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Analytical approximations for h’2i of a quantized scalar field in ultrastatic asymptotically flat
spacetimes are obtained. The field is assumed to be both massive and massless, with an arbitrary
coupling � to the scalar curvature, and in a zero or nonzero temperature vacuum state. The expression
for h’2i is divided into low- and high-frequency parts. The expansion for the high-frequency
contribution to this quantity is obtained. This expansion is analogous to the DeWitt-Schwinger one.
As an example, the low-frequency contribution to h’2i is calculated on the background of the small
perturbed flat spacetime in a quantum state corresponding to the Minkowski vacuum at the asymptotic.
The limits of the applicability of these approximations are discussed.
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I. INTRODUCTION

The investigations of black hole evaporation and par-
ticle production by an expanding universe have acted as a
stimulus for a detailed and systematic investigation of the
theory of quantum fields propagating on curved space-
times. The main objects to calculate from quantum field
theory in curved spacetime are the quantities h’2i and
hT�� i where ’ is the quantum field and T�� is the stress-
energy tensor operator for ’. The renormalized stress-
energy tensor hT�� i is an important quantity for the
construction of a self-consistent model of an evaporating
black hole, while the mean-square field h’2i plays a role
in the study of theories with spontaneous symmetry
breaking. The functional dependence hT�� i on the metric
g�� allows us to study the evolution of the background
geometry driven by the quantum fluctuation of the matter
fields propagating on it. This is the so-called backreac-
tion, governed by the semiclassical Einstein equations

G�
� � 8�hT�� i: (1)

However, the exact results for h’2i and hT�� i in four
dimensions are not numerous (see, for example, [1]).
Numerical computations of these quantities are as a
rule extremely intensive [2–4].

One of the most widely used techniques to obtain
information about these quantities is the DeWitt-
Schwinger (DS) expansion [5]. It may be used to give
the expansions for h’2i and hT�� i in terms of powers of the
small parameter

1

mL
� 1; (2)

where m is the mass of the quantized field and L is the
characteristic scale of change of the background gravita-
tional field [6].
address: popov@kspu.kcn.ru

04=70(8)=084047(7)$22.50 70 0840
The analytical approximations to h’2i and hT�� i for the
conformally coupled massless fields [3,4,7–12] give good
results. Nevertheless, there still remains the problem of
the extension of this type of approximations’ applicability
limits. If the quantum field is massive but the mass of
the field does not satisfy the condition (2) the analyti-
cal approximations to h’2i and hT�� i are even less numer-
ous [3,4,11–14].

In this paper, approximate expressions for h’2iren of a
quantized scalar field in ultrastatic asymptotically flat
spacetimes are derived. The field is assumed to be either
massless or massive with an arbitrary coupling � to the
scalar curvature R, and in a zero or nonzero temperature
vacuum state. The expression for h’2iren is divided into
low- and high-frequency parts. The Bunch-Parker ap-
proach [15] is used for the derivation of high-frequency
contributions (HFC) to these quantities. As in the case of
a massless field the quantum state of the field with mass
m� 1=L is essentially determined by the topology of
spacetime and the boundary conditions. In this paper such
dependence is determined by the low-frequency contri-
bution (LFC). As an example, this contribution is calcu-
lated on the background of the small perturbed flat
spacetime in a quantum state corresponding to the
Minkowski vacuum at the asymptotic.

The paper is organized as follows. In Sec. II the ex-
pressions for the Euclidean Green’s function of a scalar
field with arbitrary mass and curvature coupling in a
ultrastatic spacetime is divided into low- and high-
frequency parts. In Sec. III the WKB approximation of
the high-frequency contribution to h’2i is derived. The
low-frequency contribution is derived and the renormal-
ization procedure is described in Sec. IV. The results are
summarized in Sec. V. In the Appendix the expanding of
the renormalization counterterm for h’2i in the powers
of the coordinate difference of the separated points
is described. The units �h � c � G � kB � 1 are used
throughout the paper. The sign conventions are those of
Misner, Thorne, and Wheeler [16].
47-1  2004 The American Physical Society
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II. GREEN’S FUNCTION

The metric in the Euclidean section for an ultrastatic
spacetime is given by

ds2 � d�2 � gabdx
adxb; (3)

where � � it is the Euclidean time, and gab are arbitrary
functions of spatial coordinates x1, x2, and x3. (Latin
indices run from 1 to 3; Greek indices run from 0 to 3.)

In this paper, the point-splitting method is employed
for the regularization of ultraviolet divergences.When the
points are separated one can show that

h’2iunren � GE�x
�; ~x��: (4)

The Euclidean Green’s function GE is a solution of the
equation

��x 	m2 	 �R�xa�
GE�x�; ~x�� � 	
���; ~����3��xa; ~xb�����������������

g�3��xa�
q ;

(5)

where m is the mass of the scalar field, � is its coupling
to the scalar curvature R�xa�, and g�3��xa� �
detgab�x

1; x2; x3�.
084047
If the scalar field is at zero temperature then ���; ~�� and
GE�x

�; ~x�� can be expanded as

���; ~�� �
1

2�

Z �1

	1
d!ei!��	~��; (6)

GE�x
�; ~x�� �

1

2�

Z �1

	1
d!ei!��	~�� ~GE�!; x

a; ~xb�: (7)

If the field is at temperature T, then the Green’s function
is periodic in �	 ~� with period 1=T. In this case ���; ~��
and GE�x�; ~x�� have the expansions

���; ~�� � T
X1

n�	1

exp�i!n��	 ~��
; (8)

GE�x�; ~x�� � T
X1

n�	1

exp�i!n��	 ~��
 ~GE�!n; xa; ~xb�;

(9)

where !n � 2�Tn. In both cases ~GE�!; x
a; ~xb� satisfies

the equation
1���������������
g�3��xc�

q @
@xa

� ���������������
g�3��xc�

q
gab�xc�

@

@xb
~GE�!; x

a; ~xb�
�
	 �!2 �m2 � �R� ~GE�!; x

a; ~xb� � 	
��3��xa; ~xb�����������������
g�3��xa�

q : (10)
In the case m� 1=L, where L is a characteristic scale of
the variation of the background gravitational field, it is
possible to construct the iterative procedure of the solu-
tion of this equation with the small parameter 1=mL
[5,15]. This procedure gives the standard expansion of
h’2iunren in terms of the powers of mL.

In the case

m &
1

L
(11)

a small parameter of the iterative procedure does not
exist. Nevertheless, let us divide GE into low- and high-
frequency parts, as was done in [12],

GE�x�; ~x�� � GLFC
E �x�; ~x�� �GHFC

E �x�; ~x��; (12)

where

GLFC
E �x�; ~x�� �

1

�

Z 1= 0

0
d! cos�!��	 ~��
 ~GE�!; xa; ~xb�;

(13)

GHFC
E �x�; ~x�� �

1

�

Z 1

1= 0
d! cos�!��	 ~��
 ~GE�!; x

a; ~xb�;

(14)

if the scalar field is at zero temperature and
GLFC
E �x�; ~x�� � T ~GE�0; x

a; ~xb� � 2T
Xn0	1

n�1

cos�!n��	 ~��



 ~GE�!n; xa; ~xb�; (15)

GHFC
E �x�; ~x�� � 2T

X1
n�n0

cos�!n��	 ~��
 ~GE�!n; x
a; ~xb�

(16)

if the field is at temperature T. Then the expansion of
GHFC

E �x�; ~x�� in terms of the powers of a small parameter

"WKB �
 0

L
� 1 (17)

can be obtained by the analogy with the methods of
evaluation of the DeWitt-Schwinger expansion. If the
field is at temperature T then

 0 �
1

2�Tn0
(18)

and

"WKB �
1

2�Tn0L
� 1: (19)
-2
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Below the main points of the Bunch and Parker approach
[15] for obtaining GHFC

E �x�; ~x�� are outlined.
III. HIGH-FREQUENCY CONTRIBUTION TO h’2i

Let us introduce Riemann normal coordinates ya in 3D
space with the origin at the point ~xa [17]. In these coor-
dinates one has

gab�y
a� � #ab 	

1
3Racbdy

cyd �O�y3�; (20)

gab�ya� � #ab � 1
3R

a b
c dy

cyd �O�y3�; (21)

g�3��ya� � 1	 1
3Raby

ayb �O�y3�; (22)

where the coefficients here and below are evaluated at
ya � 0 (i.e., at the point ~xa), and #ab denotes the three-
dimensional Euclidean metric. All indices are raised and
lowered with the metric #ab. Defining G�!; ya� by

G�!; ya� �
�������������
g�3��y�

q
~GE�!; y

a� (23)

and retaining in (10) only terms with coefficients involv-
ing two derivatives of the metric or fewer one finds that
G�!; ya� satisfies the equation

#ab
@2G

@ya@yb
	!2G�

1

3
Rabcdy

cyd
@2G

@ya@yb
	

�
m2 �

�
�	

1

3

�
R
�
G � 	��3��y�:

(24)

Note that quantities Rabcd, Rab, and R evaluated in metric
(3) and those evaluated in 3D metric gab coincide. Let us
present

G�!; ya� � G0�!; y
a� �G1�!; y

a� �G2�!; y
a� � � � � ;

(25)

where Gi�!; ya� has a geometrical coefficient involving i
derivatives of the metric at point ya � 0. Then these
functions satisfy the equations

#ab
@2G0�!; y

a�

@ya@yb
	!2G0�!; ya� � 	��3��y�; (26)

#ab
@2G1�!; ya�

@ya@yb
	!2G1�!; y

a� � 0; (27)

#ab
@2G2�!; y

a�

@ya@yb
	!2G2�!; ya��

1

3
Ra bc dy

cyd
@2G0�!; y

a�

@ya@yb
	

�
m2 �

�
�	

1

3

�
R
�
G0�!; ya� � 0: (28)
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The function G0�!; y
a� satisfies the condition

Ra bc dy
cyd

@2G0�!; ya�

@ya@yb
	 Raby

b @G0�!; ya�
@ya

� 0; (29)

since G0�!; ya� is the function only of #abyayb [15].
Therefore Eq. (28) may be rewritten

#ab
@2G2�!; ya�

@ya@yb
	!2G2�!; y

a��

1

3
Raby

b @G0�!; y
a�

@ya
	

�
m2 �

�
�	

1

3

�
R
�



G0�!; y
a� � 0: (30)

Let us introduce the local momentum space associated
with the point ya � 0 by making the 3-dimensional
Fourier transformation

G i�!; y
a� �

ZZZ�1

	1

dk1dk2dk3
�2��3

exp�ikay
a�Gi�!; k

a�: (31)

It is not difficult to see that

G 0�!; k
a� �

1

k2 �!2 ; (32)

G 1�!; k
a� � 0; (33)

where k2 � #abkakb. In momentum space Eq. (30) gives

	�k2 �!2�G2�!; k
a� 	

1

3
Rabka

@G0�!; ka�
@kb

	

�m2 � �R�G0�!; k
a� � 0: (34)

Hence

G 2�!; k� �
	m2 	 �R

�k2 �!2�2
�

2

3

Rabkakb
�k2 �!2�3

: (35)

Substituting (31)–(33) and (35) in (25) and integrating
leads to

G�!; ya� �
ZZZ�1

1

dk1dk2dk3
�2��3

exp�ikaya�
�

1

k2 �!2

	
�m2 � �R�

�k2 �!2�2
�

2Rabkakb
3�k2 �!2�3

�

�
1

8� exp�j!jy�

�
	m2 	 ��	 1=6�R

j!j
�

2

y

	
Raby

ayb

6y

�
; (36)

where y �
�����������������
#abyayb

p
. Using the definition of G�!; ya�

(23) and expansion (22) one finds
-3
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~GE�!; ya� �
�
1�

1

6
Rabyayb

�
G�!; ya�

�
1

8� exp�j!jy�

�
	m2 	 ��	 1=6�R

j!j
�

2

y

�
Rabyayb

6y

�
: (37)

The necessary condition for the validity of this approxi-
mation is

!>
1

 0
�

1

L
: (38)

Hence one can evaluate GHFC
E if the field is at zero tem-

perature

ARKADY A. POPOV
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GHFC
E ���; ya� �

1

�

Z 1

1= 0
d! cos�!��
 ~GE�!; ya�

�
1

8�2


�
m2 �

�
�	

1

6

�
R
��
C�

1

2


 ln

���������y
2 � ��2�

 20

��������
�
	

2

y 0
�

1

 20

�
2

�y2 ���2�
�

Rabyayb

6�y2 � ��2�

�
; (39)

where C is Euler’s constant, and �� � �	 ~�.
If the field is at temperature T then the necessary

condition for the validity of expression (37) is

n � n0 �
1

2�TL
(40)

and
GHFC
E ���;ya� � 2T

X1
n�n0

cos�!n��
 ~GE�!n;x
a; ~xb� �

1

8�2


�
m2 �

�
�	

1

6

�
R
��
C�

1

2
lnj�y2 ���2��2�T�2j� �n0�

�

	2�T
�
n0 	

1

2

�
2

y
��2�T�2

�
n20 	n0 �

1

6

�
�

2

�y2 ���2�
�

Rabyayb

6�y2 ���2�

�
; (41)
where  �z� is the logarithmic derivative of the gamma
function (i.e., the digamma function). The Plana sum
formula [18] has been used to compute the sums over n
in the last expression.

IV. LOW-FREQUENCY CONTRIBUTION TO h’2i
AND RENORMALIZATION PROCEDURE

The behavior of low-frequency modes is determined by
the boundary conditions and the topological structure of
the spacetime. As an example, let us consider the evalu-
ation of the low-frequency contribution to h’2i on the
background of the small perturbed flat spacetime in a
quantum state corresponding to Minkowski vacuum at
the asymptotic. If the characteristic scale of the gravita-
tional field inhomogeneity  satisfies the condition

 
 0

� 1 �or  Tn0 � 1�; (42)

the low-frequency contributions to h’2i can be expanded
in terms of the powers of this small parameter. Below the
zeroth-order term of this expansion will be used for the
approximation of the low-frequency contributions to
h’2i. This means that we choose the long-wave modes
approximately coincident with long-wave modes of
Minkowski vacuum. For these modes in a zero tempera-
ture quantum state
GLFC
E ���; ya� �

1

�2��4
Z 1= 0

	1= 0
d!

ZZZ1
	1

d3p
exp�i!��� ip*y*�

�!2 � p2
1 � p2

2 � p2
3 �m2�

�
1

4�3

Z 1= 0

	1= 0
d!ei!��

Z 1

0
dp

p sin�py�

y�!2 � p2 �m2�

�
1

8�2

Z 1= 0

	1= 0
d!ei!��

exp�	y
�������������������
!2 �m2

p
�

y
: (43)

In the limit ��! 0, y! 0

GLFC
E ���; ya� �

1

8�2

Z 1= 0

	1= 0
d!ei!��

�
1

y
	

�������������������
!2 �m2

p
�O�y�

�

�
1

8�2

�
2
sin���= 0�

y��
	

1

 0

������������������
1

 2
0

�m2

s
	m2 ln

��������1= 0 �
�����������������������
1= 2

0 �m2
q
m

���������O�y�
�
: (44)

If we take into account conditions (11) and (17), i.e.,
-4
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m�
1

 0
; (45)

then

GLFC
E ���; ya� �

1

8�2



2

y 0

�
1	O

�
��2

 2
0

��
	

1

 20
	
m2

2

�
1� ln

�������� 4

 20m
2

���������O� 2
0m

2�

��
�O

�
 2

 40

�
: (46)

The analogous calculations for the temperature quantum state give

GLFC
E ���; ya� � T ~GE�0; y

a� � 2T
Xn0	1

n�1

cos�!n��
 ~GE�!n; y
a�

�
1

8�2



2�T

�
n0 	

1

2

�
2

y
�1	O�T2n20��

2�
 	 �2�T�2�n20 	 n0� 	
m2

2

�
1	

1

n0

� ln

��������4�2�T�
2n20

m2

���������O�m2T2n20�
��

�O� 2T4n40�: (47)

The renormalization of h’2iunren is achieved by subtracting the renormalization counterterm [19] and then letting
~x� ! x�

h’2iren � lim
~x�!x�

�h’2iunren 	 h’2iDS
; (48)

where

h+2iDS �
1

8�2,
�

1

8�2

�
m2 �

�
�	

1

6

�
R
��
C�

1

2
ln
�
m2

DSj,j
2

��
	

m2

16�2 �
1

96�2 R��
,�,�

,
; (49)

, is one-half the square of the distance between the points x and ~x along the shortest geodesic connecting them, ,� is
the covariant derivative of ,, and the constant mDS is equal to the mass m of the field for a massive scalar field. For a
massless fieldmDS is an arbitrary parameter due to the infrared cutoff in h’2iDS. A particular choice of the value ofmDS

corresponds to a finite renormalization of the coefficients of terms in the gravitational Lagrangian and must be fixed by
experiment or observation. The details of the calculations of h+2iDS are discussed in the Appendix:

h+2iDS �
1

8�2



2

y2 � ��2
�

�
m2 �

�
�	

1

6

�
R
��
C�

1

2
ln
�
m2

DS

4
jy2 � ��2j

��
	
m2

2
�

Raby
ayb

6�y2 �4�2�

�
: (50)

V. RESULTS

Using Eqs. (4), (12), (39), (46), (48), and (50) one finds

h’2iren � lim
��!0
y!0

�GLFC
E ���; ya� �GHFC

E ���; ya� 	 h’2iDS
 �
R

16�2

�
�	

1

6

�
ln

�������� 4

 20m
2
DS

���������O
�
"2WKB

L2

�
�O

�
 2

 40

�
: (51)

If the field is at temperature T then

h’2iren �
R

16�2

�
�	

1

6

��
ln

��������4�2�T�
2

m2
DS

���������2 �n0�
�
�

�2�T�2

48�2 �
m2

8�2

�
 �n0� 	 ln�n0� �

1

2n0

�
�O

�
"2WKB

L2

�
�O� 2T4n40�: (52)
Let us cite the conditions of the validity of expressions
(51) and (52) once more:

m &
1

L
; (53)

 �  0 � L
�
or  �

1

2�Tn0
� L

�
: (54)
084047
If also

n0 � 1; (55)

the digamma function  �n0� is given by

 �n0� � ln�n0� 	
1

2n0
�O

�
1

n20

�
: (56)
-5
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Hence the expression (52) can be rewritten as

h’2iren �
R

16�2

�
�	

1

6

�
ln

��������4�2�T�
2n20

m2
DS

����������2�T�2

48�2

�O
�

1

n0L2

�
�O

�
"2WKB

L2

�
�O� 2T4n40�: (57)

The presence of the arbitrary parameter  0 in the
expression (51) is a generic feature of local approximation
schemes [3,4,10–12,14,20]. For a conformally invariant
field this parameter can be absorbed into the definition of
constant mDS.

Note that the approximation which corresponds to the
analytical approximation of Anderson, Hiscock, and
Samuel [3] for h’2i in the case of ultrastatic asymptoti-
cally flat spacetime can be obtained by one use of the
high-frequency approximation of ~GE�!; ya� [see Eq. (37)]
for all the values of !. However the use of the high-
frequency approximation of ~GE�!; ya� for !� 1= 0
does not seem obvious. Nevertheless, in the case of a
conformally coupled massless field such a procedure
gives good results in the asymptotically flat region
[3,4,10,14].

APPENDIX

In this Appendix the expanding of h+2iDS in powers of
x* 	 ~x* is described.

Let points P�x� and ~P�~x� be connected by the shortest
geodesic x* � x*�s�, where s is the canonical parameter.
The functions x*�s� can be expanded in the Taylor series
about point ~P�~x�:

x* � ~x* �
1

1!

dx*

ds
�s�

1

2!

d2x*

ds2
��s�2 �

1

3!

d3x*

ds3
��s�3

�O���s�4�; (A1)
084047
where the coefficients are evaluated at ~P�~x�. Using the
geodesic equation

d2x*

ds2
� '*./

dx.

ds
dx/

ds
� 0; (A2)

one finds

d3x*

ds3
� �	@/'

*
,. � 2'*,�'

�
./�

dx,

ds
dx.

ds
dx/

ds
; (A3)

where @/ denotes the partial derivative with respect to x/.
Hence Eq. (A1) can be rewritten

x* � ~x* �
1

1!
u*�s�

1

2!
�	'*./u

.u/���s�2 �
1

3!


 �	@/'
*
,. � 2'*,�'

�
./�u

,u.u/��s�3 �O���s�4�;

(A4)

where u* � dx*=ds. This equation can be inverted

u*�s � 1* � 1
2'

*
/.1

/1. � �16'
*
,�'

�
./ �

1
6@/'

*
,.�1

,1.1/

�O�14�; (A5)

where 1* � x* 	 ~x*. If we use determinations ,� and ,
[21], we can write

,�x; ~x� � 1
2g*.u

*u.��s�2

� 1
2g*.1

*1. � 1
2g*.'

*
/�1

.1/1�

�1
6g*.'

*
/�'

�
"21.1/1"12

�1
6g*.�@"'

*
/��1

.1/1�1"

�1
8g*.'

*
/�'

.
"21/1�1"12 �O�15�: (A6)

Hence the resulting expression for h’2iDS is
h’2iDS �
1

4�2

�
1

g*.1
*1.

	
g*.'*/�1

.1/1�

�g*.1
*1.�2

	

�
1

3
g*.'*/�'

�
"2 �

1

3
g*.@2'*/" �

1

4
g*�'*./'

�
"2

�
1.1/1"12

�g*.1
*1.�2

�
�g*.'

*
/�1

.1/1��2

�g*.1*1.�3

�
�
m2 � ��	 1

6�R

8�2

�
C�

1

2
ln
�
m2

DS

4
jg*.1

*1.j
��

	
m2

16�2 �
1

48�2

R*.1*1.

g*.1*1.
�O�1�:

(A7)
In coordinates �; ya, ya are the Riemann normal coordi-
nates with their origin at the point ~xa in 3D space.

10 � ��; 1a � ya: (A8)

At point ~P in these coordinates also [17]

'*./ � 0 (A9)
and

g*.�@2'
*
/��1

.1/1�12 �
#ab
6

�Racde � Radce�y
bycydye � 0:

(A10)

After the substitution of these expressions into (A7) one
finds that h’2iDS has the form (50).
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