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Noncommutative correction to Aharonov-Bohm scattering: A field theory approach
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We study a noncommutative nonrelativistic theory in 2� 1 dimensions of a scalar field coupled to the
Chern-Simons field. In the commutative situation this model has been used to simulate the Aharonov-
Bohm effect in the field theory context. We verified that, contrary to the commutative result, the
inclusion of a quartic self-interaction of the scalar field is not necessary to secure the ultraviolet
renormalizability of the model. However, to obtain a smooth commutative limit the presence of a
quartic gauge invariant self-interaction is required. For small noncommutativity we fix the corrections
to the Aharonov-Bohm scattering and prove that up to one loop the model is free from dangerous
infrared/ultraviolet divergences.
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I. INTRODUCTION

Noncommutative field theories present a series of un-
usual and intriguing properties (see [1] for some reviews).
From a conceptual standpoint the inherent nonlocality of
these theories leads to an entanglement of scales so that
some ultraviolet (UV) divergences of their commutative
counterparts appear as infrared (IR) singularities. In
general they are damaging to the perturbative expansions
although in some supersymmetric models [2–4] they
could be under control. Noncommutative field theories
have also been used to clarify condensed matter phe-
nomena as the fractional Hall [5] and Aharonov-Bohm
(AB) [6,7] effects.

In the context of nonrelativistic quantum mechanics,
previous studies on the noncommutative AB effect have
shown that, in contrast with the commutative situation,
the cross section for the scattering of scalar particles by a
thin solenoid does not vanish even when the magnetic
field assumes certain discrete values [7].

In this work we will further the investigations of the
changes on the AB effect due to the noncommutativity of
the space. In our study the effect will be simulated by a
nonrelativistic field theory describing spin zero particles
interacting through a Chern-Simons (CS) field. It is worth
recalling that in the commutative scenario, to cancel
ultraviolet divergences and to obtain accordance with
the exact result, it was necessary to introduce a quartic
self-interaction for the scalar field [8]. This result was
reobtained by considering the low momentum limit of the
full relativistic theory [9]. Even in the case of U(1) gauge
symmetry to which we will restrict our considerations,
due to the noncommutativity, the CS field is similar to a
non-Abelian gauge field so that we will be actually deal-
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ing with a non-Abelian AB effect [10] (see [11] for
studies on the non-Abelian commutative AB effect using
the CS field). Besides, because of the change in the
character of some divergences, from ultraviolet to infra-
red, the renormalizability of the model may be in jeop-
ardy. However, in the present situation there are two
possible orderings for the quartic self-interactions.
There is one more free parameter and this could help to
formulate a consistent model. In any case, as the limit of
small noncommutativity is singular, features different
from those in [7] emerge from our analysis.

In this work all calculations are performed in the
Coulomb gauge which for nonrelativistic studies seems
to be more adequate. We show that up to the one-loop
order the UV divergences of the planar contributions are
canceled in the calculation of the four-point function and,
contrary to the commutative case, do not have a confor-
mal anomaly. Hence, the planar part is renormalizable
without the contact interaction needed in the commuta-
tive situation. Nevertheless, as mentioned before, the non-
planar part presents logarithmic infrared divergences as
the noncommutative parameter tends to zero. To elimi-
nate these divergences we introduce in the Lagrangian
quartic interactions of the type �1

8 ��;�
y�� � ��;�y�� and

�2

8 f�;�
yg� � f�;�yg�, all field products being Moyal

ones. For general values of �1 and �2 gauge invariance
will be broken and UV divergences originated from the
quartic terms occur. However, it turns out that, for the
special values �1 	 �2 	 �, for which the action is gauge
invariant, these UV divergences are eliminated. We prove
then that IR divergences in the scattering amplitude dis-
appear for special values of the coupling constant �.

The paper is organized as follows. In Sec. II, we
introduce the model, present its Coulomb gauge
Feynman rules, and discuss some aspects of the renor-
malization program for the model. In Sec. III, we com-
pute the particle-particle scattering up to order one loop.
We calculate the scattering amplitude by separating the
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planar and nonplanar parts and complete the one-loop
analysis of the IR/UV divergences initiated in the pre-
vious section. Some integrals needed in the calculations
are collected in the Appendix. Final comments are made
in the Conclusions.
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FIG. 1. Feynman rules for the action (2.1).
II. NONCOMMUTATIVE PERTURBATIVE
THEORY

We consider the noncommutative version of the theory
of a nonrelativistic scalar field coupled with a CS field in
2� 1 dimensions described by the action

S�A;�� 	
Z
d3x

�
	
2
"���

�
A� � @�A� �

2ig
3
A� � A� � A�

�



1

2�
@iAi � @jAj � i�y �Dt�



1

2m
�D��y � �D�� 


�1

8
��;�y�� � ��;�

y��



�2

8
f�;�yg� � f�;�yg� � @i �c � @ic

�ig@i �c � �Ai; c��

�
; (2.1)

where a Coulomb gauge fixing and the corresponding
Faddeev-Popov terms are already included. The fields �
and �y belong to the fundamental representation of the
U(1) gauge group

� ! �ei��� ��; (2.2)

�y ! �y � �e
i���; (2.3)

whereas the gauge field transforms as

A� ! �ei��� � A� � �e
i��� � i�@��ei���� � �e
i���:

(2.4)

The covariant derivatives are given by

Dt� 	 @t�� igA0 ��; Di� 	 @i�� igAi ��:

(2.5)

Notice that there are two different orderings for the
quartic self-interaction. In (2.1) they were written in
terms of Moyal commutators and anticommutators of
the scalar fields.

For convenience, we will work in a strict Coulomb
gauge obtained by letting � ! 0. Furthermore, we will
use a graphical notation where the CS field, the matter
field, and the ghost field propagators are represented by
wavy, continuous, and dashed lines, respectively. The
graphical representation for the Feynman rules is given
in Fig. 1 and the corresponding analytical expressions are
the following:
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(i) The matter field propagator:

D�p� 	
i

p0 

p2

2m� i�
: (2.6)

(ii) The ghost field propagator:

G�p� 	 

i

p2 : (2.7)

(iii) The gauge field propagator in the limit � ! 0 is

D���k� 	
"��� �k

�

	k2 ; (2.8)

where �k� 	 �0;k�.
(iv) The analytical expressions associated with the

vertices are

�0�p; p0� 	 
igeip�p
0
; (2.9)

�i�p; p0� 	
ig
2m

�p� p0�ieip�p
0
; (2.10)

�ighost�p; p
0� 	 
2gp0i sin�p�p0�; (2.11)

�����k1; k2� 	 2ig	"��� sin�k1�k2�; (2.12)

�ij�k1; k2; p; p0� 	 

ig2

m
cos�k1�k2�eip�p

0
�ij; (2.13)

�1�p1; p0
3; p2; p0

4� 	 i�1�sin�p1�p0
3� sin�p2�p0

4�

� sin�p1�p0
4� sin�p2�p0

3��; (2.14)

�2�p1; p0
3; p2; p0

4� 	 
i�2�cos�p1�p0
3� cos�p2�p0

4�

� cos�p1�p0
4� cos�p2�p0

3��: (2.15)

In these expressions we have defined k1�k2 �
1
2�

��k1�k2�, where ��� is the antisymmetric matrix
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FIG. 3. One-loop contributions to the three point vertex
function. The numerals correspond to the indices of the gauge
field propagator.
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which characterizes the noncommutativity of the under-
lying space. For simplicity and to evade possible unitar-
ity/causality problems [12] we keep time local by
imposing �0i 	 0. We set also �ij 	 ��ij with �ij being
the two dimensional Levi-Cività symbol, normalized as
�12 	 1.

In the one-loop approximation there are quadratic di-
vergences associated with the two-point functions of the
gauge and scalar fields, linear divergences associated with
the scalar field four-point function, and logarithmic di-
vergences associated with the three point functions
hA���yi. In the sequel we shall analyze each one of
these divergences.

(1) Gauge and scalar fields two-point functions. The
graph in Fig. 2(a) which contributes to the gauge field
two-point function is planar so that it can be eliminated
by an adequate counterterm. Specifically, the only one-
loop nonvanishing contribution is given by

�ij
a 	 


ig2�ij

2m

Z d2k
�2��2

	 

ig2�ij�2

8�m
: (2.16)

This is a gauge noninvariant term and shall be removed
by a AiAi counterterm so that gauge (Becchi-Rouet-
Stora-Tyutin) invariance remains unbroken.

The diagram in Fig. 2(b) which contributes to the
scalar field two-point function has both planar and non-
planar parts. As before, the planar part can be eliminated
by a counterterm. For general values of �1 and �2, the
nonplanar part although ultraviolet finite may generate
nonintegrable infrared singularities. These nonplanar
parts are however canceled if one chooses �1 	 �2 which
is also the condition to enforce gauge invariance.

(2) As Lorentz invariance is broken, the three point
function hTA���

yi presents two types of divergences:
(a) The one-loop contribution to hTA0��yi drawn in

Fig. 3(a) is given by

�0 	 

g3eip�p

0

2	
lim
�!0

Z d2k
�2��2

�q ^ k��1
 e
2iq�k�

k2��k
 q�2 ��2�
;

(2.17)

where we introduced the parameter � to regulate possible
infrared divergences in the intermediary steps of the
calculation. For small � we obtain

�0 	
ig3�q2eip�p

0

8�	

�
ln
�
�q2

2

�
� "
 1

�
; (2.18)
k k

p p pp

a b

FIG. 2. One-loop contributions to the gauge and scalar field
propagators.
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where " is the Euler-Mascheroni constant. Notice that �0

is finite in the infrared limit.
(b) Concerning the three point function hTAi��yi, we

found two contributions

�i1 	
g3eip�p

0

2m	
lim
�!0

Z d2k
�2��2

��p
 k� ^ p0��1
 e
2iq�k�

k2��k
 q�2 ��2�
ki;

(2.19)

�i2 	 

g3eip�p

0

2m	
lim
�!0

Z d2k
�2��2

�p ^ k��1
 e
2iq�k�

k2��k
 q�2 ��2�

��ki 
 qi�; (2.20)

associated with the graphs in Figs. 3(b) and 3(c), respec-
tively. For small � the calculation of these amplitudes
furnishes the following results for their planar and non-
planar parts:

(b1) Planar parts:

�iplanar 1 	 

g3eip�p

0

8�m	

�
qi
p ^ p0

q2 ln
�
�2

q2

�

�"inp0n
�
ln
�
�2

�2

�

 2

��
; (2.21)

�iplanar 2 	 

g3eip�p

0

8�m	
"inpn

�
ln
�
�2

q2

�
� 2

�
: (2.22)

(b2) Nonplanar parts:

�inplanar 1 	
g3eip�p

0

8�m	

�
�p ^ p0�

�
qi

q2 ln
�
�2

q2

�

 i~qi

�
ln
�
�q2

2

�

�"
 1
��

� "inp0n
�
ln
�
�2

q2

�
� ln

�
�q2

2

�

�1� "
��
; (2.23)

�inplanar 2 	 

g3eip�p

0

8�m	

�
�"inpn � i�qi�p:q��

�
ln
�
�q2

2

�

�"
�
� �"inpn 
 i�qi�p:q��

�
; (2.24)

where we have defined ~qi � �ijqj.
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Summing up these parts we get the total contribution
for small �

�i 	 �iplanar � �inplanar

	 

ig3eip�p

0

8�m	
�~qi�p ^ p0� � �qi�p:q��

�
ln
�
�q2

2

�

�"
 1
�


g3eip�p

0
"inqn

8�m	

�
ln
�
�2�
2

�
� "� 3

�
:

(2.25)

Notice that the final results do not depend on �. The
infrared divergences being only logarithmic are harmless
whereas the ultraviolet divergence has to be eliminated by
a counterterm. It remains to analyze the four-point func-
tion but that will be done in the next section together with
the computation of the two body scattering matrix.
FIG. 5. One-loop scattering.
III. PARTICLE-PARTICLE SCATTERING

The object that we wish to analyze is the four-point
function associated with the scattering of two identical
particles in the center-of-mass frame. The relevant dia-
grams are depicted in Figs. 4 and 5 but for the sake of
simplicity we have drawn only the s-channel processes. In
the tree approximation the gauge part of the two body
scattering amplitude is given by [see Fig. 4(a)]

A 0
a�’� 	 


2ig2�p1 ^ p3�

m	

�
ei�p1�p3�p2�p4�

�p1 
 p3�
2



e
i�p1�p3�p2�p4�

�p1 � p3�
2

�
; (3.1)

where p1, p2 and p3, p4 are the incoming and outgoing
momenta. Since �ij 	 �"ij, the phase is

p1�p3 � p2�p4 	 ��p1 ^ p3� 	 �p2 sin’ 	 �� sin’;

(3.2)

where we have defined �� � �p2, p2 � p2
1 	 p2

3 and ’ is
the scattering angle. Therefore, Eq. (3.1) can be rewritten
as

A 0
a�’� 	 


ig2

m	

�
ei �� sin’

1
 cos’



e
i �� sin’

1� cos’

�
sin’; (3.3)
p

p2

1 p

p p

1

42

p3

p3

p4

ba

FIG. 4. Tree level scattering.
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which for small �� gives
A0

a�’� � 
�2ig2=m	��cot’� i ���.
By taking into account the quartic self-interaction we

have the additional contribution

A0
b�’� 	 �1�sin�p1�p3� sin�p2�p4� � sin�p1�p4�

� sin�p2�p3�� 
 �2�cos�p1�p3� cos�p2�p4�

� cos�p1�p4� cos�p2�p3��

	 2�1sin
2

� �� sin’
2

�

 2�2cos

2

� �� sin’
2

�
; (3.4)

coming from the graph in Fig. 4(b). Thus, the full tree
level amplitude is

A�’� 	 

ig2

m	

�
cot

�
’
2

�
ei �� sin’ 
 tan

�
’
2

�
e
i �� sin’

�

�2�1sin
2

� �� sin’
2

�

 2�2cos

2

� �� sin’
2

�
: (3.5)

The one-loop contribution to the scattering amplitude
is depicted in Fig. 5 (all other possible one-loop graphs
vanish). The analytic expressions associated with these
graphs, after performing the k0 integration, are the
following:

(1) For the triangle graph shown in Fig. 5(a):

Aa�’� 	 

g4

4m	2 e
i�p1�p3�p2�p4�

Z d2k
�2��2

k:�k
 q�
k2�k
 q�2

� �1� e
2iq�k� � �p1 $ p2� � �p3 $ p4�

��p1 $ p2 and p3 $ p4�; (3.6)

where q 	 p1 
 p3 is the momentum transferred.
(2) For the trigluon graph shown in Fig. 5(b) (q0 	

p1 � p3):
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A b�’� 	 A1
b�’� �A2

b�’� �A3
b�’�; (3.7)

where

A1
b�’� 	

g4

4m	2 e
i�p1�p3�p2�p4�

Z �
d2k
�2��2

k2q2 
 �k:q�2 � �k:q0��k:q� 
 �k:q0�q2

k2q2�k
 q�2

�
�1
 e
2iq�k� � �p1 $ p2�

��p3 $ p4� � �p1 $ p2 and p3 $ p4�;

A2
b�’� 	

g4

4m	2 e
i�p1�p3�p2�p4�

Z d2k
�2��2

�
k2q2 
 2�k:q��k:p1�

k2q2�k
 q�2

�
�1
 e
2iq�k� � �p1 $ p2� � �p3 $ p4�

��p1 $ p2 and p3 $ p4�;

A3
b�’� 	 


g4

4m	2 e
i�p1�p3�p2�p4�

Z d2k
�2��2

�
�k:q0�q2

k2q2�k
 q�2

�
�1
 e
2iq�k� � �p1 $ p2� � �p3 $ p4�

��p1 $ p2 and p3 $ p4�:

(3.8)
(3) For the bubble graph shown in Fig. 5(c):

Ac�’� 	
Z d2k

�2��2
f4m��1 
 �2�

2 
 8m��2
1 
 �2

2�

� cos�2k�p1� � 2m��1 � �2�
2�cos�2k�q�

� cos�2k�q0��g
1

�k2 
 p2 
 i��
: (3.9)

The above integrals being logarithmically divergent
need a regularization. Thus, although not indicated, a
cutoff regularization is being implicitly assumed.

(4) For the box graph in Fig. 5(d):

A d�’� 	 A1
d�’� �A2

d�’�; (3.10)

where

A 1
d�’� 	

4g4

m	2

Z d2k
�2��2

�
�p1 ^ k��p3 ^ k�e2iq�k

�k
 p1�
2�k
 p3�

2�k2 
 p2 
 i��
;

(3.11)

A 2
d�’� 	 


4g4

m	2

Z d2k
�2��2

�
�p1 ^ k��p3 ^ k�e
2iq0�k

�k� p1�
2�k
 p3�

2�k2 
 p2 
 i��
:

(3.12)

To compute the above integrals, we separate their pla-
nar and nonplanar contributions. A simplifying aspect is
that the box graph is purely nonplanar.

A. Planar contribution

In the perturbative expansion there is one planar con-
tribution containing phase factors which depend only on
the external momenta. Although the interaction induced
by the noncommutativity is nonlocal, the divergences in
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the momentum integration for closed internal loops are
the same as for the commutative theory.

The calculations of the planar contributions are stan-
dard so that we just list the results:

(1) The planar part of the triangle graph,

Ap
a�’� 	 


g4

4m	2

Z d2k
�2��2

�
k:�k
 q�ei �� sin’

k2�k
 q�2

�
k:�k� q0�e
i �� sin’

k2�k� q0�2

��q ! 
q; q0 ! 
q0�

�
; (3.13)

gives

A p
a �’� 	 


g4

4�m	2

�
cos� �� sin’� ln

�
�2

p2

�


 lnj2 sin�’=2�jei �� sin’


 lnj2 cos�’=2�je
i �� sin’
�
: (3.14)

(2) The planar part of the trigluon graph is more
intricate being given by

A p
b�’� 	 A1p

b �’� �A2p
b �’� �A3p

b �’�; (3.15)

where

A1p
b �’� 	

g4

4m	2

Z d2k
�2��2

�
�k2q2 
 �k:q�2�ei �� sin’

k2q2�k
 q�2

�
�k2q02 
 �k:q0�2�e
i �� sin’

k2q02�k
 q0�2

�

��q ! 
q; q0 ! 
q0�; (3.16)
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A2p
b �’� 	

g4

4m	2

Z d2k
�2��2

�
k2q2 
 2�k:q��p1:k�

k2q2�k
 q�2
ei �� sin’

�
k2q02 
 2�k:q0��p2:k�

k2q02�k
 q0�2
e
i �� sin’

�

��q ! 
q; q0 ! 
q0�; (3.17)

A3p
b �’� 	 


g4

4m	2

Z d2k
�2��2

��
�k:q0�

k2�k
 q�2



�k:q0�

k2�k� q�2

�
ei �� sin’ �

�
�k:q�

k2�k
 q0�2



�k:q�

k2�k� q0�2

�
e
i �� sin’

�
; (3.18)

and the final result is

A p
b�’� 	

g4

4�m	2

�
cos� �� sin’�

�
ln
�
�2

p2

�
� 1

�


 lnj2 sin�’=2�jei �� sin’


 lnj2 cos�’=2�je
i �� sin’
�
: (3.19)

Notice now that the sum of the planar contribution,
Ap

a �’� and Ap
b�’�, is

A p
a�b�’� 	

g4

4�m	2 cos� �� sin’�; (3.20)

so that the divergent parts of these graphs mutually
cancel, unlike in the commutative case [11]. Thus, to
eliminate the ultraviolet divergences a quartic self-
interaction does not seem to be necessary. However, we
should be cautious because as remarked before some
ultraviolet divergences have been transmuted into infra-
red ones so that the quartic self-interaction may still be
needed.

(3) The contribution of planar part of the bubble graph
is logarithmically divergent and is equal to

A p
c �’� 	

4m��1 
 �2�
2

�2��2
Z
d2k

1

�k2 
 p2 
 i��

	
m��1 
 �2�

2

�

�
ln
�
�2

p2

�
� i�

�
: (3.21)

We can get rid of the divergence by setting �1 	 �2 	
�. The total planar part of the amplitude is therefore

Ap
1-loop�’� 	 


ig2

m	
�cot�’=2�ei �� sin’


 tan�’=2�e
i �� sin’� 
 2� cos� �� sin’�

�
g4

4�m	2 cos� �� sin’�; (3.22)
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furnishing up to first order in the parameter ��,

Ap
1-loop�’� 	 


ig2

m	

�
cot

�
’
2

�

 tan

�
’
2

�

�i �� sin’
�
cot

�
’
2

�
� tan

�
’
2

���


2��
g4

4�m	2 ;

	 

i2g2

m	
�cot’� i ��� 
 2��

g4

4�m	2 :

(3.23)

B. Nonplanar contribution

The nonplanar contributions are given by terms which
contain extra phase factors depending on the internal
(loop) momenta. For the graphs [5(a)] these contributions
are

Anp
a �’� 	 


g4

4m	2 e
i �� sin’

Z d2k
�2��2

k:�k
 q�
k2�k
 q�2

�e
2iq�k � �p1 $ p2� � �p3 $ p4�

��p1 $ p2 and p3 $ p4�: (3.24)

Let us begin by computing the first term on the right-
hand side of the above expression. This is done straight-
forwardly by using Feynman parametrization and the
result [13]:

Z dnk
�2��n

eik' ~p
'

�k2 
M2��
	 i�
1��

Mn=2
�

2�
1�2��n=2����

�

Kn=2
�

� ����������������

M2 ~p2

p �

�
~p2�n=2
�
; (3.25)

where K� is the modified Bessel function of order �.
Proceeding in this way we obtain

A np
a1 �’� 	 


g4

4�m	2

Z 1

0
dx

�
K0

� ����������
a2 ��2

p �



����������
a2 ��2

p
K1

� ����������
a2 ��2

p ��
ei �� sin’; (3.26)

where a2 	 16x�1
 x�sin4�’=2�. Collecting this with the
results for the other terms then provides

Anp
a �’� 	 


g4

4�m	2

Z 1

0
dx

��
K0

� ����������
a2 ��2

p �



����������
a2 ��2

p
K1

� ����������
a2 ��2

p ��
ei �� sin’ �

�
K0

� ����������
b2 ��2

p �



����������
b2 ��2

p
K1

� ����������
b2 ��2

p ��
e
i �� sin’

�
; (3.27)

with b2 	 16x�1
 x�cos4�’=2�.
Let us turn now to the computation of the nonplanar

part of the graph with the trigluon vertex. We have
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A np
b �’� 	 A1np

b �’� �A2np
b �’� �A3np

b �’�; (3.28)

where

A1np
b �’� 	 


g4

4m	2 e
i �� sin’

Z d2k
�2��2

�
k2q2 
 �k:q�2 � �k:q0��k:q� 
 �k:q0�q2

k2q2�k
 q�2

�
e
2iq�k � �p1 $ p2�

��p3 $ p4� � �p1 $ p2 and p3 $ p4�;

A2np
b �’� 	 


g4

4m	2 e
i �� sin’

Z d2k
�2��2

�
k2q2 
 2�k:q��k:p1�

k2q2�k
 q�2

�
e
2iq�k � �p1 $ p2� � �p3 $ p4�

��p1 $ p2 and p3 $ p4�;

A3np
b �’� 	

g4

4m	2 e
i �� sin’

Z d2k
�2��2

�
�k:q0�q2

k2q2�k
 q�2

�
e
2iq�k � �p1 $ p2� � �p3 $ p4� � �p1 $ p2 and p3 $ p4�:

(3.29)
We calculate these contributions by following the same
steps described for the previous case. Thus, we obtain

Anp
b �’� 	 


g4

4�m	2

Z 1

0
dx

��
�3� 2i �� sin’�

�K0

� ����������
a2 ��2

p �



����������
a2 ��2

p
K1

� ����������
a2 ��2

p ��

�ei �� sin’ �

�
�3
 2i �� sin’�K0

� ����������
b2 ��2

p �



����������
b2 ��2

p
K1

� ����������
b2 ��2

p ��
e
i �� sin’

�
; (3.30)

which for small �� behaves as

Anp
a�b�’� 	

�
ln
� ��
2

�
� "

��
2g4

�m	2

�
�

2g4

�m	2 ln�2 sin’�

�i
2 �� sin’g4

�m	2 ln�tan�’=2��

�
2g4

�m	2 �O� ��2�: (3.31)

The nonplanar contribution of the bubble graph is

Anp
c �’� 	

m

�2��2

�
Z
d2k

�
2��1��2�

2�cos�2k�q�� cos�2k�q0��

�k2 
p2�



8��2

1 
�2
2�cos�2k�p1�

�k2 
p2�

�
: (3.32)

By integrating over the internal momenta we get

A np
c �’� 	

m
�
f��1 � �2�

2�K0�i2 sin�’=2� ���

� K0�i2 cos�’=2� ���� 
 4��2
1 
 �2

2�K0�i ���g;

(3.33)
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which, for small ��, is given by

Anp
c �’� 	 


�
ln
� ��
2

�
� "

��
2m
�

��1 � �2�
2



4m
�

��2
1 
 �2

2�

�


m
�
��1 � �2�

2 ln�2 sin’�


im��1 � �2�
2 � 2im��2

1 
 �2
2�: (3.34)

Setting �1 	 �2 	 �, that, as remarked before, elimi-
nates the ultraviolet divergence of the planar part of the
same graph, yields

Anp
c �’� 	 


8m�2

�

�
ln
� ��
2

�
� "

�



4m�2

�
ln�2 sin’�


4im�2: (3.35)

For small � the amplitudes (3.11) and (3.12) associated
with the box graph are

A 1
d�’� 	

4g4

m	2

Z d2k
�2��2

�
�p1 ^ k��p3 ^ k��1� i��p1 
 p3� ^ k�
�k
 p1�

2�k
 p3�
2�k2 
 p2 
 i��

;

(3.36)

and

A 2
d�’� 	 


4g4

m	2

Z d2k
�2��2

�
�p1 ^ k��p3 ^ k��1
 i��p1 � p3� ^ k�
�k� p1�

2�k
 p3�
2�k2 
 p2 
 i��

:

(3.37)

The � independent part of these expressions gives

A 1
d�’�j�	0 	 


g4

m	2

Z �2

0

dk2

�2��2
�I2 
 cos�’�I0�

�k2 
 p2 
 i��

	 

g4

4�m	2 f2 ln�2 sin�’=2�� � i�g;

(3.38)
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A 2
d�’�j�	0 	 


g4

m	2

Z �2

0

dk2

�2��2
�I2 
 cos�’�I0�

�k2 
 p2 
 i��

	 

g4

4�m	2 f2 ln�2 cos�’=2�� � i�g;

(3.39)

where I0, I2, I0, and I2 are defined in the Appendix.
Summing the above results we get

A d�’�j�	0 	 A1
d�’�j�	0 �A2

d�’�j�	0

	 

g4

2�m	2 �ln�2 sin’� � i��: (3.40)

Concerning the terms proportional to � we have

A 1
�d�’� 	

4i�g4

m	2

Z d2k
�2��2

�
�p1 ^ k��p3 ^ k��p1 
 p3� ^ k

�k
 p1�
2�k
 p3�

2�k2 
 p2 
 i��

	 

i�g4 sin�’=2�

m	2

Z �2

0

dk2

�2��2

�
jkjjpj�I1 
 2 cos�’�I1 � I3�

�k2 
 p2 
 i��

	 

i ��g4 sin’

2�m	2 �i�� 1� 2 ln�2 sin�’=2��;

(3.41)

and
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A 2
�d�’� 	

4i�g4

m	2

Z d2k
�2��2

�
�p1 ^ k��p3 ^ k��p1 � p3� ^ k

�k� p1�
2�k
 p3�

2�k2 
 p2 
 i��

	
i�g4 cos�’=2�

m	2

Z �2

0

dk2

�2��2

�
jkjjpj�I03 
 I01 
 2 cos�’�I01�

�k2 
 p2 
 i��

	
i ��g4 sin’

2�m	2 fi�� 1� 2 ln�2 cos�’=2��g:

(3.42)

Adding these contributions, we obtain

A �d�’� 	 A1
�d�’� �A2

�d�’�

	 

i ��g4 sin’

�m	2 ln
�
tan

�
’
2

��
: (3.43)

Therefore, the total amplitude for the box graph is
finite and, up to order ��, is given by

Ad�’� 	 

g4

2�m	2 �ln�2 sin’� � i��



i ��g4 sin’

�m	2 ln
�
tan

�
’
2

��
: (3.44)

Summing all the contributions, we get the total one-
loop amplitude
A1-loop�’� 	 Ap
1-loop�’� �Anp

1-loop�’� �Ad�’�

	 

2ig2

m	
cot’�

2 ��g2

m	

 2�


ig4

2m	2 
 4im�2 �
9g4

4�m	2 �

�
2g4

�m	2 

8m�2

�

��
ln
� ��
2

�
� "

�

�

�
3g4

2�m	2 

4m�2

�

�
ln�2 sin’� �

i ��g4 sin’

�m	2 ln
�
tan

�
’
2

��
�O� ��2�: (3.45)
Notice the logarithmic singularity at �� 	 0. This is an
example of the aforementioned transmutation of ultravio-
let singularities into infrared ones. Had we used � just
as a regularization parameter then a fortiori we
should remove such singularity which implies that
� 	 ��g2=2m	�.
IV. CONCLUSIONS

In this work we studied the nonrelativistic and non-
commutative theory of scalar particles minimally
coupled to a CS field and also subject to a quartic self-
interaction. In opposition to the commutative case, the
ultraviolet renormalizability of the model does not re-
quire the presence of the quartic self-interaction of the
scalar field. However, the inclusion of a gauge invariant
self-interaction is obligatory if a smooth commutative
limit is demanded. In fact, the complete elimination of
both ultraviolet and infrared singularities occurs only for
a critical value, � 	 ��g2=2m	�, of the gauge invariant
quartic self-interaction. For small values of � there are
corrections which modify qualitative and quantitative
aspects of the commutative AB effect, as should be ex-
pected due to the nonlocal character of the noncommu-
tative interaction. In the tree approximation and to first
order in the noncommutative parameter the correction to
the two body scattering is isotropic. This is in qualitative
accord with the results of holonomy calculations [6,7].
However, in various aspects our result differs from [7].
For example, except for the special values of the quartic
self-coupling, � 	 ��g2=2m	�, our scattering amplitude
is not analytical for small �. Furthermore, for small
-8
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scattering angle ’, the noncommutative correction found
by us shows a ’ ln’ dependence. These features are not
present in [7] and may be traced to the use of different
formalisms. In fact, due to the inherent nonlocality of the
noncommutative situation different results may arise
from the use of otherwise equivalent procedures [14].
APPENDIX: INTEGRALS

We evaluate the following integrals

In 	
Z 2�

0
d'

cos�n'�
�2 cos�'
 ’=2� 
 f��2 cos�'� ’=2� 
 f�

	
2�

B� sin�’=2�
��������������
f2 
 4

p
�
Zn
1

 sin

�
�n� 1�

’
2

�

�Zn�1

 sin

�
�n
 1�

’
2

��
; (A1)

In 	
Z 2�

0
d'

cos�n'�
�2 cos�'
 ’=2� 
 f��2 cos�'� ’=2� � f�

	 

��1� �
1�n�

2 cos�’=2�B


��������������
f2 
 4

p
�
Zn
1

 cos

�
�n� 1�

’
2

�

�Zn�1

 cos

�
�n
 1�

’
2

��
; (A2)

I0n 	
Z 2�

0
d'

sin�n'�
�2 cos�'
 ’=2� 
 f��2 cos�'� ’=2� � f�

	 

��1
 �
1�n�

cos�’=2�B


��������������
f2 
 4

p
�
Zn
1

 sin

�
�n� 1�

’
2

�

�Zn�1

 sin

�
�n
 1�

’
2

��
; (A3)
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where

Z 	 exp�i'� and W 	 exp�i’=2�; (A4)

Z� 	 1
2

�
f�

��������������
f2 
 4

q �
; (A5)

B� 	 f2 
 2�1� cos’�; f 	
k2 � p2

jkjjpj
: (A6)

For n 	 0, 1, 2, and 3 these formula furnish

I0 	
2�f

B�

��������������
f2 
 4

p ; I0 	 

2�f

B


��������������
f2 
 4

p ; I00 	 0;

(A7)

I1 	
2 cos�’=2�I0

f
; I1 	 0;

I01 	 

4� sin�’=2�

B


��������������
f2 
 4

p ;
(A8)

I2 	 I0 

�f��������������
f2 
 4

p � �; I2 	 
I0 

�f��������������
f2 
 4

p � �;

I02 	 0; (A9)

I3 	
�
1� B� 


B�f2

2

�
I1 � 2� cos�’=2�f; I3 	 0;

I03 	 


�
1� B
 


B
f
2

2

�
I01 � 2� sin�’=2�f:

(A10)
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