has an important fea-
ture, viz., the mass renormalization is made simulta-
neously with the construction of a new family of
quasipotentials (Hermitian and energy independent) be-
tween the physical particles (the quasiparticles of the
method). Explicit expressions for the quasipotentials
can be found in [5].

Being three-dimensional, the approach demands some
efforts to prove the momentum independence of the ex-
pressions for the particle mass shifts. By using a com-
paratively simple analytical means, we could show that
the three-dimensional integrals, which determine the
pion and nucleon renormalizations in the second order
in the coupling constant g, can be written in terms of the
Lorentz invariants composed of the particle three-
momenta. In other words, these integrals are independent
of the particle momentum. An essential result of our work
is the observation (see Sect. III and the Appendix) that
unlike those operations with the spinless particles (see
[11] and Appendix A in [5]) only the particle-conserving
part of the nucleon mass counterterm (responsible for the
one fermion ! one fermion transition) may be cancelled
085011
via one and the same clothing transformation. The rest
consists of bad terms which have nonvanishing matrix
elements between the vacuum � and the fermion-
antifermion states. They should be removed via a subse-
quent UT linear in them.

The experience acquired has allowed us, on the one
hand, to reproduce the manifestly covariant result ob-
tained by Feynman techniques and, on the other hand,
to derive a new representation (see Eqs. (41) and (47)) for
the Feynman integral that corresponds to the fermion
self-energy diagram. Of course, here we are dealing
with the coincidence of the two divergent quantities:
one of them is determined by the nucleon mass renor-
malization one-loop integral, while the other stems from
the commutator �R;V
. Trying to overcome this draw-
back, we face the problem of ultraviolet divergences in the
quantum theory of fields. Within the clothing procedure
they are removed step by step directly in the Hamiltonian
H. As noted in Sect. IV, the form K�!� for H�a� in the
clothed particle representation does not contain ultravio-
let divergences.
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APPENDIX: EVALUATION OF THE
RENORMALIZATION INTEGRALS

By using Eq. (23) we find
2
Z
dkXk

11�p
0; r0;p; r� �

Z
dk

Z
dq

X
r

�
Vk
11�p

0; r0;q; s�V�k
11 �q; s;p; r�

Ep � Eq �!k
�
Vk
12�p

0; r0;q; s�V�k
21 �q; s;p; r�

Ep � Eq �!k
� H:c:

	
; (42)

whence it follows (cf. the transition from Eq. (A.17) to Eq. (A.20a) in [5]) that

2
Z
dkXk

11�p
0; r0;p; r� � �

g2

4�2��3
��p0 � p�

Ep
�r0rI�p�; (43)

I�p� �
Z dk
Ep�k!k

�m2 � EpEp�k � p�p� k�
Ep � Ep�k �!k

�
m2 � EpEp�k � p�p� k�

Ep � Ep�k �!k

	
: (44)

In order to convert the integrand of (44) into a covariant form it is convenient to write down the two equivalent forms:

m2 � EpEp�k � p�p� k�
Ep � Ep�k �!k

�
m2 � EpEp�k � p�p� k�

Ep � Ep�k �!k
� C��!k� �D�!k�

� D��!k� �D�!k� � C��!k� �D��!k�

� C��!k� � C�!k� �D�!k� � C�!k�: (45)

One can see that the differences D��!k� �D�!k�, D��!k� � C��!k�, and C��!k� � C�!k� are in a simple way
expressed through the scalar products p�k and p�p� k�� where p� k � �Ep�k;p� k� � �Ep;p� � �Ek;k�, viz.,
-7
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D��!k� �D�!k� � 2!k
m2 � p�p� k��

2�m2 � p�p� k��
 ��2 ;

D��!k� � C��!k� � �2Ep�k
p�k

�2 � 2p�k
;

C��!k� � C�!k� � 2!k
m2 � p�p� k�

2�m2 � p�p� k�
 ��2 :

Now, one can see that

I�p� �
Z dk
!k

pk

�2 � 2pk
�

Z dk
!k

p�k

�2 � 2p�k

�
Z dk
Ep�k

m2 � p�p� k�

2�m2 � p�p� k�
 ��2

�
Z dk
Ep�k

m2 � p�p� k��
2�m2 � p�p� k��
 ��2 : (46)

Then with the help of the changes: k ! �k in the
second integral of (46), p� k ! q in the third integral of
(46), and p� k ! �q in the fourth integral of (46),
these integrals can be transformed to the explicitly cova-
riant quantities,

I�p��
Z dk
!k

pk
�

1

�2�2pk
�

1

�2�2pk

	
�
Z dq
Eq

�

�
m2�pq

2�m2�pq
��2�
m2�pq

2�m2�pq
��2

	
: (47)

V. YU. KORDA AND A.V. SHEBEKO
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Apparently, such a proof of the p-independence of the
renormalization integral is simpler than those based on
the different changes of variables that have been men-
tioned in Section I.

The previous experience makes our evaluation of the
crossed (bad) bydy terms a little shorter. Indeed, we have

2
Z
dkXk

12 �
Z
dk�Rk

11V
�k
12 � V�k

12 R
k
22


�
Z
dk�Rk

21V
�k
11 � V�k

22 R
k
21


y:

For brevity, we have replaced Xk
ij�p

0; r0;p; r� with Xk
ij.

After a simple calculation we arrive at

2
Z
dkXk

12 � �
g2

�2��3
m2

2

��p0 � p�
Ep

Ir0r�p�; (48)
Ir0r�p� �
Z dk
Ep�k!k

�
1

Ep � Ep�k �!k

�
1

Ep � Ep�k �!k

	
�u�p; r0�

k̂
m
v��p; r�: (49)

Transformation properties of Ir0r�p� are convenient to
study via the decomposition
1

Ep � Ep�k �!k
�

1

Ep � Ep�k �!k
�

1

Ep � Ep�k �!k
�

1

Ep � Ep�k �!k

�
1

Ep � Ep�k �!k
�

1

Ep � Ep�k �!k

�
2Ep�k

�2 � 2pk
�

2!k

2�m2 � p�p� k��
 ��2 ; (50)
that yields

Ir0r�p� � Ar0r�p� � Br0r�p� � Cr0r�p�; (51)

where

Ar0r�p� � 2
Z dk
!k

�u�p; r0� k̂m v��p; r�

�2 � 2pk
;

Br0r�p� � 2
Z dq
Eq

�u�p; r0� q̂m v��p; r�

2�m2 � pq
 ��2 ;
and

Cr0r�p� � 2 �u�p; r0�
p̂
m
v��p; r�

Z dq
Eq

1

2�m2 � pq
 ��2

� 8� �u�p; r0�
p̂
m
v��p; r�

�
Z q2dq

Eq

1

2m�m� Eq
 ��2 :

These quantities are zero at the point p � �m; 0; 0; 0�
together with the coefficients �u�p; r0�v��p; r� in the de-
composition (29) of Mferm. However, being p-dependent
they do not nullify the g2-order nondiagonal (crossed)
-8
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contributions to H in the clothed particle representation
(at least, at the first stage of our procedure). These con-
085011
tributions can be eliminated via the correspondent
g2-order clothing transformation.
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