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Gyrating strings: A new instability of black strings?
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A thermodynamic argument is presented suggesting that near-extremal spinning D1-D5-P black
strings become unstable when their angular momentum exceeds Jcrit � 3Q1Q5=2

���
2

p
. In contrast, the

dimensionally reduced black holes are thermodynamically stable. The proposed instability involves a
phase in which the spin angular momentum above Jcrit is transferred to gyration of the string in space,
i.e., to orbital angular momentum of parts of the string about the mean location in space. Thus the
string becomes a rotating helical coil. We note that an instability of this form would yield a counter-
example to the Gubser-Mitra conjecture, which proposes a particular link between dynamic black
string instabilities and the thermodynamics of black strings. There may also be other instabilities
associated with radiation modes of various fields. Our arguments also apply to the D-brane bound states
associated with these black strings in weakly coupled string theory.
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1In addition, the microscopic entropy of such objects in string
theory was computed in [16] using methods from the corre-
I. INTRODUCTION

Black holes remain one of the most intriguing objects
in general relativity and are known for their simplicity
and stability. Above 3� 1 dimensions, gravity can pro-
duce not only black holes, but also extended black objects
such as strings and p-branes. In many ways, these ex-
tended black objects behave like their black hole cousins.
Indeed, the most familiar examples of black strings and
branes have translational symmetries, and dimensional
reduction along these symmetries yields black hole solu-
tions to lower dimensional theories.

However, properties of black branes can sometimes
differ significantly from those of the associated black
holes. The Gregory-Laflamme instability [1–3] is a clas-
sic example of such behavior. In [1] it was shown that
certain black strings are dynamically unstable to a break-
ing of translational (but not rotational) symmetry along
the string. The ultimate fate of this instability remains a
matter of investigation, but conjectures [4] as to this fate
have led to the discovery of inhomogeneous black strings
[5] (though these solutions cannot be the endpoint of the
Gregory-Laflamme instability, at least in d � 13 dimen-
sions [6]; see also [7]) and related work on dynamics [8].

The general theory of such instabilities remains to be
understood. An oft-discussed conjecture in this context
was stated by Gubser and Mitra [9], who proposed that
black branes might have dynamical instabilities precisely
when they have thermodynamic instabilities, in the sense
that the Hessian of second derivatives of the energy with
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respect to the conserved charges has negative eigenvalues.
This conjecture has been proven in certain contexts [10].

Here we argue for an instability which places a new
twist on such discussions. We examine the three-charge
(D1-D5-P) spinning black brane of type IIB supergravity
that saturates the Bogomol’nyi-Prasad-Sommerfield
(BPS) bound, which becomes a 5� 1 black string when
compactified on T4. When compactified along the remain-
ing translation symmetry and dimensionally reduced to
4� 1 dimensions, the resulting black hole is dual to that
studied in [11] by Breckenridge, Myers, Peet, and Vafa
and is a rotating version of the black hole whose entropy
was counted [12] by Strominger and Vafa using D-brane
techniques. As in the works above, we take the direction
along the string to be compactified in a circle of length L
in order to yield finite charges. The near-extremal solu-
tion was studied in [13–15]. In particular, from the results
of [14] one can show that it has no thermodynamic
instabilities in the sense of Gubser and Mitra.1 Thus their
conjecture predicts dynamical stability.2

However, this theory contains other BPS black strings
carrying the same charges. In particular, strings were
described in [17] in which all or part of the angular
momentum is carried by gyrations of the string as op-
posed to spin. In such solutions the black string at any
instant of time can be thought of as being helical in space,
spondence between string theory on anti-de sitter space and the
associated conformal field theory.

2However, as will be discussed later, there is one direction
which the system is thermodynamically only marginally stable.
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with the helical profile traveling along the string at the
speed of light. Such solutions are easily generated by
applying the technique of Garfinkle and Vachaspati [18]
to the spinning strings of [11]. In fact, the shape of such
gyrations need not be a helix but can be much more
general. As a result, the space of such BPS black branes
is highly degenerate; for fixed charges, one must still
specify several functions on a circle in order to determine
the solution uniquely. Oscillating versions of similar
strings had previously been constructed in [19–22].

Below we study the general gyrating Breckenridge,
Myers, Peet, and Vafa string with antiself dual angular
momentum and find that, for large enough angular mo-
mentum (J > Jcrit � 3Q1Q5=2

���
2

p
) it is entropically favor-

able for the excess angular momentum J� Jcrit to be
carried by gyrations. In particular, maximizing the en-
tropy S over the class of solutions carrying antiself dual
spin angular momentum Jspin and antiself dual gyrational
angular momentum Jgyro, we find that for J > Jcrit the
entropy S is an increasing function of Jgyro on the interval
�0; J� Jcrit�, with positive slope for 0 � Jgyro < Jcrit. This
indicates a first order phase transition and suggests that a
small perturbation of a nongyrating black string could
grow to become large, i.e., it suggests an instability of the
black string3 in the same way that supercooled water is
unstable to the formation of ice and superheated water is
unstable to boiling.

Some useful details of the solutions are described in
Sec. II below, as they were suppressed in [17]. Section III
then assembles the argument and comments on the im-
portance of small deviations from extremality. We also
discuss two possible scenarios for the final fate of this
instability. Section IV contrasts our situation with that
associated with super-radiance, observes that an analo-
gous argument holds for the D-brane bound states asso-
ciated with our black strings in weakly coupled string
theory, and makes further final comments.
II. THE GYRATING BLACK STRING

Consider a D1-D5-P black brane solution which is
asymptotically R5 � S1 � T4. We will think of the T4 as
being small so that the solution is effectively a black
string in 5� 1 dimensions. For a translationally invariant
brane, the ten-dimensional type IIB supergravity solution
is
3The discussion in [17] explicitly focussed on the case where
the gyrations are small enough that the object could be well
described via dimensional reduction to a black hole. In such
cases, it was shown that the effect of gyrations on the black
string entropy is negligible. However, the gyrating string has
significantly larger entropy only when J� Jcrit is of order J,
and in this case the oscillations are necessarily large.
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The index a runs over the four directions of the T4 and i
runs over the four space directions transverse to the
branes. These latter four directions are associated with
an S3 labeled by constant values of r2 �

P
ix
ixi. The

angles �;’;  label this S3, while the coordinates z; t label
the worldvolume directions of the string. Here we have
chosen the special case where D1- and D5-brane charges
are tuned to achieve constant dilaton and four-torus
volume, so that (2.1) is the metric in either the string or
Einstein frame. In particular, the D1- and D5-charges are

Q1 �
Vr20

	2�
4g
; Q5 �

r20
g
; (2.2)

where g is the string coupling and V is the volume of the
four-torus. This solution has a null Killing vector field
@=@v, so one may attempt to add travelling waves via the
method of [18]. It turns out that there are many interest-
ing such waves for this system, which were studied ex-
tensively in [17,22,23] following similar work of [19–21]
for other systems.

We are interested here in the class of waves briefly
discussed in [17] which can be viewed as gyrations of
the brane itself in the xi directions. Such solutions differ
from (2.1) only by the addition of a term proportional to
�hi	u
x

idu2, where hi are arbitrary functions of u:
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(2.3)

After the change of coordinates

v0 � v� 2 _hixi �
Z u

_h2du; (2.4)

x0i � xi � hi; (2.5)

asymptotic flatness of the metric becomes manifest:
-2



4However, a mild null shock-wave singularity does form
along the horizon. The metric is C0 at the horizon (so that, in
particular, its area is well-defined) but it is not C1. One expects
that any amount of excitation above the BPS bound will smooth
out this singularity, though the resulting solution is unlikely to
be stationary. See the appendix of [23] for details of the
extreme solutions.
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where �i � xi � hi. Note that the black string horizon is
located at xi � hi	u
 in the new coordinates, suggesting
that the string is indeed oscillating in the xi directions.
Following [17], we have in mind circular oscillations of
the type associated with a net angular momentum and we
refer to gyrations of the string in the xi directions.

The conserved linear and angular momenta of the
gyrating black string can be read off from the asymptotic
form of (2.6). The results are as follows:

P �
Lp

%2 � Pgyro; Pgyro �
2r20
%2

Z L

0

_h2du; (2.7)

J&  J12 � Jgyro12 �
L�

%2
; (2.8)

J  J34 � Jgyro34 �
L�

%2
; (2.9)

Jgyroij �
2r20
%2

Z L

0
	hi _hj � hj _hi
du: (2.10)

Here %2 � 	2�
5g2=V. Note that the expressions for Pgyro

and Jgyroij are identical to those of a material string with
tension 2r20=%

2.
Now, for any string the gyrational angular momentum

is bounded by a linear function of gyrational momentum.
This result may be derived in several ways. For example,
one might note that the expressions for Pgyro and Jgyro
have the same form as those of [24] for the angular
momentum and charge of a supertube. Applying their
argument here yields jJ12j �

PgyroL
2� . Another argument

notes that quantizing the string will yield vector parti-
cles, each carrying spin �1. Thus, the angular momen-
tum must be bounded by the number Ngyro � PgyroL=2�
of associated momentum quanta.

However, requiring our angular momentum to be anti-
self dual is not compatible with saturating this bound. To
understand the additional constraint from antiself duality,
consider expression (2.10) for Jgyro for the case where only
a single wave number k � 2�n=L is excited so that hi
takes the form

hi � Ai cos	2�n=L
 � Bi sin	2�n=L
: (2.11)

The resulting gyrational momentum and angular momen-
084045
tum are

Jgyroij �
4�nr20
%2

	AiBj � BiAj
; (2.12)

Pgyro �
4�2n2r20
L%2

X
i

	AiAi � BiBi
: (2.13)

In particular, the angular momentum lies in the plane
defined by the vectors Ai and Bj. Thus, to obtain an
antiself dual Jij requires excitations in at least two mo-
mentum modes and, if achieved with only two modes,
requires the associated planes to be orthogonal.

Next, we note that Pgyro in (2.13) is proportional to n2

while Jgyroij is proportional only to n. Thus, if we wish to
maximize Jgyro for a given Pgyro, it is clear that we wish to
use the lowest modes possible. Thus, we do best if we use
only the n � 1 and n � 2 modes, say, with the funda-
mental mode carrying angular momentum J12 in the 12
plane while the n � 2 mode carries angular momentum
J34 in the 34 plane. For antiself duality we require J12 �
�J34. It is also clear from (2.12) that we wish to choose
the vectors Ai and Bi for any given mode to be orthogonal
but of the same magnitude. But then the extra power of n
in Pgyro implies that the n � 2 mode carries twice the
gyrational momentum as the n � 1 mode. Thus, the larg-
est antiself dual Jgyro is obtained by placing Ngyro=3
excitations in the fundamental (k � 1) mode of the string
and using them to carry J12 � Ngyro=3, while also placing
Ngyro=3 excitations in the k � 2 mode and using it to
carry J34 � Ngyro=3 and 2Ngyro=3 momentum quanta.

This configuration has Jgyro �
��
2

p

3 Ngyro units of angular
momentum. Other configurations with the same Jgyro,
Pgyro may be obtained through rotations that preserve
Jgyroij , but there are no configurations with greater antiself
dual angular momentum.
III. ENTROPY AND INSTABILITY

In [17] it was shown that adding such gyrations does
not affect the induced metric on the horizon, and, in
particular, that the area of the horizon does not change.4

Therefore, the entropy of the gyrating string has the same
form as that of the spinning D1-D5-P string [11], but with
the total momentum replaced by P� Pgyro and the total
angular momentum replaced by J� Jgyro. In terms of the
number of momentum quanta N � PL=2� and Ngyro �
-3
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PgyroL=2�, the result is

S � 2�
������������������������������������������������������������������
Q1Q5	N � Ngyro
 � 	J� Jgyro
2

q
: (3.1)

Given a gyrating black string with jJgyroj<
��
2

p

3 Ngyro, we
can always decrease Ngyro to obtain a solution with larger
entropy. Thus maximally entropic strings saturate this
bound to yield

S � 2�

�����������������������������������������������������������������������������
Q1Q5

�
N �

3���
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�
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2

s
: (3.2)

When the entropy is now maximized over Jgyro, the
absolute value in (3.2) leads to two distinct behaviors. For
J < Jcrit: �

3Q1Q5

2
��
2

p , the maximum is at Jgyro � 0. However,

for J > Jcrit, entropy is maximized for Jgyro � J� Jcrit
and thus Jspin � Jcrit.

We now use the above observations to argue for a new
type of black string instability. Namely, we suggest that
certain nongyrating spinning black strings are unstable to
the development of gyration for J > Jcrit. Now, one does
not expect BPS solutions to have a linear instability.5

Indeed, we have seen that they are marginally stable to
developing gyration, as any amount of gyration leads to a
stationary solution. That is, the parameter Jgyro effectively
labels a moduli space of BPS solutions.

However, a generic perturbation of the spinning string
will result in motion through this moduli space (as well as
some amount of excitation of the string off of the moduli
space). The important observation is that near Jgyro � 0
motion in the direction of increasing Jgyro is entropically
favored over motion in the direction of decreasing Jgyro.
In fact, we have seen that the entropy is maximized at
Jgyro � J� Jcrit, so that this value is entropically stable.
As one may expect6 this entropic stability to be enforced
dynamically, we conjecture that the gyrating string with
Jgyro � J� Jcrit is dynamically stable, perhaps due to
higher order dynamical effects beyond the linear level.
Similarly, we conjecture that the spinning nongyrating
string with J > Jcrit is dynamically unstable, perhaps due
to higher order effects.

Instead of considering BPS objects, one might consider
strings with energies slightly in excess of the BPS bound.
For a nearly BPS object with J substantially greater than
Jcrit, one expects a similar entropy formula and a similar
instability. In particular, if some form of continuity holds
then we have that:
(1) N
5For
work t
of no g

6Wer
forced
ear-BPS solutions can also be labeled by a pa-
rameter Jgyro. Since one expects non-BPS gyrating
static solutions, the BPS bound and the results of [25]
ogether to forbid linear instabilities. However, we know
eneral theorems for the stationary case.
e the horizons completely smooth, this would be en-
by the area theorem [26,27].

084045-4
strings to radiate, these solutions are unlikely to be
stationary. Their gyrating phase will be transient.
However, this means only that Jgyro will refer to
the gyrational angular momentum at some particu-
lar moment of time.
(2) T
he derivative @S
@Jgyro

will be positive at Jgyro � 0,
where the derivative is taken with all conserved
charges held fixed.
Thus, one expects a near-BPS nongyrating string with
J > Jcrit to be unstable to transfer of angular momentum
from spin to gyration.

It is interesting to speculate as to the final state into
which this string decays. There are two natural possibil-
ities. The first is that the string sheds its excess angular
momentum through classical radiation and eventually
becomes a stable nongyrating string with J � Jcrit. The
second is that the dominant effect is shedding of excess
energy and that the final state is a gyrating BPS string.
One might expect that either final state can arise and that
the outcome depends on the particular values of the
parameters. Note, however, that if we were to place the
unstable string in a small reflecting cavity, this would
prevent the loss of significant amounts of either E or J, so
that one would expect decay into a stable non-BPS gyrat-
ing black string. Because of the small domain and simple
boundary conditions, this might be a particularly inter-
esting arena for numerical simulations. It would also lead
to a clear signal: an equilibrium state that is far from
being rotationally invariant.

IV. DISCUSSION

We have argued for an instability of D1-D5-P near-
BPS black strings with J > Jcrit �

3Q1Q5

2
��
2

p . Note that such

strings exist only when the number N of momentum
quanta exceeds a certain bound: N � 9

8Q1Q5. Thus, like
the original Gregory-Laflamme instability, the instability
arises only for sufficiently long strings.

Now, the thermodynamics noted above might also be
taken to suggest an instability to simply radiating angular
momentum (and momentum) to infinity. In fact, this
latter sort of potential instability could in principle occur
at a smaller value of J, since gravitational waves can
carry more J for a given amount of P. It is natural to
take guidance from the study of 3� 1 dimensional Kerr
black holes, where one finds a similar thermodynamics:
Kerr black holes have an entropy that decreases with
increasing J. Thus, radiation of a small amount of energy
is allowed if it carries a large angular momentum. In the
case of Kerr one finds no instability for massless fields but
merely super-radiance: a given incident wave undergoes a
finite amount of amplification and then disperses to in-
finity. In contrast, a true linear instability does result
[28,29] if the black hole is surrounded by a large mirror
(or is placed in a large anti-de sitter space [30]) so that the
wave is continually redirected toward the black hole.
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However, an instability for Kerr can arise for massive
fields, which can be bound to the black hole by the
gravitational potential. Results are known for minimally
coupled scalar fields [31–34]. In our context, one may
expect radiation modes with momentum in the
z-direction (i.e., Kaluza-Klein modes) to behave simi-
larly, and our gyrational mode is much like such a bound
state. Indeed, in the non-BPS case it is not clear to us to
what extent it can be meaningfully distinguished from
such bound states. But while a study of such bound states
for non-BPS strings is difficult, it is clear the gyrational
mode is the unique such bound state in the BPS limit.
Since this limit will be important below, we focus on the
gyrational mode.

We have seen that gyrations cannot be reabsorbed into
the black string since @S

@Jgyro
> 0. Thus, such gyrations can

decay only through radiation to infinity. Whether or not a
linear instability occurs will then be determined by a
competition between two effects: the amplification of
the traveling wave and the tendency to radiate the gyra-
tional traveling wave to infinity. Both are expected to
vanish in the BPS limit. However, one expects the ampli-
fication to increase with J� Jcrit, while there is no reason
for this parameter to affect the rate at which the gyra-
tional traveling wave is radiated to infinity. Thus, one
expects that, at least by tuning parameters so that J�
Jcrit is large while the string remains nearly BPS, one can
indeed produce an instability.

Our argument is highly suggestive, but clearly falls
short of a proof. We have also described two possible final
states. The system clearly calls for more detailed inves-
tigation and may yield a variety of interesting phe-
nomena. In addition to those mentioned above, it may
also be fruitful to investigate relations between gyrating
black strings and black tubes or black rings [35–37].

Supposing now that an instability (of any type dis-
cussed above) does occur, let us briefly reflect on the
broader implications. An interesting attempt to under-
stand the general nature of black string instabilities is
encoded in the Gubser-Mitra conjecture of [9]. Quoting
from [9], this is the conjecture that ‘‘...for a black brane
with translational symmetry, a Gregory-Laflamme insta-
bility exists precisely when the brane is thermodynami-
cally unstable. Here, by Gregory-Laflamme instability
we mean a tachyonic mode in small perturbations of
the horizon; and by thermodynamically unstable we
mean that the Hessian matrix of second derivatives of
the mass with respect to the entropy and the conserved
charges or angular momenta has a negative eigenvalue.’’

This conjecture has been proven for a certain class of
black strings [10], but our system appears to be a counter-
example to the conjecture holding in complete generality.
Let us consider a slightly non-BPS spinning string with
J > Jcrit. We choose the non-BPS case as, with asymptoti-
cally flat boundary conditions, we expect gyrating strings
084045
to radiate so that non-BPS nongyrating strings will form
an isolated family in the space of stationary solutions.
Thus we may cleanly talk about ‘‘the entropy of the black
string with fixed conserved charges and angular mo-
menta.’’ Nearly BPS objects are generally thermody-
namically stable. The details of the nonextremal
solutions can be found in [14], and show that no insta-
bilities are present near extremality. Our discussion above
suggests a dynamical instability and thus a counter-
example to the above conjecture. However, it should be
noted that, even at a finite distance from extremality, one
finds an interesting conspiracy that forces the Hessian to
have a single zero eigenvalue. Thus, it is possible that the
conjecture may be preserved if nonextremal strings have a
marginally stable mode leading to gyration but no linear
instabilities.

Shortly after the initial appearance of this work, an-
other argument for a counter-example to Gubser-Mitra
was given in [38] by exhibiting a marginally stable mode
in a thermodynamically stable but near-BPS black string.
It is interesting to rephrase our results in the same terms:
on general grounds, one may expect that some Kaluza-
Klein modes around rotating black strings are unstable as
they should act like massive fields around Kerr black
holes. However, in general we expect such black strings
to be thermodynamically unstable. It is only in the BPS
limit that one expects thermodynamic stability. The gyra-
tional mode of the BPS black string studied here allows
us to see that a small number of marginal bound states
persist for this string in the extremal limit, suggesting the
presence of stable, marginal, and unstable modes within
any neighborhood of the BPS limit, and, in particular, in
the thermodynamically stable regime.

As a final comment, the reader may wish to return to
the discussion of [11] and ask how the entropy of gyrating
BPS black strings is to be understood from string theory.
The answer is that gyration of a D-brane bound state is
described by the U(1) ‘‘center-of-mass’’ degrees of free-
dom, since the D-branes gyrate collectively in a way that
does not excite the relative motion degrees of freedom.
The counting of states for the spinning black string given
in [11] does not include the effect of this degree of free-
dom as it is known to carry little entropy (see, e.g., [39]).
Thus, momentum that goes into exciting gyration of the
bound state produces no entropy. But this is just what was
observed in the black string entropy in Eq. (3.1). The point
is that the U(1) degrees of freedom can carry angular
momentum, and can do so more ‘‘cheaply’’ than can the
collective modes. Thus, allowing the U(1) degrees of
freedom carry linear momentum Pgyro and angular mo-
mentum Jgyro leads directly to the entropy (3.1) for the
gyrating D-brane bound state. In particular, this means
that for certain values of the global charges D-brane
bound states are also unstable to gyration in the presence
of interactions (e.g., via closed-string exchange) between
the center-of-mass U(1) and other degrees of freedom.
-5
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