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Eric Poisson
Department of Physics, University of Guelph, Guelph, Ontario, Canada N1G 2W1

(Received 13 July 2004; published 27 October 2004)
1550-7998=20
The first objective of this work is to obtain practical prescriptions to calculate the absorption of mass
and angular momentum by a black hole when external processes produce gravitational radiation. These
prescriptions are formulated in the time domain (in contrast with the frequency-domain formalism of
Teukolsky and Press) within the framework of black-hole perturbation theory. Two such prescriptions
are presented. The first is based on the Teukolsky equation and it applies to general (rotating) black
holes. The second is based on the Regge-Wheeler and Zerilli equations and it applies to nonrotating
black holes. The second objective of this work is to apply the time-domain absorption formalisms to
situations in which the black hole is either small or slowly moving; the mass of the black hole is then
assumed to be much smaller than the radius of curvature of the external spacetime in which the hole
moves. In the context of this small-hole/slow-motion approximation, the equations of black-hole
perturbation theory can be solved analytically, and explicit expressions can be obtained for the
absorption of mass and angular momentum. The changes in the black-hole parameters can then be
understood in terms of an interaction between the tidal gravitational fields supplied by the external
universe and the hole’s tidally-induced mass and current quadrupole moments. For a nonrotating black
hole the quadrupole moments are proportional to the rate of change of the tidal fields on the hole’s world
line. For a rotating black hole they are proportional to the tidal fields themselves. When placed in
identical environments, a rotating black hole absorbs more energy and angular momentum than a
nonrotating black hole.
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I. INTRODUCTION AND SUMMARY

A. Goals and motivations

The work described in this article is concerned with the
absorption of energy and angular momentum by a black
hole when physical processes in its exterior produce
gravitational radiation. It is assumed throughout that
the rates of change of mass and angular momentum are
sufficiently low that they can be calculated within the
framework of first-order perturbation theory, in which the
black hole differs only slightly from a stationary and
axisymmetric Kerr hole.

The first goal of this work is to obtain practical pre-
scriptions to calculate the black-hole absorption, and to
modernize the tools fashioned in the early seventies by
Teukolsky and Press [1]. An essential aspect of the new
prescriptions is that they present the absorption formulas
in the time domain instead of the frequency domain; they
presuppose that in accordance with current trends, the
equations of black-hole perturbation theory have been
solved as partial differential equations in the time do-
main instead of ordinary differential equations in the
frequency domain. Two such prescriptions are presented
here: the first is based on the Teukolsky equation [2] and it
applies to general (rotating) black holes, while the second
is based on the Regge-Wheeler [3] and Zerilli [4] equa-
tions and it applies to nonrotating black holes.

That the Teukolsky equation can be separated in all of
its variables is surely one of its most important properties.
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To a large extent, it is this property that has permitted
progress during the continuing exploration of physical
processes taking place in black-hole spacetimes (see, for
example, the book by Frolov and Novikov, Ref. [5]). But it
has to be acknowledged that the historical importance of
the separation property has diminished in recent years, as
a number of time-domain integrators of the Teukolsky
equation have been developed [6–10] and put to use in
various applications. The numerical task of solving the
Teukolsky equation in the time domain is still challeng-
ing: after decomposition into azimuthal modes one must
solve for a function of time and two spatial coordinates.
But time-domain methods appear now to be at least
competitive with frequency-domain methods, with which
one must solve for a number of radial and angular func-
tions, the number increasing as the spectrum of relevant
frequencies becomes wider. And it appears likely that the
future will witness an increasing dominance of time-
domain methods over frequency-domain methods.

While the superiority of time-domain methods is still
to be proved in the case of the Teukolsky equation, it has
clearly been established [11–15] in the context of the
Regge-Wheeler [3] and Zerilli [4] equations, which de-
termine the metric perturbations of a nonrotating black
hole. In these cases the angular dependence of the per-
turbation variables can be completely separated, and the
integrator faces the relatively simple task of solving for a
function of two variables (time and a radial coordinate).
Simple, but powerful, numerical methods have been de-
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vised [13] for such problems, and these can even handle,
without approximations, a singular source term contrib-
uted by a point particle. The time-domain Regge-Wheeler
and Zerilli equations are thus very easy to integrate, and
there is now little reason to go back to a frequency-
domain formulation.

The new popularity of time-domain methods to solve
the equations of black-hole perturbation theory calls for
new prescriptions to calculate the black-hole absorption
of energy and angular momentum. The only recipe cur-
rently available is the formalism of Teukolsky and Press
[1], which is based on the frequency-domain formulation
of the Teukolsky equation [2]. This formalism is not well
adapted to time-domain calculations, and in this work I
provide the required translation of the Teukolsky-Press
recipe to the time domain. Another limitation of the
Teukolsky-Press formalism is that although it can be
applied without difficulty to a nonrotating black hole,
this requires the use of the Teukolsky equation instead of
the more practical Regge-Wheeler and Zerilli equations.
Another objective of this work is therefore to relate the
absorption of mass and angular momentum by a
Schwarzschild black hole to the time-domain solutions
to these equations.

In effect, this work is about providing practical time-
domain formulas for the fluxes of mass and angular
momentum across a perturbed black-hole horizon. For a
nonrotating black hole these formulas are based on the
Regge-Wheeler and Zerilli equations, which govern the
behavior of the metric perturbations. For a rotating black
hole the formulas are based instead on the Teukolsky
equation, which determines the perturbations of the
Weyl curvature tensor.

The second goal of this work is to apply the time-
domain absorption formalisms to physical situations in
which the black hole can be considered to be either small
or slowly moving. In the context of this small-hole/slow-
motion approximation (which I will describe in Sec. I E
below), the equations of black-hole perturbation theory
can be solved analytically, and explicit expressions can be
obtained for the absorption of mass and angular momen-
tum. While many results have been obtained along those
lines in the past [16–19], they were all restricted to
various special cases; the results presented here consoli-
date and generalize these previous works.

The absorption of mass and angular momentum by a
black hole is generally very small. In particular, the effect
is likely to be too small to be observed in a gravitational-
wave signal that would be measured by ground-based
detectors such as LIGO, VIRGO, and GEO600. For ex-
ample, Alvi [18] has calculated that for binary systems
involving holes with masses ranging from 5 to 50 solar
masses, black-hole absorption is truly negligible: It con-
tributes only a small fraction of a wave cycle during the
signal’s sweep through the detector’s frequency band. For
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this type of source the tools developed in this paper are
not needed.

In some circumstances, however, the black-hole ab-
sorption is a significant effect that should not be ne-
glected [20]. In particular, it is likely to be observed in
gravitational-wave signals that would be measured by a
space-based detector such as LISA. For example, Martel
[14] has shown that during a close encounter between a
massive black hole and a compact body (of a much
smaller mass), up to approximately 5% of the total radi-
ated energy is absorbed by the black hole, the rest being
transported out to infinity. Hughes [21] has calculated
that when the massive hole is rapidly rotating, the absorp-
tion has the effect of slowing down the inspiral of the
orbiting body, thereby increasing the duration of the
gravitational-wave signal. For example, a 1M� compact
body on a slightly inclined, circular orbit around a 106M�

black hole of near-maximum spin would spend approxi-
mately two years in the LISA frequency band before its
final plunge into the hole; Hughes shows that the black-
hole absorption contributes approximately 20 days (and
104 wave cycles) to these two years. For this kind of
situation the absorption is important, and the tools devel-
oped in this paper will be useful.

B. Perturbative methods

A natural starting point for the calculation of black-
hole absorption would be the definition of a dynamical
mass M�v� and angular momentum J�v� on a cross sec-
tion v � constant of an evolving event horizon; here v is a
suitable advanced-time coordinate on the horizon. Armed
with such definitions, one would differentiate with re-
spect to v to obtain _M�v� and _J�v�, and seek to express
the right-hand sides in terms of standard perturbation
variables. Such an approach to black-hole absorption
has recently been pursued by a number of workers [22–
25], and the resulting (inequivalent) formalisms can be
formulated exactly in fully nonlinear general relativity.
These formalisms are based not on the event horizon, but
instead on the hole’s trapping horizon, a generally space-
like hypersurface foliated by marginally trapped sur-
faces; and in the Ashtekar-Krishnan formalism [22,23]
the definitions for M�v� and J�v� come from the
Hamiltonian formulation of general relativity. These for-
malisms are interesting (and useful in the context of
numerical relativity) because they are fully general, and
because they involve a hypersurface (the trapping hori-
zon) whose intersection with a given Cauchy slice is easy
to identify; the event horizon, on the other hand, can be
identified only once the future history of the spacetime is
completely known.

The approach adopted here to calculate the black-hole
absorption is not the one described in the preceding para-
graph; it is based instead on black-hole perturbation
theory, and it assumes that the evolving black hole is
-2
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only slightly different from a stationary and axisymmet-
ric Kerr hole. Because the analysis is restricted to first-
order perturbation theory, it is possible to proceed with-
out the specification of a mass function M�v� and an
angular-momentum function J�v�, so long as only the
long-term changes in mass and angular momentum need
to be calculated. In this long-term view one imagines that
the black hole starts in an initial stationary state charac-
terized by the parameters �M; J�, is perturbed for a time
�v by some external process, and then returns to another
stationary state characterized by the parameters �M�
�M; J� �J�. One then defines the averaged rates of
change of mass and angular momentum by h _Mi �
��M�=��v� and h _Ji � ��J�=��v�, and one manipulates
the equations of black-hole perturbation theory to calcu-
late these quantities. This is what I set out to do in this
work. The perturbative techniques demand that �M �
M, �J � J, and the long-term view demands that �v 	
M. While the price to pay is a substantial loss of general-
ity with respect to an exact formulation, the perturbative-
long-view approach adopted in this paper allows one to
proceed without having to choose a specification of M�v�
and J�v�, with the derived benefit that the final results are
robust with respect to a change of definitions. Another
benefit is that the approach is based on the event horizon
(the true boundary of the black-hole region) instead of the
trapping horizon; while locating the event horizon in a
nonlinear situation can be difficult, this is not a problem
in the perturbative-long-view approach.

The mathematical techniques required for the descrip-
tion of a perturbed event horizon go back to the pioneer-
ing work of Hawking and Hartle [26], and these form the
basis of this work (they also formed the basis of the
Teukolsky-Press prescription [1]). These techniques are
reviewed in Secs. II, III, and IV of the paper. I begin in
Sec. II with a description of the unperturbed horizon of a
stationary Kerr black hole. In Sec. III, I consider the
dynamics of a general evolving horizon, and in Sec. IV,
I specialize the discussion to event horizons that are
perturbed versions of the Kerr horizon. The equations
that govern the behavior of the horizon’s null generators
are given in Sec. III and IV in a form that closely
resembles the treatment provided by Price and Thorne
[27], and in Chapter VI of the book by Thorne, Price, and
Macdonald [28]. Although these equations are well-
known, I derive them ab initio in order to clearly identify
the simplifying assumptions that are incorporated along
the way; in particular, the averaging procedure involved
in calculating h _Mi and h _Ji is explained fully in Secs. IV B
and IV C.

The main ideas behind the Hawking-Hartle techniques
[26] are as follows. The intrinsic geometry of an evolving
event horizon is described by a two-dimensional metric
tensor �AB, which depends on the advanced-time coordi-
nate v as well as angular coordinates 
A (A � 2; 3). The
084044
metric is degenerate (and explicitly two-dimensional)
because the horizon is a null hypersurface; v is a parame-
ter on the horizon’s null generators, and 
A are generator
labels that stay constant as the generators move. The
evolution of �AB is determined by the behavior of the
generators, which is described in terms of an expansion
scalar 	 and a shear tensor �AB. The evolution of the
shear is driven by the spacetime’sWeyl curvature, and the
evolution of the expansion is driven by the square of the
shear tensor. The evolution equations can all be integrated
(assuming that the Weyl curvature is specified), and the
solution for h	i determines h _Ai, the (averaged) rate of
change of the black hole’s surface area. The final step is to
use the first law of black-hole mechanics (see, for ex-
ample, Chapter 12 of Ref. [29], or Chapter 5 of Ref. [30])
to relate this to h _Mi and h _Ji. The end result is Eqs. (4.22),
(4.23), and (4.24) in Sec. IV C, which express h _Mi, h _Ji,
and h _Ai in terms of �AB contracted with derivatives of
�AB, integrated over a cross section of the event horizon.
These equations are not new: they were first presented by
Thorne, Price, and Macdonald [28], but the derivation
provided here is substantially different from theirs. And
while these equations are not themselves very practical,
they form an excellent starting point for the development
of practical formalisms.

C. Curvature formalism

The development of a time-domain formalism to cal-
culate h _Mi, h _Ji, and h _Ai in terms of standard curvature
variables is undertaken in Sec. V. The end result of this
reformulation of Eqs. (4.22), (4.23), and (4.24) is the
following prescription (Sec. V D) to calculate the black-
hole absorption.

First, define a Teukolsky function 
 
 � 0�HH� as in
Eq. (5.6), in terms of a null-tetrad decomposition of the
perturbed Weyl tensor. The label ‘‘HH’’ indicates that the
Weyl tensor is decomposed in the Hartle-Hawking null-
tetrad [26], which is well-behaved on the future horizon
of the Kerr spacetime.

Second, decompose the Teukolsky function in terms of
azimuthal modes proportional to eim ,


�v; r; 
;  � �
X1

m��1


m�v; r; 
�eim ; (1.1)

where m is an integer. Because the Kerr spacetime is
axially symmetric, each mode 
m�v; r; 
� evolves inde-
pendently. Note that the coordinates �v; r; 
;  � are in-
going Kerr coordinates (Sec. II A), and that they are well-
behaved on the event horizon.

Third, integrate the Teukolsky equation [2] for each
relevant mode 
m�v; r; 
�, and evaluate the result at r �

r� 
 M�
������������������
M2 � a2

p
, the position of the unperturbed

horizon; a 
 J=M is the specific angular momentum of
the Kerr black hole.
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Fourth, calculate the integrated curvatures

m
��v; 
� � e�v

Z 1

v
e����im�H�v0


m�v0; r�; 
�dv
0 (1.2)

and

m
��v; 
� �

Z v

�1
eim�Hv0


m�v0; r�; 
�dv
0; (1.3)

where � � �r� �M�=�r2� � a2� is the surface gravity of
the Kerr horizon, and �H � a=�r2� � a2� its angular ve-
locity. Notice that m

� at advanced time v depends on the
behavior of 
m at later times; this is a consequence of the
teleological nature of the event horizon.

Fifth, and finally, insert the integrated curvatures and
their complex conjugates (indicated with an overbar) into
the flux formulas

h _Mi �
r2� � a2

4�

X1
m��1

�
2�

Z
hjm

�j2i sin
d


�im�H

Z
h �m

�
m
� � m

�
�m

�i sin
d

�
; (1.4)

h _Ji � �
r2� � a2

4�

X1
m��1

�im�
Z

h �m
�

m
� � m

�
�m

�i sin
d
;

(1.5)

and

�
8�

h _Ai �
1

2
�r2� � a2�

X1
m��1

Z
hjm

�j2i sin
d
: (1.6)

These equations reduce to those of Teukolsky and Press
[1] when 
m�v; r; 
� is a pure mode of frequency!, 
m /
e�i!v; this is established in Sec.V C. Eqs. (1.4), (1.5), and
(1.6) are therefore the time-domain equivalent to the
standard frequency-domain prescription.

D. Metric formalism

The curvature formalism of the preceding subsection
applies to a general rotating black hole, and the special
case of a nonrotating hole can be handled simply by
setting a � 0. But in this case it is often desirable to
work with metric perturbations instead of curvature per-
turbations, and it becomes useful to present the flux
formulas in terms of 
lm

RW�v; r� and 
lm
ZM�v; r�, the stan-

dard Regge-Wheeler and Zerilli-Moncrief functions, in-
stead of the Teukolsky function 
m�v; r; 
�. Here the
decomposition into modes involves spherical-harmonic
functions of degree l and azimuthal number m.

The development of a time-domain formalism to cal-
culate h _Mi, h _Ji, and h _Ai in terms of standard metric
variables is undertaken in Sec. VII, after laying some
important foundations in Sec. VI. The end result of this
reformulation of Eqs. (4.22), (4.23), and (4.24) is the
following prescription (Sec. VII C) to calculate the ab-
084044
sorption of mass and angular momentum by a
Schwarzschild black hole.

First, integrate the Regge-Wheeler equation [3] for

lm

RW�v; r�, which describes the odd-parity sector of the
metric perturbations. This gauge-invariant function is
defined in subsection 3 of the Appendix.

Second, integrate the Zerilli equation [4] for

lm

ZM�v; r�, which describes the even-parity sector of the
metric perturbations. This gauge-invariant function is
defined in subsection 4 of the Appendix.

Third, and finally, evaluate the Regge-Wheeler and
Zerilli-Moncrief functions at r � r� 
 2M and insert
them into the flux formulas

h _Mi �
1

64�

X1
l�2

Xl
m��l

�l� 1�l�l� 1��l� 2�

� h4j
lm
RW�v; r��j2 � j _
lm

ZM�v; r��j2i (1.7)

and

h _Ji �
1

64�

X1
l�2

Xl
m��l

�l� 1�l�l� 1��l� 2��im�

� h4
lm
RW�v; r��

Z v
�
lm
RW�v0; r��dv0

� _
lm
ZM�v; r�� �
lm

ZM�v; r��i: (1.8)

Except for the substitution �v ! u; r� ! 1�, these for-
mulas are identical to Eqs. (A26) and (A27) which give
the rates at which energy and angular momentum are
transported to future null infinity. Note that for a non-
rotating black hole, the first law of black-hole mechanics
reduces to ��=8��h _Ai � h _Mi.

The flux formulas of Eqs. (1.7) and (1.8) were first
presented and used by Martel [14] in his numerical ex-
ploration of gravitational-wave processes associated with
the motion of a small-mass body in the field of a
Schwarzschild black hole. Although he arrived at the
correct results, the derivation of Eqs. (1.7) and (1.8)
presented by Martel is flawed, and the analysis presented
in Sec. VII puts them on a firm footing. Martel’s deriva-
tion incorporates both a conceptual and a computational
error, the latter compensating for the former. Martel
based his derivation of Eqs. (1.7) and (1.8) on Isaacson’s
effective stress-energy tensor for gravitational waves
[31,32], incorrectly assuming that Isaacson’s high-
frequency description is always applicable near the event
horizon of a black hole. This story is related more fully in
Sec. VII C, and its proper telling requires the connection
between h _Mi, h _Ji and the Isaacson stress-energy tensor
established in Sec. VI C. The limitations of the high-
frequency description become especially clear in view
of this connection.
-4
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E. Small-hole/slow-motion approximation

A concrete evaluation of the flux formulas would typi-
cally require the numerical integration of the Teukolsky
equation, or the Regge-Wheeler and Zerilli equations; an
illustration is provided by Martel’s recent work [14]. But
in some circumstances it is possible to solve these equa-
tions analytically, and to obtain approximate expressions
for h _Mi and h _Ji. I carry out such calculations in Secs.VIII
and IX, in the context of a small-hole/slow-motion ap-
proximation that I now describe.

Consider a situation in which the black hole is im-
mersed in an external universe whose radius of curvature
R is such that M=R � 1. For example, suppose that the
black hole is moving on a circular orbit of radius b in the
gravitational field of another body of mass Mext. Then
R�1 is of the order of the hole’s angular velocity, and we
have

M
R

�
M

M�Mext
V3; V �

���������������������
M�Mext

b

s
;

where V is the hole’s orbital velocity. One way to make
this ratio small is to let M=Mext � 1; then M=R will be
small irrespective of the magnitude of V. This is the
small-hole approximation, which allows the small black
hole to move at relativistic speeds in the strong gravita-
tional field of the external body. Another way is to let
V � 1; then M=R will be small for all mass ratios. This
is the slow-motion approximation, which allows the
slowly-moving black hole to have a mass comparable to
(or even much larger than) Mext. These two limiting
approximations are special cases of the fundamental
requirement that M=R be small; I call this the small-
hole/slow-motion (SH/SM) approximation.

When viewed on the large scale R, the black hole
occupies a very small region of the actual spacetime,
and this region can be idealized as a world line � in the
external spacetime. Let u� be the (normalized) tangent
vector to this world line, and call this the four-velocity of
the black hole in the external spacetime. Assume that the
Ricci tensor of the external spacetime vanishes on �, so
that the black hole’s neighborhood will be empty of
matter. The curvature of the external spacetime in this
neighborhood is then described entirely by the Weyl ten-
sor. This can be decomposed into its electric and mag-
netic components (see, for example, Ref. [33]),
respectively

E �� � C����u�u� (1.9)

and

B �� �
1

2
u�"����C����u�; (1.10)

where the Levi-Civita tensor "���� and the Weyl tensor
C���� are evaluated on the world line �. The tensors E��
and B�� are orthogonal to u�, and they are both sym-
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metric and trace-free; they comprise all ten independent
components of the Weyl tensor. These tensors represent
the tidal gravitational fields that are supplied by the
external universe, and these act on the black hole so as
to produce a tidal distortion. This distortion, in turn,
gives rise to a change of mass and angular momentum
that can be computed with the formalisms described in
the preceding subsections.

In Sec. VIII, I calculate h _Mi and h _Ji for a
Schwarzschild black hole moving in an external universe,
to leading order in a SH/SM approximation. The results
are

h _Mi �
16M6

45
h _E�� _E�� � _B��

_B��i (1.11)

and

h _Ji � �
32M6

45
u�"����h _E

�
�E

�� � _B�
�B

��is�; (1.12)

where s� is a unit vector, orthogonal to u�, that gives the
direction of the vector h _J�i � h _Jis� (a more precise defi-
nition is found in Sec. VIII F), and _E�� 
 E��;�u

�,
_B�� 
 B��;�u� are the proper-time derivative of the

tidal gravitational fields. From these expressions we infer
that h _Mi scales as M6=R6, while h _Ji scales as M6=R5. In
Sec. VIII G, I show that the change in mass and angular
momentum can be understood in terms of a coupling
between the tidal fields and the hole’s induced mass and
current quadrupole moments, which are given by M�� �
32
45M

6 _E�� and J�� � 8
15M

6 _B��, respectively. As illustra-
tive examples, Eqs. (1.11) and (1.12) are evaluated in two
different limits in the case of circular binary motion: In
Sec. VIII H, I calculate h _Mi and h _Ji for a slowly-moving
binary system consisting of bodies of comparable masses
(one being the black hole); and in Sec. VIII I, I take the
mass ratio to be small (M=Mext � 1) but allow the black
hole to move rapidly in the strong gravitational field of the
external body.

In Sec. IX, I calculate h _Mi and h _Ji for a Kerr black hole
moving in an external universe. I again work to leading
order in a SH/SM approximation, but the statement of the
approximation must now be refined to M=R � ", where
" 
 a=M 
 J=M2 is the dimensionless rotational pa-
rameter of the black hole. The results, which were ob-
tained previously by D’Eath [19], are

h _Mi � O�M5=R5� (1.13)

and

h _Ji � �
2

45
M5"�8�1 � 3"2�hE1 � B1i � 3�4 � 17"2�

�hE2 � B2i � 15"2hE3 � B3i�: (1.14)

where E1 �E��E
��, E2 � E��s

�E��s
�, E3 �

�E��s
�s��2, and B1 �B��B

��, B2 � B��s
�B�

�s
�,

B3 � �B��s�s��2. The leading-order calculations carried
-5



ERIC POISSON PHYSICAL REVIEW D 70 084044
out in Sec. IX are not sufficient to determine h _Mi, but they
indicate that h _Ji scales as M5=R4. This result can also be
understood in terms of a coupling between the tidal fields
and the hole’s induced mass and current quadrupole mo-
ments; here, as I show in Sec. IX E, the relationship
between M�� and E��, and the relationship between J��
and B��, do not involve a time derivative (as they do in
the case of a Schwarzschild black hole). Three illustrative
applications of Eq. (1.14) are worked out: In Sec. IX G, I
examine a Kerr black hole in circular motion in a slowly-
moving binary system; in Sec. IX H, I consider instead
the case of a small hole in relativistic circular motion; and
in Sec. IX I, the Kerr black hole is placed in a static tidal
gravitational field.

The main results of Sec. VIII, Eqs. (1.11) and (1.12),
hold to leading order in M=R � 1, and they reveal that
for a Schwarzschild black hole, h _Mi � O�M6=R6� and
h _Ji � O�M6=R5�. On the other hand, the main results of
Sec. IX, Eqs. (1.13) and (1.14), hold to leading order in
M=R � ", and they reveal that for a Kerr black hole,
h _Mi � O�M5=R5� and h _Ji � O�M5=R4�. The scalings
are thus very different, and the condition M=R � "
implies that the Schwarzschild results cannot straightfor-
wardly be obtained from the Kerr results in a limit " !
0. These scalings indicate that when a rotating and a
nonrotating black hole are placed in identical environ-
ments, the rotating hole will absorb larger quantities of
energy and angular momentum. The agent responsible for
this enhanced absorption is evidently the hole’s rotation,
and some insight into this matter is offered in Sec. IX F.

This concludes the summary of the work presented in
this article.

F. Organization of the paper

The rest of the paper contains the derivations of the
results summarized previously, as well as additional re-
sults and details. I begin in Sec. II with a description of
the event horizon of an unperturbed Kerr black hole, and
I derive a number of results that will be used in later
sections of the paper. A description of a general evolving
horizon is presented in Sec. III. This discussion is speci-
alized, in Sec. IV, to the case of a perturbation of the Kerr
horizon, and I derive the flux formulas of Eqs. (4.22),
(4.23), and (4.24).

These formulas are translated into a practical curvature
formalism in Sec. V; this was summarized in Sec. I C. In
Sec. VI they are translated into a metric formalism that
applies to both rotating and nonrotating black holes; in
that section I introduce ‘‘preferred’’ and ‘‘radiation’’
gauges for the metric perturbations, and I establish a
connection between the fluxes and Isaacson’s effective
stress-energy tensor for gravitational waves [31,32]. The
metric formalism is specialized to a Schwarzschild black
hole in Sec. VII; this was summarized in Sec. I D.
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The small-hole/slow-motion approximation is worked
out in the last two sections of the paper, first for a
Schwarzschild black hole immersed in an external uni-
verse (Sec.VIII), and next for a Kerr black hole (Sec. IX).
These results were summarized in Sec. I E.

The Appendix contains a brief summary of the theory
of metric perturbations of a Schwarzschild spacetime.
The material contained in this Appendix is well-known,
but it is convenient to record the main results there
because they are referred to on many occasions in the
article’s main body.

Throughout this work I use geometrized units in which
c � G � 1, and I adopt the conventions of Misner,
Thorne, and Wheeler [34].
II. KINEMATICS OF THE KERR HORIZON

To prepare the way for the discussion of dynamical
event horizons in the next two sections, in this section I
cover the kinematics of a stationary event horizon de-
scribed by the Kerr metric. I shall introduce a parametric
description of the horizon’s null generators, and derive
from this an intrinsic description of the horizon. Part of
this discussion will be devoted to the construction of null
tetrads on the horizon, and a description of the (well-
known) algebraic structure of the Weyl tensor.

A. Kerr metric

Throughout this work the Kerr metric will be written
in terms of ingoing Kerr coordinates �v; r; 
;  �, so that its
form will be regular on the event horizon. It is given by
(see, for example, Box 33.2 of Ref. [34], or Sec. 5.3 of
Ref. [30])

ds2 � �
� � a2sin2


'2 dv2 � 2dvdr�
4Marsin2


'2 dvd 

�2asin2
drd �
�sin2


'2 d 2 � '2d
2; (2.1)

where M is the black-hole mass, J 
 Ma its angular
momentum, '2 � r2 � a2cos2
, � � r2 � 2Mr� a2,
and � � �r2 � a2�2 � a2�sin2
. The transformation
from the more usual Boyer-Lindquist coordinates
�tBL;rBL;
BL;)BL� is given by v� tBL�

R
�r2�

a2���1dr, r � rBL, 
 � 
BL, and  � )BL �
a
R
��1dr; the Kerr coordinates are sometimes denoted

� ~V; r; 
; ~)�, as is done in Ref. [34]. The event horizon is
situated at the largest root of �, at
r � r� 
 M�

������������������
M2 � a2

p
.

The Kerr spacetime admits the Killing vectors t� �
@x�=@v and )� � @x�=@ . The vector

k� � t� � �H)�; (2.2)

with
-6
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�H �
a

r2� � a2
�

a
2Mr�

; (2.3)

is also a Killing vector, and it is null on the event horizon;
it is tangent to the horizon’s null generators. The quantity
�H is the angular velocity of the black hole.

B. Parametric description of the horizon

We wish to introduce a system of coordinates �v; 
A� on
the horizon, adopting v as a parameter on the generators,
and 
A (A � 2; 3) as generator labels that stay constant as
the generators move. Because k� � �1; 0; 0;�H� in the
spacetime coordinates �v; r; 
;  �, we have that 
 is con-
stant on each generator, and it can therefore be chosen as
one of the comoving coordinates. On the other hand,
d =dv � �H and  increases linearly as the generators
wrap around the event horizon; a suitable choice of co-
moving coordinate is therefore ) �  � �Hv, which
stays constant. Our horizon coordinates are therefore

�v; 
A� � �v; 
;) �  � �Hv�: (2.4)

It is important not to confuse the horizon coordinate )
with the Boyer-Lindquist coordinate )BL; these are not
equal.

The horizon generators can now be described by para-
metric equations of the form x� � z��v; 
A�, in which z�

gives the spacetime-coordinate positions of the genera-
tors in terms of the intrinsic horizon coordinates.
Explicitly, the parametric description is v � v, r � r�,

 � 
, and  � )� �Hv. The vectors

k� �
@z�

@v
; e�A �

@z�

@
A
(2.5)

are tangent to the horizon; k� is tangent to each generator
while e�A points in the directions transverse to the gen-
erators. In the spacetime coordinates �v; r; 
;  � we have
k� � �1; 0; 0;�H� as before, e�
 � �0; 0; 1; 0�, and e�) �

�0; 0; 0; 1�. Because the coordinates 
A are comoving,
the transverse vectors e�A are Lie transported along the
generators, and they therefore satisfy

e�A;�k
� � k�;�e

�
A: (2.6)

They are also Lie transported along one another, so that
e�A;�e

�
B � e�B;�e

�
A .

The basis vectors also satisfy

k�k
� � 0 � k�e

�
A: (2.7)

The only nonvanishing inner products are

�AB � g��e
�
Ae

�
B; (2.8)

and these form the components of the induced metric on
the horizon. To see this, deduce from Eq. (2.5) that a
displacement on the horizon is described by dx� �
k�dv� e�Ad


A and calculate ds2 � g��dx�dx� for this
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displacement; use of Eqs. (2.7) and (2.8) returns ds2 �
�ABd


Ad
B, with the interpretation that �AB is indeed the
induced metric. Notice that the horizon metric is degen-
erate, and explicitly two-dimensional in the comoving
coordinates. The nonvanishing components of the horizon
metric are �

 � r2� � a2cos2
, �)) � �r2� �

a2�2sin2
=�r2� � a2cos2
�, and����
�

p
� �r2� � a2� sin
 (2.9)

is the square root of the metric determinant.
The vector basis on the horizon can be completed with

another null vector N� that satisfies

N�N� � 0 � N�e�A; N�k� � �1: (2.10)

These conditions determine the vector uniquely, and we
find

N�dx� � �dv�
a2sin2


2�r2� � a2�
dr: (2.11)

The four basis vectors give us completeness relations for
the inverse metric evaluated on the event horizon,

g�� � �k�N� � N�k� � �ABe�Ae
�
B; (2.12)

where �AB is the inverse of �AB. In the sequel we will use
the horizon metric and its inverse to lower and raise
upper-case Latin indices. We will also introduce a two-
dimensional connection $ABC compatible with �AB, and
denote covariant differentiation in this connection with a
vertical stroke; for example, �ABjC 
 0.

C. Horizon connections

The tangential derivatives of the basis vectors are given
by

k�;�k
� � �k�; (2.13)

k�;�e
�
A � !Ak� � e�A;�k

�; (2.14)

e�A;�e
�
B � pABk� � $CABe

�
C � e�B;�e

�
A; (2.15)

where �, !A, pAB, and $CAB are the horizon connections.
The surface gravity � � �N�k�;�k

� of a Kerr black hole
is given by

� �
r� �M

r2� � a2
�

������������������
M2 � a2

p

2Mr�
; (2.16)

and Eq. (2.13) states that the vector k� satisfies the geo-
desic equation, but that the generator parameter v is not
an affine parameter. Explicit expressions for !A and pAB
will not be needed; the two-dimensional connection $CAB
can easily be computed from �AB.

The 2-vector )A � �0; 1� is a Killing vector of the
horizon’s intrinsic geometry, and it therefore satisfies
Killing’s equation, )�AjB� � 0. This vector is related to
-7
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the spacetime Killing vector )� by the relation )� �
)Ae�A . The 2-tensor

cAB 
 �)AjB � �)�;�e�Ae
�
B (2.17)

will be needed in Sec. VI of the paper. This tensor is
antisymmetric by virtue of Killing’s equation; its only
nonvanishing components are
c
) � �r2� � a2�3 sin
 cos
=�r2� � a2cos2
�2 � �c)
.

The vector k� introduced in Eq. (2.5) is defined on the
horizon only, but Eq. (2.2) provides an extension away
from the horizon. The extended vector field is null on the
horizon only, but it is everywhere a Killing vector; it
satisfies

k�;� � ���k�N� � N�k�� � k�!� �!�k� (2.18)

on the horizon, where !� 
 !Ae�A .

D. Null tetrads

The transverse vectors e�A can be combined into com-
plex vectors e� � eAe�A that satisfy

e�e� � 0 � �e� �e�; e� �e� � 1; (2.19)

with an overbar indicating complex conjugation. In terms
of the complex coefficients eA, these relations read

�ABe
AeB � 0 � �AB �e

A �eB; �ABe
A �eB � 1; (2.20)

and these produce the completeness relations �AB �
eA �eB � �eAeB. Substituting this into Eq. (2.12) yields

g�� � �k�N� � N�k� � e� �e� � �e�e�: (2.21)

A particular (and traditional) choice of coefficients eA

that achieves these properties is

e
 �
1���
2

p
r� � ia cos


r2� � a2cos2

; e) �

i���
2

p
r� � ia cos


�r2� � a2� sin

:

(2.22)

Note that the inversion formula is e�A � �eAe� � eA �e�,
where the upper-case Latin index was lowered with the
horizon metric �AB.

The basis �k�; N�; e�; �e�� is a null tetrad on the hori-
zon, and it can be used to decompose various tensors, as is
customary in the Newman-Penrose formalism (see, for
example, the presentation of Ref. [35]). This tetrad, how-
ever, is not adapted to the algebraic structure of C����,
the Weyl tensor of the Kerr spacetime. With this tetrad we
would find that theWeyl scalars  0 and  1 vanish, but that
 3 and  4 do not. (These quantities will be introduced
below.) This is remedied by a null rotation (a rotation of
class I in the language of Chandrasekhar [35]) to a new
tetrad �k�; n�;m�; �m�� given by

n� � N� � jAj2k� � �Ae� � A �e�; m� � e� � Ak�;

(2.23)

where
084044
A �
i���
2

p a sin

r� � ia cos


r2� � a2cos2

: (2.24)

In the spacetime coordinates �v; r; 
;  �, the components
of the new transverse vectors are

m� �
1���
2

p
r� � ia cos


r2� � a2cos2


�
ia sin
; 0; 1;

i
sin


	
: (2.25)

Notice that this rotation leaves the vector k� unchanged.
The tetrad �k�; n�;m�; �m�� introduced here is the

Hartle-Hawking null tetrad of the Kerr spacetime [26]
(as it was defined by Teukolsky [2] and Teukolsky and
Press [1]) restricted to the event horizon. The Hartle-
Hawking tetrad is related to the more standard
Kinnersley null tetrad [36] by a rescaling of the vectors
k� and n� (a rotation of class III in the language of
Chandrasekhar [35]):

k��HH� �
�

2�r2 � a2�
k��K� (2.26)

and

n��HH� �
2�r2 � a2�

�
n��K�: (2.27)

Notice that while the Hartle-Hawking tetrad is defined
globally in the Kerr spacetime, the tetrad �k�; n�;m�; �m��
is defined on the horizon only; the extension of k� to
k��HH� is different from the extension of Eq. (2.2). Notice
also that whereas the Hartle-Hawking tetrad is well-
behaved on the event horizon, the Kinnersley tetrad is not.

In the tetrad �k�; n�;m�; �m�� the horizon Weyl scalars
are defined by (see, for example, Ref. [35])

 0 � �C����k�m�k�m�; (2.28)

 1 � �C����k
�n�k�m�; (2.29)

 2 � �C����k
�m� �m�n�; (2.30)

 3 � �C����k�n� �m�n�; (2.31)

 4 � �C����n� �m�n� �m�; (2.32)

where C���� is the Weyl tensor of the Kerr spacetime
evaluated on the event horizon. We have that  0 �  1 �
 3 �  4 � 0, a property that is true globally with the
Hartle-Hawking or Kinnersley tetrads, and

 2 �
Mr��r2� � 3a2cos2
�

�r2� � a2cos2
�3
�
iMa cos
�3r2� � a2cos2
�

�r2� � a2cos2
�3

(2.33)

is the only nonvanishing horizon Weyl scalar.
-8
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E. Weyl identities

For future reference I record here a number of identities
satisfied by the Weyl tensor of the Kerr spacetime:

C����k
�e�Ak

� � 0; (2.34)

C�����e�Ae
�
B � e�Be

�
A�k� � �2Re� 2��ABk�; (2.35)

C����k�k� � �2Re� 2�k�k�: (2.36)

As a consequence of Eqs. (2.34), (2.35), and (2.23) we also
obtain

C����k�m�k� � 0 � C����m�m�k�: (2.37)

These identities are formulated on the horizon only.

III. DYNAMICS OF AN EVOLVING HORIZON

In this section I generalize the preceding discussion to
a nonstationary event horizon. The presentation is pat-
terned after Price and Thorne [27] and Chapter VI of the
book by Thorne, Price, and Macdonald [28].

A. Comoving coordinates and vector basis

As in Sec. II we take �v; 
A� as our system of intrinsic
coordinates on the horizon, with v now promoted to an
arbitrary parameter on the null generators, and 
A still
denoting constant generator labels. The horizon is still
described by the parametric equations x� � z��v; 
A�,
but the coordinate positions of the dynamical horizon
may be displaced with respect to those of a stationary
Kerr horizon.

The vectors k� � @z�=@v and e�A � @z�=@
A form a
partial basis on the horizon; as before k� is tangent to the
generators, e�A is transverse to them, and k�k� � k�e�A �
0. The nonvanishing inner products

�AB�v; 

A� � g��e

�
Ae

�
B (3.1)

give the components of the induced metric on the horizon.
The basis is completed by another null vector N�, which
is orthogonal to e�A and normalized by the condition
N�k

� � �1. The completeness relations of Eq. (2.12) still
apply.

The vectors k� and e�A are all Lie transported along one
another, so that e�A;�k

� � k�;�e
�
A and e�A;�e

�
B � e�B;�e

�
A .

B. Generator kinematics

The tangent vector k� satisfies the geodesic equation in
its generalized form

k�;�k
� � �k�; (3.2)

where � is the evolving surface gravity of the event
horizon, defined with respect to our choice of parametri-
zation v.
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The transverse derivatives of the tangent vector can be
decomposed as

k�;�e
�
A � !Ak� � BBAe

�
B � e�A;�k

�; (3.3)

for some 2-vector !A�v; 
A� and 2-tensor BAB�v; 
A�; this
generalizes Eq. (2.14). It is easy to show that the right-
hand side of Eq. (3.3) cannot include a term proportional
to N�; this follows from the fact that k� is a null vector
field. And it can be established that BAB is a symmetric
tensor, because the congruence of null geodesics to which
k� is tangent is necessarily hypersurface orthogonal (see,
for example, Sec. 9.2 of Ref. [29], or Sec. 2.4 of Ref. [30]).
The tensor BAB � k�;�e

�
Ae

�
B can be decomposed into its

irreducible parts,

BAB �
1

2
	�AB � �AB; (3.4)

thereby defining the expansion scalar 	 � �ABBAB and
the shear tensor �AB � BAB � 1

2	�AB. Notice that the
expansion is the trace of BAB, while the shear is the trace-
free part of this tensor.

C. Generator dynamics

Evolution equations can easily be derived for �AB, 	,
and�AB, and these will form the basis of the discussion of
perturbed event horizons in the next section.

Starting with the identity @�AB=@v � �g��e�Ae
�
B�;�k

�

and using Eqs. (3.3) and (3.4), we quickly arrive at an
evolution equation for the horizon metric,

@�AB
@v

� 	�AB � 2�AB: (3.5)

From this it follows that @�AB=@v � �	�AB � 2�AB and

	 �
1����
�

p
@

����
�

p

@v
; (3.6)

where � is the metric determinant.
To derive evolution equations for the expansion and

shear we follow the usual route that leads to
Raychaudhuri’s equation (see, for example, Sec. 9.2 of
Ref. [29], or Sec. 2.4 of Ref. [30]). Starting with the
identity @BAB=@v � �k�;�e�Ae

�
B�;�k

� and using Eqs. (3.2)
and (3.3), as well as Ricci’s identity, we arrive at
@BAB=@v � �BAB � BCABCB � R����e�Ak

�e�Bk
�. Taking

the trace of this equation, using the fact that a
symmetric–trace-free tensor automatically satisfies
�AC�

C
B � 1

2 ��CD�CD��AB, produces Raychaudhuri’s equa-
tion,

@	
@v

� �	 �
1

2
	2 � �AB�AB � 8�'; (3.7)

where ' 
 �R��=8��k�k� � T��k�k� after using the
Einstein field equations. The trace-free part of the equa-
tion reduces to
-9
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@�AB
@v

� ��� 	��AB � CAB; (3.8)

where

CAB 
 C����e�Ak
�e�Bk

� (3.9)

are tangential components of the Weyl tensor. In these
equations all upper-case Latin indices are lowered and
raised with �AB and �AB, respectively; the horizon metric
evolves according to Eq. (3.5).

The area of any cross section v � constant of the event
horizon is given by A�v� �

H ����
�

p
d2
. Assuming that the

number of generators stays constant as the horizon
evolves (that is, assuming that no new generator joins
the horizon at a caustic), a change of area occurs when �,
the metric determinant, varies with time. Equation (3.6)
yields

dA
dv

�
I

	dS; (3.10)

where dS �
����
�

p
d2
 is an element of surface area on the

horizon cross sections.
The equations derived in this section are all exact, and

they apply to an event horizon that evolves dynamically.
[The assumption made in the derivation of Eq. (3.10), that
the number of generators must be conserved during the
horizon’s evolution, represents a serious restriction. In the
perturbative context to be described in the next para-
graph, however, this limitation is lifted because the for-
mation of a caustic is necessarily associated with a large,
nonperturbative value of 	.] The choice of parameter v
and generator labels 
A is completely arbitrary, and the
quantities �, �AB, 	, and�AB all refer to this choice. For a
stationary Kerr black hole, v is chosen so that k� is given
by Eq. (2.2), and the generator labels of Eq. (2.4) are
adopted. This means that � is given by Eq. (2.16), �AB
by the expressions listed near Eq. (2.9), and that 	 � 0 �
�AB, as can be seen by comparing Eq. (2.14) with
Eq. (3.3). Eqs. (3.7) and (3.8) are then consistent if ' �
0, which follows because the Kerr metric is a vacuum
solution to the Einstein field equations, and CAB � 0,
which follows from Eq. (2.35).

In the next section we will apply these equations to
situations in which the horizon is very close to being
stationary, so that it can be described as a slightly per-
turbed version of the Kerr horizon. The horizon coordi-
nates �v; 
A� will then be chosen to be ‘‘close to’’ the Kerr
coordinates, and we will see that the ambiguities associ-
ated with this choice never explicitly enter the discussion;
our final expressions will be gauge invariant. This implies
that the vectors k�, N�, e�A on the perturbed horizon will
be perturbed versions of the Kerr basis, and that all
derived quantities, such as �, �AB, 	, and �AB, will be
perturbed versions of the corresponding Kerr quantities.
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IV. PERTURBED HORIZON

I now specialize the formalism of the preceding section
to event horizons that are slightly nonstationary, those
that can be considered to be perturbed versions of the
Kerr horizon. I shall assume that the perturbation is
caused entirely by gravitational radiation, and no matter
will be allowed to cross the event horizon. The perturba-
tion formalism described here is adapted from Price and
Thorne [27] and Chapter VI of the book by Thorne, Price,
and Macdonald [28]; these methods go back to the pio-
neering work of Hawking and Hartle [26].

A. Perturbation equations

Changing our notation with respect to the previous
section, the perturbed values for the horizon metric,
surface gravity, expansion, shear, and Weyl tensor will
now be denoted �̂AB, �̂, 	̂, �̂AB, and ĈAB, respectively;
these quantities were all introduced in Sec. III. The un-
perturbed (Kerr) values will be denoted without a deco-
rating caret; for example 	 � 0 is the background
expansion scalar, �AB � 0 the background shear tensor,
and CAB � 0 the background Weyl tensor. The only non-
vanishing background quantities are the metric �AB and
surface gravity �; these were introduced in Sec. II.

The horizon perturbation is driven by the Weyl tensor
ĈAB, which we imagine to be a quantity of the first order
in an expansion parameter 6; we write this as

Ĉ A
B � 6C1

A
B �O�62�: (4.1)

At the end of the calculation we will set 6 
 1 by absorb-
ing it into the definition of the perturbations.
Equation (3.8) indicates that the Weyl tensor drives a
first-order perturbation in the shear, and we have

�̂ A
B � 6�1

A
B �O�62�: (4.2)

Equation (3.7), on the other hand, shows that it is the
square of the shear tensor that is driving a perturbation in
the expansion (recall that we have set ' � 0), and we
must therefore have

	̂ � 62	2 �O�63�: (4.3)

(A more careful treatment that incorporates a first-order
term would eventually lead to 	1 � 0 and therefore back
to this assertion.) Finally, Eq. (3.5) shows that the shear
produces a first-order perturbation in the metric,

�̂ AB � �AB � 6�1
AB �O�62�; (4.4)

and these considerations lead to the statement that the
perturbed surface gravity will differ from its Kerr value
by a first-order quantity: �̂ � ��O�6�.

Substituting the expansions of Eqs. (4.1), (4.2), (4.3),
and (4.4) into Eqs. (3.5), (3.7), and (3.8) gives us the
following set of perturbation equations:
-10
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@�1
AB

@v
� 2�1

AB; (4.5)

@	2

@v
� �	2 � �1

AB�
AB
1 ; (4.6)

@�1
AB

@v
� ��1

AB � C1
AB: (4.7)

In these equations, � is the surface gravity of the Kerr
black hole, and the generator parameter v can be identi-
fied with the advanced-time coordinate of the Kerr space-
time (as introduced in Sec. II); the first-order deviations
of these quantities with respect to the Kerr values do not
enter the perturbation equations. It should be noted that
upper-case Latin indices can now be manipulated with
�AB, the background horizon metric, and its inverse.

According to Eq. (3.10), a growth in the horizon area is
driven by the expansion scalar, and we therefore have
_A � 62 _A2 �O�63�, with

_A 2 

dA2

dv
�

I
	2dS; (4.8)

where dS 

����
�

p
d2
 is an element of surface area on the

cross sections of the unperturbed (Kerr) horizon.

B. Integration of the perturbation equations

We imagine a horizon that starts in an initial Kerr
state, is perturbed for some time by an external process,
and then eventually returns to another Kerr state. The
expansion and shear vanish in the initial state, and they
must return to zero after the external process has ended;
this requires the imposition of teleological boundary
conditions (as opposed to retarded boundary conditions;
see, for example, Sec.VI C 6 of Ref. [28]) on the solutions
to the perturbation equations.

The teleological solution to the equation �d=dv�

�� � �f�v� is  �v� �
R

1
v e

���v0�v�f�v0�dv0. It shows
that  �v� depends on the future behavior of the driving
force, but that  �v� goes to zero after the driving force is
switched off; the causal solution would depend only on
the past behavior of the driving force, but it would grow
exponentially after the force is switched off. If the driv-
ing force varies very slowly over a time comparable to
1=�, then the teleological solution reduces to the local
expression  �v� � ��1f�v�, to a fractional accuracy of
order ��8��1, where 8� f= _f is the time scale over which
the driving force varies. The local expression can be
simply obtained by noting that in this limit, d=dv � �
and the differential term can be neglected in the differ-
ential equation; a more careful derivation starts with the
teleological solution and employs integration by parts.

It is not permissible to neglect the differential term in
Eq. (4.7), and one must write down a proper teleological
solution to this equation. To see this, suppose that the
084044
black hole is a member of a binary system, and that it
moves in the field of an external body with an angular
velocity �. As seen in the rotating frame of the gener-
ators, the Weyl tensor behaves as C� e�i!v, where ! 

� � �H is the relative angular velocity between the
external field and the generators. Thus, unless the external
field is nearly corotating with the black hole, ! will be of
order �H, which is itself of order �, and the Weyl tensor
will not vary slowly.

The exact solution to Eq. (4.7) is

�1
AB�v; 


A� �
Z 1

v
e���v0�v�C1

AB�v
0; 
A�dv0; (4.9)

and this can be substituted into the right-hand side of
Eq. (4.6). Here we shall allow ourselves some simplifica-
tion. For a Weyl tensor that behaves schematically as C�
e�i!v, the shear tensor will go as �� e�i!v=��� i!�,
and it will vary as rapidly as C. The square of the shear
tensor, however, will contain a piece that oscillates at
twice the frequency !, and a piece that stays constant.
The force driving the expansion therefore contains both a
slowly-varying piece and a rapidly-varying piece. In a
generic situation we expect that �1

AB�
AB
1 can always be

decomposed into such slowly-varying and rapidly-
varying pieces, and we isolate the slowly-varying com-
ponent by averaging over a time scale that is long com-
pared with ��1: ��1

AB�
AB
1 �slow � h�1

AB�
AB
1 i. If we now

agree to follow only the slow evolution of the expansion
scalar, and to ignore its rapid fluctuations around the
slowly-evolving mean, then

h	2i �
1

�
h�1

AB�
AB
1 i (4.10)

is an adequate approximate solution to Eq. (4.6). The
meaning of the averaging sign should be clear: The
expansion scalar, and the square of the shear tensor, are
averaged over a time 8 that is long compared with ��1, the
black-hole time scale. The time scale 8 is identified with a
characteristic time associated with the growth of the
black-hole area, 8� hAi=h _Ai. We note that it is a require-
ment of the perturbative treatment that �8 	 1; the
simplification of Eq. (4.10) therefore represents no signifi-
cant loss of generality, other than a coarse-graining over
short time scales.

Equation (4.9) can also be inserted into Eq. (4.5) to
calculate the metric perturbation, which is given by

�1
AB�v; 


A� � 2
Z v

�1
�1
AB�v

0; 
A�dv0: (4.11)

After altering the order of the integrations and perform-
ing one of the integrals, we obtain
-11
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�1
AB�v; 


A� �
2

�

�Z v

�1
C1
AB�v

0; 
A�dv0

�
Z 1

v
e���v0�v�C1

AB�v
0; 
A�dv0

�
; (4.12)

this result is exact, and it does not involve a coarse-
graining over short time scales.

The averaged rate of change of the horizon area can be
calculated on the basis of Eqs. (4.8) and (4.10). The result
is

h _A2i �
1

�

I
h�1

AB�
AB
1 idS; (4.13)

where an overdot indicates differentiation with respect to
v. This result can be expressed in terms of theWeyl tensor
by means of Eq. (4.9).

In the remainder of the paper we will denote C1
AB

simply as CAB, �1
AB as�AB, 	2 as 	, and _A2 as _A; because

these quantities all vanish for a stationary horizon, this
change of notation will not generate ambiguities. But to
avoid ambiguities we will continue to denote the metric
perturbation as �1

AB.

C. Fluxes of mass and angular momentum

We shall now derive expressions for the averaged rates
of change of the black-hole mass M and angular momen-
tum J, using Eq. (4.13) as our main input.

In the case of a horizon perturbed by a matter field it
can be shown (see, for example, Sec. 6.4.2 of Ref. [37])
that these rates are related by ��=8�� _A � _M� �H

_J,
which is a statement of the first law of black-hole me-
chanics (see, for example, Chapter 12 of Ref. [29], or
Chapter 5 of Ref. [30]). In the present case of a horizon
perturbed by a purely gravitational perturbation, we shall
assume that this relation holds on the average, so that

�
8�

h _Ai � h _Mi � �Hh _Ji: (4.14)

The averaging introduced here is the same that was
involved in Eq. (4.10). If we imagine that the horizon
evolves from an initial Kerr state to a final Kerr state in a
time �v� 8, then a precise statement of Eq. (4.14) is
��=8����A�=��v� � ��M�=��v� � �H��J�=��v�, where
�A, �M, and �J are the total accumulated changes in the
black-hole parameters. Because these changes relate two
stationary black-hole states, we have here the usual state-
ment of the first law divided by the time interval �v.

In the case of a horizon perturbed by a matter field it
can also be shown (see, for example, Sec. 6.4.2 of
Ref. [37]) that if the matter field is decomposed into
modes proportional to e�i!veim , where! is a continuous
frequency and m an integer, then each mode contribution
to the averaged rates is such that

h _Mim;! �
!
m

h _Jim;!: (4.15)
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This mode decomposition is motivated by the symmetries
of the background Kerr spacetime, and Eq. (4.15) states
that a mode labeled by �m;!� carries across the horizon a
quantity of energy proportional to ! and a quantity of
angular momentum proportional to m. This statement is
easily understood on the basis of a quantum picture, but it
holds for classical matter fields as well. We shall assume
that Eq. (4.15) is not restricted to matter fields, but that it
holds also for gravitational perturbations. Such an as-
sumption was made previously by Teukolsky and Press
[1] in their pioneering study of horizon fluxes.

Eqs. (4.14) and (4.15) imply

h _Mim;! �
!
k
�
8�

h _Aim;!; (4.16)

h _Jim;! �
m
k
�
8�

h _Aim;!; (4.17)

where

k 
 !�m�H (4.18)

and h _Aim;! is the mode contribution to the averaged rate
of change of the horizon area. These equations will allow
us to turn Eq. (4.13) into useful expressions for h _Mi and
h _Ji.

In the spacetime coordinates �v; r; 
;  �, the mode de-
composition of the metric perturbation is given by

�1
AB �

X
m

Z
d!�m;!AB �r; 
�e�i!veim : (4.19)

In the horizon coordinates �v; 
;)�, where ) �
 � �Hv, we have instead

�1
AB �

X
m

Z
d!�m;!AB �r�; 
�e�ikveim); (4.20)

where we have set r � r�, choosing the coordinate posi-
tion of the perturbed horizon to coincide with the position
of the Kerr horizon. (That this choice can always be made
is proved in Sec. VI A.) Substituting Eq. (4.20) into
Eq. (4.5) we obtain

�AB �
1

2

X
m

Z
d!��ik��m;!AB e

�ikveim); (4.21)

the mode decomposition of the shear tensor.
We now insert Eq. (4.21) into Eq. (4.13), but we do not

decompose �AB into modes. This gives

�
8�

h _Ai �
X
m

Z
d!

�ik
16�

I
h�AB�m;!AB e

�ikveim)idS;

and from this we can read off each mode contribution to
��=8��h _Ai. According to Eqs. (4.16) and (4.17), then, we
have

h _Mi �
X
m

Z
d!

�i!
16�

I
h�AB�m;!AB e

�ikveim)idS
-12
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and

h _Ji �
X
m

Z
d!

�im
16�

I
h�AB�m;!AB e

�ikveim)idS:

The metric perturbation can now be reconstructed from
its mode decomposition. It is easy to show that the factor
of �i! is generated by applying the differential operator
@=@v� �H@=@) to �1

AB�v; 
;)�; this can be written as a
Lie derivative in the direction of t� � k� � �H)�, the
timelike Killing vector of the background Kerr space-
time. Similarly, the factor of im is generated by acting
with @=@), which is a Lie derivative in the direction of
)�, the rotational Killing vector of the background Kerr
spacetime.

The final expressions are

h _Mi �
1

16�

I
h�ABLt�1

ABidS; (4.22)

h _Ji � �
1

16�

I
h�ABL)�1

ABidS; (4.23)

and

�
8�

h _Ai �
1

16�

I
h�ABLk�1

ABidS; (4.24)

where we have used �AB � 1
2Lk�

1
AB. As we have seen, the

Lie derivatives acting on the metric perturbations refer to
specific directions in the background Kerr spacetime. In
the horizon coordinates �v; 
;)�, the Lie derivatives take
the explicit form

L k �

�
@
@v

	

;)
; L) �

�
@
@)

	
v;

; (4.25)

and Lt � Lk � �HL). On the other hand, in the space-
time coordinates �v; r; 
;  � they take the form

L t �

�
@
@v

	
r;
; 

; L) �

�
@
@ 

	
v;r;


; (4.26)

and Lk � Lt � �HL). We also note that in Eqs. (4.22),
(4.23), and (4.24), the surface element dS �

����
�

p
d2
 refers

to the metric �AB of the unperturbed Kerr horizon.
Eqs. (4.22), (4.23), and (4.24) are an excellent starting

point for the development of a practical formalism to
calculate the horizon fluxes, a topic we shall turn to in
the next three sections. These equations are not new: they
appear in Sec. VI C 11 of the book by Thorne, Price, and
Macdonald [28]. The derivation presented here, however,
is substantially different from theirs, and it incorporates
the Teukolsky-Press assumption of Eq. (4.15); this as-
sumption was not part of the original derivation, and
their route from Eq. (4.13) to Eqs. (4.22) and (4.23) is
not as direct. It should be clear that while the present
derivation relies on a mode decomposition of the metric
perturbation, the final expressions involve differential (as
084044
opposed to algebraic) operations and are independent of
the decomposition.

D. Rigid rotation

The perturbed black hole is part of a system in rigid
rotation when the vector

9� � t� � �)� (4.27)

is a Killing vector of both the background Kerr spacetime
and the perturbed spacetime; here � is a constant angular
velocity. An example of a system in rigid rotation is when
the black hole is a member of a binary system, moving
with a uniform angular velocity in the field of the exter-
nal body. The fact that 9� is a Killing vector of the
perturbed spacetime means that

L 9�
1
AB � 0: (4.28)

If the metric perturbation is expressed in the spacetime
coordinates �v; r; 
;  �, then Eq. (4.28) implies that its
dependence on v and  is through the combination  �
�v only; in a reference frame that is rotating at an
angular velocity � with respect to the original inertial
frame, the perturbation appears to be stationary, and the
system is indeed in rigid rotation.

Eqs. (2.2) and (4.27) imply k� � 9� � ��H � ��)�

and t� � 9� � �)�, and by virtue of Eq. (4.28) the Lie
derivatives of �1

AB in the directions of k� and t� can be
expressed in terms of a derivative along )�,

L k�1
AB � ��H � ��L)�1

AB

and

L t�1
AB � ��L)�1

AB:

Substituting this into Eqs. (4.22), (4.23), and (4.24), and
using also �AB � 1

2 ��H � ��L)�
AB
1 , we obtain

h _Mi � ��� � �H�K; (4.29)

h _Ji � �� � �H�K; (4.30)

�
8�

h _Ai � �� � �H�2K; (4.31)

where

K �
1

32�

I
h�L)�AB1 ��L)�1

AB�idS; (4.32)

we recall that �AB1 is obtained from �1
AB by raising indices

with �AB, the inverse background metric.
Equation (4.30) indicates that the black hole’s angular

momentum will increase when �>�H, that is, when the
external rotation is faster than the rotation of the gener-
ators; otherwise the angular momentum will decrease.
Equation (4.29) indicates that h _Mi � �h _Ji when the black
hole is in rigid rotation; the sign of h _Mi is tied to the sign
-13
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of h _Ji and the sign of the angular velocity (which is
defined relative to �H). Finally, Eq. (4.31) shows that
the black-hole area will always increase, as is dictated
by Hawking’s area theorem (see, for example, Sec. 12.2 of
Ref. [29]). These equations also appear in Sec. VII B 1 of
the book by Thorne, Price, and Macdonald [28].
V. CURVATURE FORMALISM

In this section I translate the flux formulas of
Eqs. (4.22), (4.23), and (4.24) into a more practical lan-
guage that involves curvature variables. The most impor-
tant variable in this formalism is the Weyl scalar  0,
which can be obtained by solving Teukolsky’s differential
equation [2].

A. Relation between CAB and  0

Our first task is to express CAB, the Weyl tensor of the
perturbed horizon, in terms of the more practical curva-
ture variable  0. The calculation is straightforward but
somewhat lengthy; it requires a number of steps.

TheWeyl tensor of the perturbed spacetime is Ĉ���� �

C���� � 6C1
���� �O�62�, and the basis vectors of the

perturbed horizon are k̂� � k� � 6k�1 �O�62� and ê�A �
e�A � 6e�1A �O�62�. The Weyl tensor of the perturbed
horizon is then defined by

Ĉ AB � Ĉ����ê�Ak̂
�ê�Bk̂

�; (5.1)

which is the same equation as Eq. (3.9). By virtue of
Eq. (2.35) we have that CAB � 0 for the Kerr horizon,
and ĈAB � 6C1

AB �O�62�. To comply with preceding
usage we shall now omit the label ‘‘1’’ on the Weyl tensor
and set 6 � 1 after the expansion in powers of 6 has been
carried out.

Direct evaluation of ĈAB from the preceding informa-
tion gives

CAB � C1
����e

�
Ak

�e�k� � C�����e
�
Ak

�e�Bk
�
1 � e�Ak

�
1e

�
Bk

�

� e�Ak
�e�1Bk

� � e�1Ak
�e�Bk

��:

We will now simplify this expression, and show that CAB
can be expressed solely in terms of C1

����, the perturba-
tion of the Weyl tensor.

The main source of simplification comes from the
algebraic properties of the unperturbed Weyl tensor:
The last two terms within the brackets vanish by virtue
of Eq. (2.34), and the first two can be rewritten with the
help of Eq. (2.35). This gives

CAB � C1
����e

�
Ak

�e�Bk
� � 2Re� 2��ABk�k

�
1 :

Next we decompose e�A in the basis of complex vectors
�e�; �e�� introduced in Sec. II D; the relations are e�A �
�eAe� � eA �e� with the coefficients eA � �ABeB obtained
from Eq. (2.22). This yields
084044
C1
����e

�
Ak

�e�Bk
� � �eA �eBC

1
����e

�k�e�k�

�eAeBC
1
���� �e

�k� �e�k�

�� �eAeB � eA �eB�C1
����e

�k� �e�k�

for the first term in the previous expression for CAB. The
factor within brackets is �AB, and by virtue of the sym-
metries of the Weyl tensor and the completeness relations
of Eq. (2.21), we also have C1

����e
�k� �e�k� �

1
2g

��C1
����k

�k�, where g�� is the inverse of the Kerr
metric. But because the perturbed Weyl tensor must be
traceless in the perturbed metric, 0 � ĝ��Ĉ���� �

�g�� � 6h����C���� � 6C1
�����, where 6h�� 


ĝ�� � g�� is the metric perturbation. We therefore have
g��C1

���� � h��C����, and gathering these results we
obtain

C1
����e

�
Ak

�e�Bk
� � �eA �eBC

1
����e

�k�e�k�

� eAeBC
1
���� �e

�k� �e�k�

�
1

2
�ABh

��C����k
�k�:

We may simplify this further by using Eq. (2.36), and we
now have

CAB � �eA �eBC1
����e

�k�e�k� � eAeBC1
���� �e

�k� �e�k�

� 2Re� 2��AB

�
1

2
h��k

�k� � k�k
�
1

	
:

In the last step we recognize that the vector k̂� must be
null in the metric ĝ��, so that 0 � �g�� � 6h����k� �

6k�1 ��k� � 6k�1 � � 6�2k�k�1 � h��k�k��. We finally ar-
rive at the expression

CAB � �eA �eBC
1
����e

�k�e�k� � eAeBC
1
���� �e

�k� �e�k�;

(5.2)

which involves only the perturbed Weyl tensor and the
Kerr basis vectors.

The Weyl scalar of the perturbed spacetime is defined
as in Eq. (2.28),

� ̂0 � Ĉ����k̂
�m̂�k̂�m̂�: (5.3)

Expansion in powers of 6 gives  ̂0 � 6 1
0 �O�62�. After

dropping the label ‘‘1’’ and setting 6 � 1, we obtain

� 0 � C1
����k

�m�k�m� � 2C����k
�m�k�m�

1

� 2C����k�m�k�1m
�:

The last two terms vanish by virtue of Eq. (2.37), and we
have � 0 � C1

����k
�m�k�m�. We now express m� in

terms e� and k�, as in Eq. (2.23). This yields

� 0 � C1
����k

�e�k�e� (5.4)

as our final expression for the Weyl scalar.
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The relation between CAB and  0 is obtained by sub-
stituting Eq. (5.4) into Eq. (5.2). We write this as

CAB � �eA �eB
 � eAeB �
; (5.5)

where


�v; 
A� 
 � 0�HH� 
 �
�2

4�r2 � a2�2
 0�K� (5.6)

is our main curvature variable. We choose, for conve-
nience, to absorb a minus sign into the definition of 
.
The first equality in Eq. (5.6) states that apart from this
minus sign, 
 is the Weyl scalar  0 as defined with the
Hartle-Hawking tetrad [2,26], evaluated on the horizon
and expressed in terms of the horizon coordinates. The
second equality gives the relationship between 
 and the
Weyl scalar as defined with the Kinnersley tetrad [2,36],
evaluated in the limit r ! r� in which  0�K� diverges as
��2.

The Weyl scalars in either choice of tetrad, and there-
fore 
, can be obtained by solving the Teukolsky equa-
tion. Because 
 is a scalar that vanishes in the Kerr
spacetime, this quantity is gauge invariant. These two
properties make 
�v; 
A� an especially useful choice of
variable to describe the horizon perturbation.

B. Fluxes

We obtain the shear tensor by inserting theWeyl tensor
of Eq. (5.5) into Eq. (4.9). Because the transverse vectors
eA depend on 
A only, we obtain

�AB�v; 
A� � �eA �eB� � eAeB ��; (5.7)

where

��v; 
A� �
Z 1

v
e���v0�v�
�v0; 
A�dv0 (5.8)

is the future integral of the Weyl scalar 
, weighted by
the exponential factor e���v0�v� so that only the near
future contributes significantly.

The metric perturbation is obtained by substituting
Eq. (5.5) into Eq. (4.12). Here we obtain

�1
AB�v; 


A� �
2

�
� �eA �eB � eAeB ��; (5.9)

where

�v; 
A� � ��v; 
A� � ��v; 
A�; (5.10)

with

��v; 
A� �
Z v

�1

�v0; 
A�dv0 (5.11)

representing the past integral of theWeyl scalar (weighted
uniformly).

Eqs. (5.7) and (5.9) can now be substituted into
Eqs. (4.22), (4.23), and (4.24) to obtain expressions for
the fluxes. Because the basis vectors eA do not depend on
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v nor ), we have that LkeA � L)eA � LteA � 0, and
the derivative operators act only on �. Using the prop-
erties eAeA � 0 and eA �eA � 1 of the basis vectors—re-
call Eq. (2.20)—we obtain, for example

h _Mi �
1

8��

I
h�Lt

� � ��LtidS:

Using now Eq. (2.9), we arrive at the following expression
for the mass flux:

h _Mi �
r2� � a2

8��

I
h�Lt

� � ��Ltid�; (5.12)

where d� � sin
d
d) is an element of solid angle on the
unit two-sphere. We obtain similarly

h _Ji � �
r2� � a2

8��

I
h�L)

� � ��L)id�; (5.13)

for the flux of angular momentum, and

�
8�

h _Ai �
r2� � a2

4�

I
hj�j2id� (5.14)

for the rate of increase of the horizon area.
In Eqs. (5.12), (5.13), and (5.14) it is understood that

the integrated-curvature fields ��v; 
A� are expressed in
terms of the horizon coordinates, and that the Lie-
derivative operators take the form given by Eq. (4.25).
At a later stage we will remove this remaining depen-
dence on the horizon coordinates, and express all quanti-
ties in terms of the original spacetime coordinates.

C. Pure mode; comparison with Teukolsky and Press

Suppose that the Weyl scalar of Eq. (5.6) has the form


�v; r�; 
;  � � 
m;!�
�e�i!veim (5.15)

when expressed in terms of the spacetime coordinates;
this solution to the Teukolsky equation is then a pure
mode of frequency ! and azimuthal number m. In terms
of the horizon coordinates we have


�v; 
A� � 
m;!�
�e�ikveim); (5.16)

we recall that ) �  � �Hv, and k � !�m�H was
first introduced in Eq. (4.18). We wish to calculate the
rates of change of mass, angular momentum, and area for
this pure mode, and to compare our results with those first
obtained by Teukolsky and Press [1].

Substituting Eq. (5.16) into Eqs. (5.8), (5.11), and (5.10)
yields

� �

m;!�
�
�� ik

e�ikveim); (5.17)

� �

m;!�
�

�ik
e�ikveim); (5.18)

and
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 �
�
m;!�
�

�ik��� ik�
e�ikveim): (5.19)

It should be noted that while the integral defining �

converges properly for a pure mode, the integral defining
� diverges in the infinite past; this difficulty is rem-
edied by inserting a converging factor inside the integral,
for example ev

0=v1 with v1 	 k�1, to reflect the fact that
the pure mode was turned on in the finite (but remote)
past.

These expressions can now be substituted into
Eqs. (5.12), (5.13), and (5.14). When acting on a pure
mode, Lt produces a factor of �i!, L) a factor of im,
and Lk a factor of �ik. A simple computation gives

h _Mi �
!�r2� � a2�

k��2 � k2�

1

4�

I
j
m;!�
�j2d�; (5.20)

h _Ji �
m�r2� � a2�

k��2 � k2�

1

4�

I
j
m;!�
�j2d�; (5.21)

�
8�

h _Ai �
r2� � a2

�2 � k2
1

4�

I
j
m;!�
�j2d�: (5.22)

These relations are compatible with Eqs. (4.29), (4.30),
and (4.31) if we define the angular velocity of the pure
mode to be � � !=m; this follows from the fact that
according to Eq. (5.15), 
 depends on  and v only
through the combination  � �!=m�v, so that the pertur-
bation rotates rigidly with an angular velocity !=m.

To compare our expressions with those of Teukolsky
and Press [1] we must first reconcile the different nota-
tions. In their Eq. (4.40), Teukolsky and Press display the
near-horizon behavior of  0�K�—this is the Weyl scalar
as defined with the Kinnersley tetrad—in terms of Boyer-
Lindquist coordinates �tBL; r; 
; )BL�. They have

 0�K� � e�i!tBLeim)BHe�ikr���2
2Slm�
�Yhole;

where r� �
R
�r2 � a2���1dr � v� tBL, 2Slm�
� are the

Teukolsky angular functions, and Yhole is a normalization
factor. It is easy to check that after a transformation to the
well-behaved Kerr coordinates �v; r; 
;  �, and after the
rescaling of Eq. (5.6), this expression becomes


 � �
e�im��r��

2Slm�
�Yhole
4�r2� � a2�2

e�i!veim ;

where ��r� 
 �a�r2� � a2��1
R
�r� r���r� r���1dr is a

function that is well-behaved at r � r�. Here, r� 
 M�������������������
M2 � a2

p
denotes the position of the inner horizon.

The preceding equation relates our definition of

m;!�
� in Eq. (5.15) with the quantities introduced by
Teukolsky and Press. Inserting this into Eqs. (5.20) and
(5.21) returns
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�
d2M
dvd�


�

j2Slm�
�Yholej2

64��r2� � a2�3
!

k��2 � k2�

and �
d2J
dvd�


�

j2Slm�
�Yholej2

64��r2� � a2�3
m

k��2 � k2�
:

These are precisely the results obtained by Teukolsky and
Press [1] and displayed in their Eq. (4.44). Our formalism
(which is based partly on their work) is therefore consis-
tent with theirs.

D. Decomposition into azimuthal modes

Our aim in this subsection is to derive practical flux
formulas that are formulated in the time domain, in terms
of fields expressed in the spacetime coordinates
�v; r; 
;  �. We shall not, therefore, follow Teukolsky
and Press [1] and decompose 
 into modes proportional
to e�i!veim , so as to work in the frequency domain. But
we will still decompose the Weyl scalar into azimuthal
modes proportional to eim , and write


�v; r�; 
;  � �
X
m


m�v; 
�eim : (5.23)

This decomposition is motivated by the axial symmetry
of the Kerr spacetime, which implies that each mode
labeled by m will evolve independently. Such a decom-
position is therefore likely to be involved in most at-
tempts to integrate the Teukolsky equation numerically,
in the time domain. It will also allow us to remove the
remaining dependence of our flux formulas on the horizon
coordinates �v; 
A�. It should be noted that the flux for-
mulas of Eqs. (5.12), (5.13), and (5.14) do not require 
 to
be decomposed into modes; they are therefore ready to be
used in situations where an azimuthal decomposition is
not attempted. But the implementation of these formulas
is delicate, because � must be evaluated by integrating

�v0; r�; 
;  � along the horizon generators (integrating
over dv0 keeping ) 
  � �Hv0 constant). Our azimu-
thal decomposition will accomplish this automatically.

Substituting Eq. (5.23) into Eqs. (5.8) and (5.11) gives
us the azimuthal decomposition of the integrated curva-
tures, which we express in terms of the horizon coordi-
nate ) instead of the spacetime angle  :

��v; 
A� �
X
m

m
��v; 
�eim); (5.24)

where

m
��v; 
� � e�v

Z 1

v
e����im�H�v0


m�v0; 
�dv0 (5.25)

and

m
��v; 
� �

Z v

�1
eim�Hv0


m�v0; 
�dv0: (5.26)
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Notice the presence of the oscillating factor eim�Hv0

within the integrals; this comes from the transformation
between) and and it reflects the fact that the generators
wrap around the horizon as v0 is integrated forward.
Notice also that Eqs. (5.25) and (5.26) are now indepen-
dent of ) or  , so that it is no longer necessary to specify
which is to remain constant during integration.

Equation (5.24) can now be substituted into Eqs. (5.12),
(5.13), and (5.14), in which  � � � �. In the hori-
zon coordinates �v; 
;)� the operator Lk is a partial
derivative with respect to v, L) produces a factor of
im, and Lt � Lk � �HL). Simple algebra and integra-
tion over d) give

h _Mi �
r2� � a2

4�

X
m

�
2�

Z
hjm

�j2i sin
d


�im�H

Z
h �m

�
m
� � m

�
�m

�i sin
d

�
; (5.27)

h _Ji � �
r2� � a2

4�

X
m

�im�
Z

h �m
�

m
� � m

�
�m

�i sin
d
;

(5.28)

and

�
8�

h _Ai �
1

2
�r2� � a2�

X
m

Z
hjm

�j2i sin
d
: (5.29)

These are the final form of the flux formulas. Notice that
these no longer involve the angles ) and  , and that all
fields are expressed in terms of v and 
, coordinates that
are shared by the spacetime and the horizon.

The steps required to compute h _Mi, h _Ji, and h _Ai are
therefore these (see also Sec. I C): First, solve the
Teukolsky equation [2] for the functions 
m�v; 
� defined
by Eq. (5.23), for all relevant values of m; recall from
Eq. (5.6) that 
 is (minus) the Weyl scalar  0 in the
Hartle-Hawking tetrad, evaluated at r � r�. Second,
compute the integrals of Eqs. (5.25) and (5.26) to obtain
m

��v; 
�. Third, and finally, substitute these values into
the flux formulas of Eqs. (5.27), (5.28), and (5.29), inte-
grate over d
, and sum over m.
VI. METRIC FORMALISM FOR
GENERAL BLACK HOLES

In this section I translate the flux formulas of
Eqs. (4.22), (4.23), and (4.24) into a more practical lan-
guage that involves metric variables. This translation is
most useful in the context of a Schwarzschild black hole,
for which the theory of metric perturbations is well
developed; I shall consider this specific case in the fol-
lowing section. In this section I keep the discussion
general, so that it applies to both rotating and nonrotating
black holes.
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A. Preferred gauge

We expand the metric of the perturbed black hole as

ĝ �� � g�� � 6h��; (6.1)

where g�� is the metric of the unperturbed spacetime —
the Kerr metric—and 6h�� is the perturbation. (As we
did previously, we keep 6 for book-keeping but we set it
equal to unity at the end of the calculation.) We wish first
to impose a number of gauge conditions on h��, which
will simplify its relationship with the quantity �1

AB in-
troduced in Sec. IVA.

Our preferred gauge is a ‘‘horizon-locking gauge’’; it
has the property that the coordinate positions of the
perturbed horizon are the same as those of the unper-
turbed (Kerr) horizon. As we shall see below, it is always
possible to make this choice of gauge. In the preferred
gauge the parametric description of the horizon genera-
tors is given by

ẑ ��v; 
A� � z��v; 
A�; (6.2)

with z��v; 
A� giving the parametric description of the
Kerr generators. This equality implies

k̂ � � k�; ê�A � e�A; (6.3)

so that the perturbation of the tangent vectors is identi-
cally zero: k�1 � 0 � e�1A in the notation of Sec. VA.

The vector k� must be null, and orthogonal to e�A , in the
metrics g�� and ĝ��. This observation gives rise to the
three gauge conditions

h��k�k� � 0 � h��k�e
�
A �preferred gauge�: (6.4)

These equations hold on the horizon only, and we shall
not need to extend them beyond the horizon. The pre-
ferred gauge is only partially determined, and the space
of transformations within the preferred-gauge class is
large.

For some purposes it will be convenient to supplement
the gauge conditions of Eq. (6.4) with a fourth condition,
h��k�N� � 0, so that we have the four conditions

h��k� � 0 �radiation gauge�: (6.5)

These conditions also hold on the horizon only, and again
we have a large space of gauge transformations within the
radiation-gauge class. The radiation gauge of Eq. (6.5) is
similar to the one introduced by Chrzanowski (his in-
going radiation gauge [38]); but it is distinct because
Chrzanowski imposes Eq. (6.5) as well as g��h�� � 0
globally in the Kerr spacetime [extending k� away from
the horizon as k��HH�, the first member of the Hartle-
Hawking tetrad]. The Chrzanowski radiation gauge is
therefore much more rigidly defined than (and a special
case of) the radiation gauge of Eq. (6.5).
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Equation (6.3) states that three of the basis vectors on
the horizon are not changed by the perturbation. The
fourth basis vector, N̂�, must be orthogonal to e�A in the
perturbed metric, and it must also satisfy ĝ��N̂

�k� �

�1. It is easy to see that these requirements imply
N̂� � N� � 1

26�h��N
�N��k�.

We have shown that the imposition of Eq. (6.2) implies
the gauge conditions of Eq. (6.4). We now examine the
reversed question: Does the imposition of the preferred-
gauge conditions imply that the coordinate description of
the horizon is the same in the unperturbed and perturbed
spacetimes? We shall show that the answer is in the
affirmative.

Suppose that on the contrary, the perturbed horizon is
displaced with respect to its unperturbed position. The
parametric description of the generators is then

ẑ ��v; 
A� � z��v; 
A� � 69��v; 
A�; (6.6)

where the vector 69� points from a point identified by
�v; 
A� on the unperturbed horizon to a point (carrying
the same intrinsic coordinates) on the perturbed horizon.
We shall show below that if Eq. (6.4) holds, then 9� must
be tangent to the horizon; it can then be decomposed as
9� � ak� � aAe�A for some coefficients a and aA. If 9� is
tangent to the horizon, then it maps a point �v; 
A� on one
generator to another point �v0; 
0

A� on another generator.
(If 
0

A � 
A the vector links two points on the same
generator; this happens when aA � 0.) Because the map-
ping preserves the coordinate labels, this amounts to
performing a transformation �v0; 
0

A� ! �v; 
A� of the
horizon’s intrinsic coordinates. This transformation can
always be undone, and we conclude that 9� can be made
to vanish whenever it is tangent to the horizon: k�9� �
0 ) 9� � 0. By showing that k�9� � 0 follows from
Eq. (6.4) we therefore prove that Eq. (6.4) implies
Eq. (6.2).

According to Eq. (6.6) the perturbed basis vectors are
k̂� � k� � 69�;�k

� and ê�A � e�A � 69�;�e
�
A . The per-

turbed metric at the new horizon position is ĝ���z�

69� � g���z� 69� � 6h���z� � g�� � 6�g��;�9� �

h���, with all fields now evaluated at z, the position of the
unperturbed horizon. Let now ê�a stand for any one of the
vectors k̂�, ê�A , and e�a for the corresponding unperturbed
vector. The statement ĝ���z� 69�k̂�ê�a � 0, when ex-
panded in powers of 6, leads to

�L9g�� � h���k�e�a � 0:

The gauge conditions h��k�e
�
a � 0 therefore imply

k�e�aL9g�� � 0, or

k�k�L9g�� � 0 � k�e�AL9g��: (6.7)

These equations come with an immediate interpretation:
L9g�� is the change in h�� produced by a gauge trans-
formation generated by the vector field 9�; Eq. (6.7) in-
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dicates that this transformation must preserve the gauge
conditions of Eq. (6.4).

The first of Eq. (6.7) can be expressed in the form
�k�9��;�k� � k�;�k

�9� � 0, or

@
@v

�k�9
�� � ��k�9

�� (6.8)

after using Eq. (3.2). If we restrict ourselves to situations
in which the event horizon starts in a stationary state,
then 9� � 0 initially, and Eq. (6.8) implies that k�9� � 0
at all times. We therefore have the statement that 9� is
tangent to the horizon, and the proof that Eq. (6.4) implies
Eq. (6.2).

The second of Eq. (6.7) can be expressed in the form

@
@v

�e�A9�� � �
@

@
A
�k�9�� � 2!A�k

�9��; (6.9)

where !A was introduced in Eq. (2.14). With k�9� � 0
and 9� � 0 initially, this equation states that e�A9� � 0 at
all times. We therefore see that 9� must be directed along
k�, so that a point �v; 
A� is necessarily mapped to a point
�v0; 
A� on the same generator. This simply corresponds to
a reparametrization v ! v0�v; 
A� of the generators, and
we conclude that 9� can be set equal to zero whenever
Eq. (6.4) is enforced.

B. Metric and Lie derivatives

In the preferred gauge defined by Eqs. (6.2), (6.3), and
(6.4), the perturbed horizon is in the same coordinate
position as the Kerr horizon, and the perturbed horizon
metric is �̂AB � ĝ��ê

�
Aê

�
B � �AB � 6h��e

�
Ae

�
B , having

used Eq. (6.3). This means that the metric perturbation
is given by

�1
AB � h��e�Ae

�
B: (6.10)

The Lie derivative of �1
AB in the direction of k� is

calculated as Lk�1
AB � �h��e�Ae

�
B�;�k�. The covariant de-

rivative of e�A in the direction of k� is evaluated in
Eq. (2.14), and we have Lk�

1
AB � h��;�e

�
Ae

�
Bk

� �

�!Ae
�
B � e�A!B�h��k

�. Using Eq. (6.4), we arrive at

L k�
1
AB � 2�AB � h��;�e

�
Ae

�
Bk

�: (6.11)

The Lie derivative of �1
AB in the direction of )� is

calculated in a similar way. Here we need the covariant
derivative of e�A in the direction of)�, which is evaluated
as

e�A;�)
� � e�A;�e

�
C)

C � �pACk� � $BACe
�
B�)

C;

in which we expressed )� as )Ce�C—refer back to
Sec. II C—and substituted Eq. (2.15). Gathering the re-
sults and using Eq. (6.10) as well as the gauge conditions
of Eq. (6.4), we obtain L)�

1
AB � h��;�e

�
Ae

�
B)

� �

2�1
D�A$

D
B�C)

C. We now use the identity cA
D 
 )D

jA �

$DAC)
C (which follows from the definition of intrinsic
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covariant differentiation and the fact that )C does not
depend on the horizon coordinates) to manipulate the
terms involving the horizon connection. We arrive at

L )�1
AB � h��;�e�Ae

�
B)

� � cA
C�1

CB � cB
C�1

CA: (6.12)

Recall that the antisymmetric 2-tensor cAB 
 �)AjB was
defined and evaluated in Sec. II C; see Eq. (2.17).

We now define a four-dimensional version of this tensor
with the relation

c�� � cABe�Ae
�
B; (6.13)

where the indices on cAB are raised with �AB, the inverse
of the Kerr horizon metric; this relation is inverted by
cAB � c��e�Ae

�
B . With Eqs. (6.10) and (6.13) we have

cA
C�1

CB � c��h��e�Ae
�
B��CDe�Ce

�
D�:

Using now the completeness relations of Eq. (2.12) and
the properties c��k� � c��N

� � 0, we obtain cA
C�1

CB �

c�
�h��e

�
Ae

�
B and Eq. (6.12) becomes

L )�
1
AB � h��;�e

�
Ae

�
B)

� � �c�
�h�� � c�

�h���e�Ae
�
B:

(6.14)

Finally, the Lie derivative of �1
AB in the direction of t�

is calculated as Lt�
1
AB � Lk�

1
AB � �HL)�

1
AB. From

Eqs. (6.11) and (6.14) we obtain

L t�
1
AB � h��;�e

�
Ae

�
Bt
� � �H�c�

�h�� � c�
�h���e

�
Ae

�
B:

(6.15)
C. Fluxes

It is a straightforward matter to substitute Eqs. (6.11),
(6.14), and (6.15) into the flux formulas of Eqs. (4.22),
(4.23), and (4.24). We first obtain

�ABLk�1
AB �

1

2
F�k�;

�ABL)�1
AB �

1

2
�F�)� �G�;

�ABLt�
1
AB �

1

2
�F�t� � �HG�;

where

F�9� 
 h��;�k�h��;696�eA�e
�
A ��eB�e�B�

and

G 
 h��;�k��c�6h6� � c�6h6���eA�e�A ��eB�e�B�:

By virtue of Eq. (2.12), eA�e�A � g�� � k�N� �
N�k�, and this identity can be used to simplify our
expressions for F�9� and G. To simplify things further
we also write
084044
k�h��;�9� � �h��k��;�9� � h��k�;�9�;

and we note that according to Eqs. (2.13) and (2.14) , any
tangential derivative of the form k�

k;�9
� is necessarily

proportional to k�. The preceding equation therefore
becomes

k�h��;�9� � �h��k��;�9� � p�9��h��k��;

where p�9� is a proportionality factor that depends on the
choice of vector 9�; for example, p�k� � � and p�)� �
!A)A. At this stage it is convenient to supplement the
three gauge conditions of Eqs. (6.4) with the fourth
condition implied by Eq. (6.5); adopting the radiation
gauge allows us to set h��k� � 0 on the horizon, and
therefore to discard all terms of the form k�h��;�9

�. This
greatly simplifies our expressions for F�9� and G. After
carrying out these manipulations we obtain

F�9� � h��;�k�h��;�9
�

and

G � 2h��;�k�c��h�
�:

Substituting these results into Eqs. (4.22), (4.23), and
(4.24) we arrive at

h _Mi �
I
T��k

�t�dS� �H

I
qdS; (6.16)

h _Ji � �
I
T��k�)�dS�

I
qdS; (6.17)

�
8�

h _Ai �
I
T��k�k�dS; (6.18)

where

T�� 

1

32�
hh��;�h

��
;�i (6.19)

and

q 

1

16�
hh��;�k�c�6h6

�i: (6.20)

We recall that these results are formulated in the radiation
gauge of Eq. (6.5). And we mention that an alternative
expression for q is

q � �
1

16�
h)�

;�h
�
�h

�
�;�k

�i; (6.21)

this follows from substituting the (easily-derived) iden-
tity c�� � �)�;� �)�;�N

�k� �)�;�N
�k� into

Eq. (6.20) and simplifying the result.
The integrals involving T�� in Eqs. (6.16), (6.17), and

(6.18) are formally identical to the flux formulas that
would be obtained for a horizon perturbed by a matter
field with stress-energy tensor T�� (see, for example,
Sec. 6.4.2 of Ref. [37], or Sec. 4.3.6 of Ref. [30]). It is
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therefore tempting to view Eq. (6.19) as a definition of an
effective stress-energy tensor for gravitational radiation
crossing the event horizon. While in general the integrals
involving q spoil this interpretation, we see that there
exists an approximate regime in which the interpretation
is sound: this is the high-frequency regime first investi-
gated by Isaacson [31,32]. Schematically, T � �rh�2

while q� hrh, and the additional derivative ensures
that T�� dominates over q in the high-frequency limit.
And indeed, our expression for T��, as given by
Eq. (6.19), does agree with Isaacson’s effective stress-
energy tensor. It should be noted that the time averaging
involved in Eq. (6.19) is different from the spacetime
(Brill-Hartle [39]) averaging used in Isaacson’s construc-
tion; but it is plausible that the two averaging procedures
are reconciled after T�� is integrated over dS. It should
also be noted that while Eq. (6.19) is formulated in the
radiation gauge of Eq. (6.5), Isaacson has shown that the
expression is actually gauge invariant in the high-
frequency limit.

The flux formulas of Eqs. (6.16), (6.17), and (6.18) are
not limited to the high-frequency regime; they can be
applied in general situations, provided that the metric
perturbation h�� satisfies the gauge conditions h��k� �

0 on the horizon. These formulas could in principle be
used in tandem with Chrzanowski’s metric reconstruction
[38,40–42] to calculate the absorption of mass and an-
gular momentum by a Kerr black hole. But to proceed
like this would be much more involved than to proceed
directly with the curvature formalism of Sec. V. The flux
formulas could also be used in the context of a
Schwarzschild black hole, but the formulation given
here is not optimal and I shall refine it in the following
section. My main purpose in this section was to introduce
the preferred gauge (which will be used also in Sec. VII)
and to establish the preceding connection with Isaacson’s
effective stress-energy tensor [31,32].
VII. METRIC FORMALISM FOR
SCHWARZSCHILD BLACK HOLES

In this section I fulfill the promise made in Sec. VI, to
translate the flux formulas of Eqs. (4.22), (4.23), and
(4.24) into a more practical language that involves the
metric perturbations of a Schwarzschild black hole. The
key aspects of the theory of first-order perturbations of
this spacetime are summarized in the Appendix.

A. Background spacetime

The Schwarzschild metric in Eddington-Finkelstein
coordinates �v; r; 
;)� is given by

ds2 � �fdv2 � 2dvdr� r2d�2; (7.1)

where f � 1 � 2M=r and d�2 � �ABd
Ad
B � d
2 �
sin2
d)2. The subset of coordinates �v; 
;)� is used on
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the horizon; v is a parameter on the null generators, and

A � �
;)� are comoving coordinates. In the spacetime
coordinates �v; r; 
;)� the basis vectors are k� �
�1; 0; 0; 0�, N� � �0;�1; 0; 0�, e�
 � �0; 0; 1; 0�, and e�) �

�0; 0; 0; 1�. The metric of the unperturbed horizon is
�AB � r2��AB, where r� � 2M.

B. Metric perturbation

The metric perturbation 6h�� (denoted �g�� in the
Appendix) is cast in the radiation gauge of Eq. (6.5). We
therefore impose h��k� � 0 on the perturbed horizon,
which is still located at r � r� —see the discussion of
Sec. VI A. The gauge conditions imply that the compo-
nents hv� of the metric perturbations all vanish.
According to Eq. (6.10) the perturbation of the horizon
metric is

�1
AB � h��e�Ae

�
B; (7.2)

where e�A are the background basis vectors.
The odd-parity sector of the perturbations is described

by Eqs. (A14) and (A15) and it involves the functions hlmr
and hlm2 of the coordinates �v; r�. The combinations of
Eq. (A16) are gauge invariant, and they are used in
Eq. (A18) to form the Regge-Wheeler function

lm

RW�v; r� [3], which is also gauge invariant. A simple
calculation shows that near the horizon,


lm
RW �

1

2r�

@hlm2
@v

�O�f�;

so that h2�v; r�� � 2r�
R
v
lm

RW�v0; r��dv0. The odd-
parity sector of Eq. (7.2) is therefore

�1;odd
AB �v; 
A� � 2r�

X
lm

XlmAB�

A�
Z v


lm
RW�v0; r��dv0;

(7.3)

where XlmAB�

A� are the odd-parity tensorial harmonics

introduced in Eq. (A8). Here and below, the sum over l
is restricted to l � 2, and the sum overm extends from �l
to l.

The even-parity sector of the metric perturbations is
described by Eqs. (A20)–(A22) and it involves the func-
tions hlmrr , jlmr , Klm, and Glm of the coordinates �v; r�. The
combinations of Eq. (A23) are gauge invariant, and they
are used in Eq. (A24) to form the Zerilli-Moncrief func-
tion 
lm

ZM�v; r� [4,13,43], which is also gauge invariant. A
simple calculation shows that near the horizon,


lm
ZM � �

4r2�
l�l� 1��l2 � l� 1�

@
@v

�
Klm �

1

2
l�l� 1�Glm

�
�

2r�
l�l� 1�

Klm �O�f�:

On the other hand, an analysis of the linearized field
equations near the horizon shows that in the absence of
-20



ABSORPTION OF MASS AND ANGULAR MOMENTUM BY. . . PHYSICAL REVIEW D 70 084044
sources, Klm � 1
2 l�l� 1�Glm �O�f�, so that Klm�v;r���

1
2l�l�1�Glm�v;r��� 1

2l�l�1�r�1
� 
lm

ZM�v;r��. The even-
parity sector of Eq. (7.2) is therefore

�1;even
AB �v; 
A� � r�

X
lm

ZlmAB�

A�
lm

ZM�v; r��; (7.4)

where ZlmAB�

A� are the even-parity tensorial harmonics

introduced in Eq. (A7).
The complete perturbation of the horizon metric is

given by the sum of Eqs. (7.3) and (7.4),

�1
AB � r�

X
lm

�
2XlmAB

Z v

lm

RW�v0�dv0 � ZlmAB

lm
ZM�v�

�
;

(7.5)

where we have set 
lm
RW�v0� 
 
lm

RW�v0; r�� and

lm

ZM�v� 
 
lm
ZM�v; r��. Notice that this tensor is trace-

free: �AB�1
AB � 0. The fact that �1

AB is related to the
integral of the Regge-Wheeler function means that this
variable is rather ill-suited to describe ingoing gravita-
tional radiation crossing the event horizon; a similar
statement is made in subsection 5 of the Appendix, about
outgoing radiation at future null infinity.

The shear tensor is obtained by differentiating 1
2�

1
AB

with respect to v, and

�AB �
r�
2

X
lm

�
2XlmAB


lm
RW�v� � ZlmAB

_
lm
ZM�v�

�
; (7.6)

this is also equal to 1
2Lk�1

AB and 1
2Lt�1

AB. Because the
spherical harmonics are all proportional to eim), we also
have

L )�1
AB� r�

X
lm

�im�

�
2XlmAB

Z v

lm

RW�v0�dv0

�ZlmAB

lm
ZM�v�

�
: (7.7)

C. Fluxes

It is a straightforward task to substitute the preceding
results for �AB, Lk�AB, Lt�AB, and L)�AB into the flux
formulas of Eqs. (4.22), (4.23), and (4.24), and then to
integrate over dS � r2� sin
d
d). The integrations can
be carried out explicitly with the help of the orthogonal-
ity relations of Eqs. (A11) and (A12), and we arrive at

h _Mi �
1

64�

X
lm

�l� 1�l�l� 1��l� 2�h4j
lm
RW�v�j2

� j _
lm
ZM�v�j2i (7.8)

and

h _Ji �
1

64�

X
lm

�l� 1�l�l� 1��l� 2��im�

�
4
lm

RW�v�

�
Z v

�
lm
RW�v0�dv0 � _
lm

ZM�v� �
lm
ZM�v�


: (7.9)

Notice that except for the substitution u ! v, these for-
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mulas are identical to Eqs. (A26) and (A27), which give
the rates at which energy and angular momentum are
transported to future null infinity. Note also that for a
nonrotating black hole, the first law of black-hole me-
chanics reduces to ��=8��h _Ai � h _Mi. Finally, note that
although it involves complex quantities, the expression
for h _Ji is real; this property follows from the identity

l;�m � ��1�m �
lm, which is inherited from the spheri-
cal harmonics, and which is satisfied by both the Regge-
Wheeler and Zerilli-Moncrief functions.

Eqs. (7.8) and (7.9) give the final form of the flux
formulas for the case of a Schwarzschild black hole.
The steps required to compute h _Mi, h _Ji, and h _Ai are
therefore these (see also Sec. I D): First, solve the
Regge-Wheeler [3] and Zerilli [4] equations for the func-
tions 
lm

RW�v; r� and 
lm
ZM�v; r� defined in the Appendix,

for all relevant values of l and m. Second, evaluate the
functions at r � r� and compute the integral of

lm

RW�v; r�� and the derivative of 
lm
ZM�v; r��. Third,

and finally, substitute these functions into the flux for-
mulas of Eqs. (7.8) and (7.9) and sum over l and m.

These flux formulas were first presented and used by
Martel [14] in his exploration of gravitational-wave pro-
cesses associated with the motion of a small-mass body
around a Schwarzschild black hole. Although he arrived
at the correct results, the derivation of Eqs. (7.8) and (7.9)
given by Martel is flawed—it incorporates both a con-
ceptual and a computational error. The conceptual error is
that Martel based his derivation on Isaacson’s effective
stress-energy tensor for gravitational waves [31,32], in-
correctly assuming that the high-frequency description is
always applicable near the event horizon of a black hole
(as it always is near future null infinity). This assumption
was motivated by the observation that for a stationary
observer just above the event horizon, any incoming
gravitational wave would appear highly blueshifted.
While the observation is of course valid, the observer-
dependent blueshift does not by itself produce a pertur-
bation that satisfies the assumptions underlying Isaacson’s
construction—the static Schwarzschild coordinates do
not form a ‘‘steady’’ coordinate system near the horizon.
Martel’s starting point was therefore Eqs. (6.16) and
(6.17) without the integrations over q, and this should
have led him to the wrong formula for the flux of angular
momentum (the q integral does not contribute to h _Mi,
because �H � 0 for a nonrotating black hole). That he
nevertheless obtained Eq. (7.9) is due to a computational
error that accidentally compensated for the absence of the
q integral.

VIII. SMALL-HOLE/SLOW-MOTION
APPROXIMATION FOR A SCHWARZSCHILD

BLACK HOLE

In this and the following section I describe an applica-
tion of the flux formulas obtained in Sec.Vand VII. I shall
-21
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evaluate h _Mi and h _Ji in a small-hole/slow-motion ap-
proximation in which the ratio M=R, where M is the
black-hole mass and R the radius of curvature of the
spacetime in which the black hole moves, is assumed to be
small. I begin in this section with a nonrotating black
hole, and I will consider the case of a rotating black hole
in Sec. IX.

A. The SH/SM approximation

We imagine a situation in which a black hole of massM
is not at rest and isolated, but moves in a spacetime that
may contain a number of additional bodies. The radius of
curvature of this external spacetime is denoted R, and
although this may depend on M (if the geometry of the
external spacetime is significantly influenced by the black
hole), we assume that

M=R � 1 �small-hole/slow-motion approximation�:

(8.1)

More precisely, we assume that M is much smaller than
all of R, L, and T , where L is the scale of inhomoge-
neity in the external universe, and T is the time scale
over which changes occur in the external universe. To
simplify the notation we take R, L, and T to be of the
same order of magnitude. (These quantities, and many of
the concepts used throughout Secs. VIII and IX, are
defined precisely in Thorne and Hartle [33]; the reader
is referred to this paper for details.)

Near the black hole the spacetime resembles closely the
spacetime of an isolated black hole: the gravitational field
is strongly dominated by the hole’s contribution, and the
influence of the external universe is weak. But the hole is
not truly isolated, and it is slightly distorted by the tidal
gravitational field supplied by the external universe. As a
result of this interaction, the hole’s mass and angular
momentum change with time, and we wish here to cal-
culate these changes.

When viewed on the large scale R, the black hole
occupies a very small region of the actual spacetime,
and this region can be idealized as a world line � in the
external spacetime. Let u� be the (normalized) tangent
vector to this world line, and call this the four-velocity of
the black hole in the external spacetime. It can be shown
that to a very good degree of accuracy, the motion of the
black hole is geodesic in this spacetime [19,44–48]. Let
e�a (with the index a running from 1 to 3) be a set of
orthonormal vectors attached to �; let these vectors be
orthogonal to u� and choose them to be parallel trans-
ported on the world line. The tetrad �u�; e�a � defines a
reference frame in a neighborhood of �, and we shall call
this frame the local asymptotic rest frame of the black
hole in the external spacetime.

We assume that the Ricci tensor of the external space-
time vanishes in a neighborhood of �, so that no matter
will appear in the vicinity of the black hole. The curva-
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ture of the external spacetime in this neighborhood is
therefore described entirely by the Weyl tensor C����.
The Weyl tensor evaluated on the world line can be
decomposed in the tetrad �u�; e�a �; we write, for example,
C0c0d�v� 
 C�������u�e�c u�e�d and C0cbd�v� 


C�������u�e�c e
�
b e

�
d , with v denoting proper time on

�—it will later be identified with an advanced-time
coordinate on the black-hole horizon. It is easy to show
that the frame tensors [33]

E ab�v� � C0a0b�v�; Bab�v� �
1

2
"a

cdCcdb0�v�;

(8.2)

where "abc is the permutation symbol (all frame indices
are lowered and raised with �ab and its inverse, respec-
tively), are symmetric and trace-free, and that their com-
ponents comprise all ten independent components of the
Weyl tensor. These frame tensors are the tidal gravita-
tional fields supplied by the external universe, and these
are responsible for the tidal distortion of the black hole.

It will be convenient to promote the tidal fields Eab and
Bab to four-dimensional spacetime tensors. We therefore
define

E �� � Eabe
a
�e

b
�; B�� � Babe

a
�e

b
�; (8.3)

where ea� 
 �abg��e
�
b . It is not difficult to show that

these tensors are also given by

E �� � C����u�u� (8.4)

and

B �� �
1

2
u�"��

��C����u
�; (8.5)

where the Levi-Civita tensor "���� and the Weyl tensor
C���� are evaluated on the world line �.

As an example of a SH/SM situation, consider a black
hole of mass M on a circular orbit of radius b in the
gravitational field of an external body of mass Mext. The
radius of curvature of the external spacetime at the posi-
tion of the black hole is such that R�2 � �M�Mext�=b3,
and we have

M
R

�
M

M�Mext
V3; V �

���������������������
M�Mext

b

s
; (8.6)

where V is a measure of the hole’s orbital velocity. There
are many ways by which M=R can be made small. One
way is to let M=Mext � 1; then M=R will be small
irrespective of the magnitude of V. This is the small-
hole approximation, which allows the small black hole to
move at relativistic speeds in the strong gravitational field
of the external body. Another way is to let V � 1; then
M=R will be small for all mass ratios. This is the slow-
motion approximation, which allows the slowly-moving
black hole to have a mass comparable to (or even much
-22
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larger than) Mext. These two limiting approximations are
special cases of the fundamental requirement that M=R
be small; we therefore call the approximation M=R � 1
the SH/SM approximation.

B. Metric of a tidally-distorted black-hole

My considerations thus far have been general, and they
apply to rotating as well as nonrotating black holes. I now
specialize to nonrotating black holes.

The metric of a Schwarzschild black hole immersed in
an external universe can be obtained by solving the
Einstein field equations. Because the tidal potentials scale
as �r=R�2 � 1, where r is a measure of distance from the
black hole, it is sufficient to linearize the equations with
respect to the Schwarzschild solution; this is a standard
application of black-hole perturbation theory. Explicit
forms for the metric were obtained by Manasse [44],
Alvi [49], Detweiler [50], and Poisson [51], and I sum-
marize their results here. I follow the description of
Ref. [51], but I switch from the retarded coordinates
�u; r; 
A� used there to a set of advanced coordinates
�v; r; 
A� which are well-behaved on the event horizon;
the expressions for the perturbed metric are identical,
except for the correspondence du ! �dv.

The metric takes the form of an expansion in powers of
r=R, but it is correct to all orders in M=r. It is given by

gvv � �f�1 � r2fE�� �O�r3=R3�; (8.7)

gvr � 1; (8.8)

gvA � �
2

3
r3f�E�

A � B�
A� �O�r4=R3�; (8.9)

gAB � r2�AB �
1

3
r4
��

1 �
2M2

r2

	
E�
AB � B�

AB

�
�O�r5=R3�; (8.10)

where f � 1 � 2M=r. The irreducible tidal fields are
defined by

E � �
X
m
EmY

m; (8.11)

E �
A �

1

2

X
m
EmYm

:A; (8.12)

E �
AB �

X
m
EmZ

m
AB; (8.13)

B �
A �

1

2

X
m
BmX

m
A ; (8.14)

B �
AB � �

X
m
BmXm

AB; (8.15)
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where Ym, Ym
:A, Zm

AB, Xm
A , and XA

AB are the real spherical
harmonics of degree l � 2 that are introduced in subsec-
tion 2 of the Appendix, and

E 0 � E33 � ��E11 � E22�; (8.16)

E 1c � 2E13; (8.17)

E 1s � 2E23; (8.18)

E 2c �
1

2
�E11 � E22�; (8.19)

E 2s � E12; (8.20)

with corresponding relations defining Bm. (Notice that a
typographical error contained in Ref. [51] is hereby
corrected.)

In the limit M=r ! 0 (keeping r=R fixed), the metric
of Eqs. (8.7), (8.8), (8.9), and (8.10) becomes the metric of
the external spacetime expressed as an expansion in
powers of r=R about the timelike geodesic �. In this
limit the interpretation of v as proper time on the world
line becomes precise, and Eab�v�, Bab�v� are recognized
as frame components of the Weyl tensor evaluated on �.
In the limit r=R ! 0 (keeping M=r fixed), the metric of
Eqs. (8.7), (8.8), (8.9), and (8.10) becomes the metric of an
isolated Schwarzschild black hole expressed in ingoing
Eddington-Finkelstein coordinates; there is no notion of a
world line � in this limit. For small values of r=R and
arbitrary values of M=r, the metric of Eqs. (8.7), (8.8),
(8.9), and (8.10) describes a black hole distorted by the
tidal gravitational fields supplied by the external universe.

The metric perturbation h�� defined by Eqs. (8.7),
(8.8), (8.9), and (8.10) satisfies the conditions h��k�k� �

h��k�e
�
A � 0 at r � r� � 2M, because hvv and hvA are

all proportional to f � 1 � 2M=r. The metric perturba-
tion therefore satisfies the preferred gauge conditions of
Eq. (6.4). It can also be checked directly from the metric
that the hypersurface r � 2M is null, and that its gener-
ators move with constant values of 
A. The parameter on
the generators is v, and a short calculation reveals that the
surface gravity � is equal to its Schwarzschild value
�4M��1 up to a fractional correction of order �M=R�3.

C. Odd-parity contribution to shear

Although the metric of the tidally distorted black hole
is already expressed in the preferred gauge, it is safer (and
as it turns out, necessary) to calculate the shear tensor
�AB by first obtaining the gauge-invariant Regge-
Wheeler [3] and Zerilli-Moncrief [4,13,43] functions;
the relation between these quantities is given by
Eq. (7.6). We begin here with the odd-parity piece of the
shear tensor. A description of this sector of the metric
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perturbations is provided in subsection 3 of the
Appendix.

When l � 2 the odd-parity perturbations can be ex-
panded as

hiA �
X
m
hmi �v; r�Xm

A �
A� (8.21)

and

hAB �
X
m
hm2 �v; r�Xm

AB�

A�: (8.22)

The combinations

~hm
i � hmi �

1

2
hm2;i �

1

r
r;ihm2 (8.23)

are gauge invariant, and the Regge-Wheeler function is
defined by


m
RW �

1

r
r;i ~hmi : (8.24)

Comparison of Eqs. (8.21) and (8.22) with Eqs. (8.9)
and (8.10) using Eqs. (8.14) and (8.15) reveals that hmv �

� 1
3 r

3fBm, hmr � 0, and hm2 � 1
3 r

4Bm. Equation (8.23)
then gives ~hmv � � 1

3 r
3fBm and ~hmr � 1

3 r
3Bm, up to

smaller terms proportional to dBm=dv� R�3. From
Eq. (8.24) we obtain 
m

RW � 0. This curious result leads
to the conclusion that the metric of Eqs. (8.7), (8.8), (8.9),
and (8.10) is not sufficiently accurate to calculate the
Regge-Wheeler function, and therefore the shear tensor.

Fortunately, the Regge-Wheeler Eq. (A19) is suffi-
ciently simple that it can be solved directly. Assuming
(as we shall verify below) that derivatives of 
RW with
respect to v can be neglected compared with spatial
derivatives, the Regge-Wheeler equation for l � 2 re-
duces to�

r�r� 2M�
d2

dr2
� 2M

d
dr

� 6
�
1 �

M
r

	�

RW � 0:

(8.25)

The solution that is well-behaved at the horizon is 
RW /
r3, and to produce the correct metric perturbation we
write


m
RW�v; r� � �

1

12
r3 _Bm�v�; (8.26)

where the overdot indicates differentiation with respect to
v. While Bm�v� scales as R�2, its time derivative scales
as R�3 and v-derivatives of the Regge-Wheeler function
are indeed much smaller than its spatial derivatives.

To see that Eq. (8.26) is indeed the correct solution to
the Regge-Wheeler equation, we reconstruct the metric
perturbation in the preferred gauge and show that it
agrees with the odd-parity sector of Eqs. (8.7), (8.8),
(8.9), and (8.10). We note first that according to
Eq. (8.24), 
RW � r�1�~hv � f~hr�, where we have re-
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moved the label m for simplicity. On the other hand, the
field Eq. (A17) implies @v ~hr � @r�~hv � f~hr� � 0. Solving
these equations yields ~hv � � 1

3 r
3fB and ~hr � 1

3 r
3B, up

to smaller terms involving _B. The actual metric pertur-
bations are then recovered by using Eq. (8.23) along with
the gauge condition hr � 0. The equation for ~hr gives
�12@r � r�1�h2 � ~hr, and this differential equation has
h2 � 1

3 r
4B as solution; this agrees with our previous

expression. Finally, the equation for ~hv gives hv �
1
2@vh2 � ~hv, and we obtain hv � � 1

3 r
3fB up to a smaller

term involving _B; this also agrees with our previous
expression. We conclude that the Regge-Wheeler function
of Eq. (8.26) is indeed compatible with the metric of
Eqs. (8.7), (8.8), (8.9), and (8.10).

Substituting Eq. (8.26) into Eq. (7.6) we obtain

�odd
AB �v; 
A� � �

1

12
r4�

X
m

_Bm�v�Xm
AB�


A�: (8.27)

According to Eq. (8.15), this can also be written as
�odd
AB � 1

12 r
4
�
_B�
AB.

D. Even-parity contribution to shear

We turn next to the even-parity sector of the metric
perturbations; the reader is referred to the description
given in subsection 4 of the Appendix.

When l � 2 the even-parity perturbations can be ex-
panded as

hij �
X
m
hmij �v; r�Y

m�
A�; (8.28)

hiA �
X
m
jmi �v; r�Ym

:A�

A�; (8.29)

hAB � r2
X
m
Gm�v; r�Zm

AB�

A�; (8.30)

where we have incorporated our knowledge that Km �
3Gm; this follows because the metric perturbation of
Eq. (8.10) is trace-free [refer also to the discussion that
precedes Eq. (7.4)]. The combinations

~hm
ij � hmij � 2"m

�i:j�;
~Km � 3Gm �

2

r
r;i"mi ; (8.31)

where "mi � jmi � 1
2 r

2Gm
;i , are gauge invariant, and the

Zerilli-Moncrief function [4,13,43] is defined by


m
ZM 


r
3

�
~Km �

2

.
�r;ir;j ~hmij � rr;i ~Km

;i �

�
; (8.32)

where . � 4 � 6M=r.
Comparison of Eqs. (8.28), (8.29), and (8.30) with

Eqs. (8.7), (8.8), (8.9), and (8.10) using Eqs. (8.11),
(8.12), and (8.13) reveals that hmvv � �r2f2Em, jmv �

� 1
3 r

3fEm, Gm � � 1
3 r

2�1 � 2M2=r2�Em, and Km �

3Gm, with all other components vanishing. From this
-24
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information the Zerilli-Moncrief function can be com-
puted straightforwardly (no need to solve the Zerilli
equation directly), and its value on the horizon is found
to be


m
ZM�v; r�� � �

1

6
r3�Em�v�: (8.33)

Substituting this into Eq. (7.6) we obtain

�even
AB �v; 
A� � �

1

12
r4�

X
m

_Em�v�Zm
AB�


A�: (8.34)

According to Eq. (8.13), this can also be written as
�even
AB � � 1

12 r
4
�
_E�
AB.

E. Shear and Weyl tensor

The sum of Eqs. (8.27) and (8.34) gives the complete
shear tensor,

�AB�v; 

A� � �

1

12
r4�

X
m

� _Em�v�Zm
AB�


A�

� _Bm�v�Xm
AB�


A��; (8.35)

and we observe that this 2-tensor is properly trace-free.
We can use Eq. (8.35) and Eq. (4.7) to calculate the

Weyl tensor CAB on the horizon. We may neglect time
derivatives and write CAB � ��AB, which gives

CAB � �
1

24
r3�

X
m

� _EmZ
m
AB � _BmX

m
AB�: (8.36)

This expression shows that the (dimensionless) Weyl
curvature on the horizon is of order �M=R�3, which is a
factor M=R � 1 smaller than the asymptotic value of
the Weyl curvature (for r 	 M).

For future reference we calculate the Weyl scalar 

from CAB; this is defined by Eq. (5.6) and related to the
Weyl tensor in Eq. (5.5). From this equation and the
properties of the vectors eA we infer that 
 � CABeAeB.
With Eqs. (A9) and (A10) we can relate the tensorial
harmonics Zm

AB and Xm
AB to the spin-weighted spherical

harmonics �2Ym. (Please note that the vectors CA used in
the Appendix are rescaled versions of the vectors used
here: eA � CA=r�; in the notation of the Appendix we
have 
 � CABCACB=r2�.) Simple algebra then gives


�v; 
A� � �

���
6

p

24
r�

X
m

� _Em�v� � i _Bm�v��2Y
m�
A�:

(8.37)

This reveals that 
 � O�M=R3� on the horizon, while

 � O�1=R2� asymptotically (for r 	 M). This shows
once more that the Weyl curvature on the horizon is sup-
pressed by a factor M=R � 1 with respect to its asymp-
totic value.
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F. Fluxes

The shear tensor of Eq. (8.35) is equal to 1
2�

1
ABLk �

1
2Lt�

1
AB, and the metric perturbation �1

AB�v; 

A� can be

obtained by direct integration with respect to v.
Differentiation with respect to ) then gives L)�1

AB;
this can be worked out by using the explicit forms for
Zm
AB and Xm

AB gathered from subsection 2 of the Appendix.
Finally, these results can be substituted into the flux
formulas of Eqs. (4.22), (4.23), and (4.24), and integration
over dS � r2� sin
d
d) is readily carried out using the
known angular dependence contained in the spherical
harmonics. A straightforward computation yields

h _Mi �
8M6

45
h3 _E2

0 � _E2
1c � _E2

1s � 4 _E2
2c � 4 _E2

2s � 3 _B2
0

� _B2
1c � _B2

1s � 4 _B2
2c � 4 _B2

2si

and

h _Ji � �
8M6

45
h _E1cE1s � _E1sE1c � 8 _E2cE2s � 8 _E2sE2c

� _B1cB1s � _B1sB1c � 8 _B2cB2s � 8 _B2sB2ci;

where Em and Bm are the harmonic components of the
tidal gravitational fields introduced in Eqs. (8.16), (8.17),
(8.18), (8.19), and (8.20).

These results can be expressed in terms of invariants
formed from Eab and Bab, the components of the tidal
fields in the local asymptotic rest frame of the moving
black hole. We also need the derivatives of these fields
with respect to v (denoted with an overdot), and the unit
vector sa 
 �0; 0; 1� that points in the direction of the
third coordinate axis. (This direction is preferred because
the angles 
 and) refer to it.) In terms of these quantities,
the previous expressions become

h _Mi �
16M6

45
h _Eab _E

ab � _Bab
_Babi (8.38)

and

h _Ji � �
32M6

45
"acdh _E

a
bE

bc � _Ba
bB

bcisd; (8.39)

where "acd is the three-dimensional permutation symbol.
We also have ��=8��h _Ai � h _Mi. We note that when h _Ji is
expressed in the covariant form of Eq. (8.39), what is
actually meant by h _Ji is the rate of change of the compo-
nent of the angular-momentum vector in the direction of
sa; in three-dimensional vectorial language appropriate
in the local asymptotic rest frame, h _Ji 
 h _Jaisa, where Ja

is the vectorial angular momentum.
Alternatively, the flux formulas can be expressed in

terms of the spacetime tensors of Eqs. (8.4) and (8.5).
The translation is effected by Eq. (8.3) and the identity
"abc � u�"����e

�
a e

�
b e

�
c , where "���� is the Levi-Civita

tensor. We find
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h _Mi �
16M6

45
h _E�� _E�� � _B��

_B��i (8.40)

and

h _Ji � �
32M6

45
u�"����h _E

�
�E

�� � _B�
�B

��is�; (8.41)

where s� � sae�a is a unit spatial vector, and _E�� 


E��;�u�, _B�� 
 B��;�u� are the proper-time derivative
of the tidal gravitational fields. We recall that in this SH/
SM description, all vectors and tensors refer to the space-
time of the external universe in which the black hole
moves. From Eqs. (8.38), (8.39), (8.40), and (8.41) we
gather that h _Mi scales as M6=R6, while h _Ji scales as
M6=R5. To the best of my knowledge, Eqs. (8.38),
(8.39), (8.40), and (8.41) have never appeared before in
the literature.

G. Comparison with Thorne, Hartle, and Zhang

The rate of change of angular momentum for a general
body interacting with a tidal gravitational field was cal-
culated, in the regime M=R � 1, by Thorne and Hartle
[33]; they obtained the expression

h _Jai � �"abc

�
Mb

dE
dc �

4

3
JbdB

dc

; (8.42)

where Mab is the body’s mass quadrupole moment, while
Jab is its current quadrupole moment (both defined in
terms of the structure of the gravitational field outside the
arbitrary body). Zhang [52], on the other hand, calculated
the rate at which the body changes its mass; he obtained
an expression equivalent to

h _Mi �
1

2

�
Mab

_Eab �
4

3
Jab _Bab


: (8.43)

We wish to show that our previous results are compatible
with these expressions.

An isolated Schwarzschild black hole is spherically
symmetric, and its intrinsic quadrupole moments vanish:
Mab � Jab � 0. But a black hole immersed in an external
universe is tidally distorted and therefore acquires non-
vanishing moments. It is easy to see that Eqs. (8.38) and
(8.39) are compatible with the general results of
Eqs. (8.42) and (8.43) if the tidally-induced quadrupole
moments of a nonrotating black hole are given by

Mab �
32M6

45
_Eab (8.44)

and

Jab �
8M6

15
_Bab: (8.45)

These scale as M3�M=R�3, and they both involve the
rates of change of the tidal gravitational fields. This is a
rather surprising result, as one would expect the quadru-
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pole deformation of a tidally-distorted body to be pro-
portional to the tidal gravitational field itself, instead of
its time derivative. But the time derivative is present, and
its origin can be traced back to Eq. (8.37): the Weyl
curvature at the horizon is proportional to the time de-
rivative of the asymptotic curvature. Since it is the hori-
zon curvature that produces the black-hole distortion, this
explains why a time derivative enters Eqs. (8.44) and
(8.45).

H. Black hole in a circular binary:
Slow-motion approximation

If we specialize to a slow-motion situation, the tidal
gravitational fields of the external universe can be ap-
proximated by

E ab ’ ;ab; Bab ’ 0; (8.46)

where  is a Newtonian potential. For concreteness we
take the Newtonian field to be produced by an external
body of massMext located at rext�t� relative to the system’s
center of mass. Then �x� � �Mext=jx� rextj, and we
exclude the contribution �M=jx� rj from the black hole
because this does not produce a tidal field at the position
r�t� of the black hole. Also for concreteness we take the
orbit to be circular, and we let b 
 jr� rextj be the
constant relative separation between the two bodies. The
orbital angular velocity is

� �

���������������������
M�Mext

b3

s
; (8.47)

and the relative position vector is r� rext 
 � �
b�cos�t; sin�t; 0� 
 b�̂�t�. The relative velocity vector
is V � b��� sin�t; cos�t; 0� 
 b��̂�t�. For simplicity
we align the spin vector in the direction of the orbital
angular momentum: s � �0; 0; 1�.

Using this information we calculate Eab�t� �
�Mext=b

3���ab � 3'̂a'̂b� and

_E ab � �
3Mext�

b3
�'̂a)̂b � )̂a'̂b�:

Substituting this into Eq. (8.38) gives

h _Mi �
32

5
D2

�
M

M�Mext

	
4
V18; (8.48)

where D � MMext=�M�Mext�
2 is a dimensionless

reduced-mass parameter and

V �

���������������������
M�Mext

b

s
� 1 (8.49)

is the relative orbital velocity. The rate of change of the
hole’s angular momentum can be obtained directly from
this and the rigid-rotation relation h _Ji � ��1h _Mi; this
gives
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h _Ji �
32

5
D2

�
M

M�Mext

	
4
�M�Mext�V15: (8.50)

These results agree (in a limit of no black-hole rotation)
with earlier expressions obtained by Alvi [18]. In the
regime Mext � M they also agree with earlier results
derived by Poisson and Sasaki [16].

I. Black hole in a circular binary:
Small-hole approximation

We now allow the black hole to move rapidly in the
strong gravitational field of another Schwarzschild hole
of mass Mext; to comply with the SH/SM condition
M=R � 1 we now impose M=Mext � 1, as was dis-
cussed in Sec. VIII A. Once more we choose the orbit to
be circular. In the standard Schwarzschild coordinates
�t; r; 
;)� used in the background spacetime of the large
black hole, the orbital radius is b and the four-velocity of
the small-hole is u� � ��1; 0; 0;��, where � �

�1 � 3Mext=b��1=2 is a normalization factor and

� �

����������
Mext

b3

s
(8.51)

is the angular velocity. We again align the spin vector in
the direction of the orbital angular momentum, so that
s� � �0; 0;�1=b; 0�. Calculation of E��, B�� using
Eqs. (8.4) and (8.5), and substitution into Eqs. (8.40)
and (8.41) gives

h _Mi �
32

5

�
M
Mext

	
6
V18 �1 � V2��1 � 2V2�

�1 � 3V2�2
(8.52)

and

h _Ji �
32

5

�
M
Mext

	
6
MextV

15 �1 � V2��1 � 2V2�

�1 � 3V2�2
; (8.53)

where V �
���������������
Mext=b

p
� 6�1=2 is a measure of the hole’s

orbital velocity. These results agree with those of the
preceding subsection in a common domain of validity
defined by M � Mext and V � 1. To the best of my
knowledge, the results of Eqs. (8.52) and (8.53), complete
with all-order relativistic corrections, have never ap-
peared before in the literature.
IX. SMALL-HOLE/SLOW-MOTION
APPROXIMATION FOR A KERR BLACK HOLE

In this section I apply the SH/SM approximation in-
troduced in Sec. VIII A to the flux formulas derived in
Sec. V D, Eqs. (5.23), (5.24), (5.25), (5.26), (5.27), (5.28),
and (5.29). I will proceed much as in Sec.VIII, except that
I will deal with curvature perturbations—and the
Teukolsky equation [2]—instead of metric perturbations.
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A. Flux formulas in the SH/SM approximation

We begin by isolating, in Eqs. (5.27) and (5.28), the
terms for which m � 0:

h _Mi �
1

2
�r2� � a2�

Z
hj0

�j2i sin
d


�
r2� � a2

4�

X
m�0

�
2�

Z
hjm

�j2i sin
d


�im�H

Z
h �m

�
m
� � m

�
�m

�i sin
d

�
; (9.1)

h _Ji � �
r2� � a2

4�

X
m�0

�im�
Z

h �m
�

m
� � m

�
�m

�i sin
d
:

(9.2)

We recall the definitions

m
��v; 
� � e�v

Z 1

v
e����im�H�v0


m�v0; 
�dv0; (9.3)

m
��v; 
� �

Z v

�1
eim�Hv0


m�v0; 
�dv0; (9.4)

where


�v; r�; 
;  � �
X
m


m�v; 
�eim (9.5)

is the horizon Weyl scalar introduced in Eq. (5.6).
To see how we may specialize Eqs. (9.3) and (9.4) to the

SH/SM approximation, consider first an integral of the
form F��v� �

R
v
�1 e

i!v0
f�v0�dv0, and suppose that f�v0�

varies on a time scale 8 that is large compared with !�1.
(We also suppose that f switches off sufficiently rapidly
in the infinite past so that the integral converges.) Then
F��v� can be evaluated by successive integration by
parts, each integration generating a relative correction
of order C 
 �!8��1 � 1. To leading order, F��v� �
�i!�1f�v�ei!v�1 �O�iC��. Consider next an integral of
the form F��v� �

R
1
v e

�6v0
f�v0�dv0, where the real part

of 6 is assumed to be positive; here we suppose that C0 

�68��1 � 1. Integration by parts in this case leads to
F��v� � 6�1f�v�e�6v�1 �O�C0��. These simple manipu-
lations allow us, within the stated conditions, to approxi-
mate the integrals by local expressions. This is the
technique we shall employ to evaluate Eqs. (9.3) and (9.4).

In this way we obtain

m
� �


m�v; 
�eim�Hv

�� im�H

�
1 �O

�
1

��� im�H�8

	�
and

m
� �


m�v; 
�eim�Hv

im�H

�
1 �O

�
1

im�H8

	�
;

where 8 is the time scale associated with changes in

m�v; 
�. To see how the conditions �8 	 1 and �H8 	
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1 relate to the SH/SM approximation, we first recall that
changes in 
�v; r�; 
;  � are governed by processes tak-
ing place in the external universe, so that 8� R. We also
express � and �H in terms of the black-hole mass M and
its dimensionless rotational parameter " 
 a=M 

J=M2:

� �

���������������
1 � "2

p
2M�1 �

���������������
1 � "2

p
�
; �H �

"

2M�1 �
���������������
1 � "2

p
�
;

(9.6)

we recall that " is limited to the interval 0 � " � 1 and

that r� � M�1 �
���������������
1 � "2

p
�. In orders of magnitude we

have �� 1=M and �H � "=M, and to achieve �8 	 1
and �H8 	 1 we need M=R � 1 and M=R � ", re-
spectively. The stronger condition is

M=R � "; (9.7)

and we take this to be the precise statement of the small-
hole/slow-motion condition when we deal with rotating
black holes. Notice that by virtue of Eq. (9.7), the no-
rotation limit " ! 0 will be inaccessible in our analysis;
this case was treated separately in Sec. VIII. We shall
write our previous results as

m
� �


m�v; 
�eim�Hv

�� im�H
�1 �O�M=R��; (9.8)
m
� �


m�v; 
�eim�Hv

im�H
�1 �O�M=R��; (9.9)

with the understanding that the error terms are really of
order M=�"R�, and therefore small by virtue of Eq. (9.7).
For the remainder of this section we assume that " is of
order unity, and we allow ourselves to lose sight of this
distinction.

Substituting Eqs. (9.8) and (9.9) into Eq. (9.1) reveals
that each m � 0 term vanishes to leading order in M=R;
what remains is

h _Mi �
r2� � a2

2�2
Z

hj
0�v; 
�j2i sin
d
�O�M5=R5�:

(9.10)

The scaling of the error term follows from the facts that
each contribution to am � 0 term is of order �M=R�4, but
that the cancellation suppresses this by a factor of (at
least)M=R. An a priori estimate of the surviving term in
Eq. (9.10) indicates that it is of order �M=R�4, but we
shall see that it is in fact of order �M=R�6. Inserting
Eqs. (9.8) and (9.9) into Eq. (9.2) gives
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h _Ji � �
r2� � a2

2�H

X
m�0

��2 �m2�2
H��1

Z
hj
m�v; 
�j2i

� sin
d
; (9.11)

and this is of order M5=R4.

B. Weyl scalar: Asymptotic values

To proceed further we must compute the functions

m�v; 
� that enter into the simplified flux formulas of
Eqs. (9.10) and (9.11). This requires solving the Teukolsky
equation for the Weyl scalar  0�v; r; 
;  �, with appropri-
ate boundary data provided by the conditions in the
external universe. In this subsection I specify these
boundary conditions; in the next subsection (Sec. IX C)
I tackle the integration of the Teukolsky equation and
construct 
m�v; 
� from the solution. My presentation
in these two subsections will not stray very far from
what is contained in Sec. 3.5 of the book by D’Eath
[19]; and my end results will be equivalent to his.

The function  0�v; r; 
;  � we shall work with is

 0 � �C1
����k

�m�k�m�; (9.12)

where C1
���� is the perturbation of the Weyl tensor, while

k� 
 k��K� and m� 
 m��K� are members of
Kinnersley’s null tetrad [2,36]. The relation between  0 

 0�K� and 
�v; r�; 
;  � is given by Eq. (5.6).

We wish to calculate  0 in the asymptotic regime r 	
r�, assuming that r is still much smaller than R, the
radius of curvature of the external spacetime. The asymp-
totic values will be constructed from Eab�v� and Bab�v�,
the tidal gravitational fields introduced in Sec. VIII A—
Eq. (8.2); recall that lower-case Latin indices refer to the
hole’s local asymptotic rest frame, and that the hole’s
angular-momentum vector is directed along the third
coordinate axis.

In the asymptotic regime r 	 r� the coordinates
�v; r; 
;  � are easily related to a set of Lorentzian coor-
dinates �t; x; y; z� that are adapted to the frame �u�; e�a �;
the relations are t � v� r, x � r sin
 cos , y �
r sin
 sin , and z � r cos
. In this regime the null vector
k� can be decomposed as k� � u� � r�, where u� is the
hole’s velocity vector in the external spacetime, and r� is
a spacelike vector that points radially outward. In the
asymptotic Lorentzian coordinates �t; x; y; z� we have
u� � �1; 0; 0; 0� and r� � �0; sin
 cos ; sin
 sin ; cos
�.
In the limit we also have m� � 2�1=2�
�0; cos
 cos � i sin ; cos
 sin � i cos ;� sin
�.

We have seen in Sec. VIII A that in the vicinity of the
black hole (the region r � R, which includes the asymp-
totic region r 	 r�), the Weyl tensor of the external
spacetime can be decomposed into the symmetric,
trace-free fields Eab and Bab. In the asymptotic coordi-
nates �t; x; y; z� the decomposition is given by Ctatb � Eab,
Ctabc � �"bcdBd

a, and Cacbd � �abEcd � �cdEab �
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�adEbc � �bcEad. In these relations the Weyl tensor, and
the tidal gravitational fields Eab and Bab, are evaluated on
the black hole’s world line in the external spacetime; they
are functions of t (or v) only.

According to Eq. (9.12), the asymptotic value of  0 is
�C�����u� � r��m��u� � r��m�, with C���� denoting
theWeyl tensor of the external spacetime evaluated on the
hole’s world line. Using the information provided in the
preceding two paragraphs, we obtain the explicit expres-
sion

 0 � �2Eabm
amb � 2ramb"abcB

c
dm

d; (9.13)

where ra andma are the spatial components of the vectors
r� and m�, respectively. The angular dependence con-
tained in these vectors is encoded in spin-weighted
spherical harmonics of degree l � 2 (see subsection 2
of the Appendix for a definition). It is convenient to
introduce a set given by

2Y
0
2�
;  � � �

3

2
sin2
; (9.14)

2Y
�1
2 �
;  � � � sin
�cos
� 1�e�i ; (9.15)

2Y
�2
2 �
;  � �

1

4
�1 � 2 cos
� cos2
�e�2i : (9.16)

This set is not normalized; we have instead
R

j2Y
0
2 j

2d� �
24�=5,

R
j2Y

�1
2 j2d� � 16�=5, and

R
j2Y

�2
2 j2d� �

4�=5. If we also introduce

�0 � E11 � E22; (9.17)

��1 � E13 � iE23; (9.18)

��2 � E11 � E22 � 2iE12 (9.19)

and

�0 � B11 � B22; (9.20)

��1 � B13 � iB23; (9.21)

��2 � B11 � B22 � 2iB12; (9.22)

then it is straightforward to show that Eq. (9.13) is
equivalent to

 0 � �
X
m

��m�v� � i�m�v��2Y
m
2 �
;  �: (9.23)

This is the asymptotic value of the Weyl scalar
 0�v; r; 
;  � in the regime r� � r � R, expressed in
terms of the tidal gravitational fields Eab�v� and Bab�v�.

C. Teukolsky equation

To relate 
m�v; 
� to the asymptotic value of  0 ob-
tained in Eq. (9.23) it is necessary to solve the Teukolsky
equation [2] for s � 2 and l � 2. Because the
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v-dependence of the solution enters through the tidal
gravitational fields Eab�v� and Bab�v�, and because this
dependence is slow (time scale of order R), it is actually
sufficient to integrate the time-independent Teukolsky
equation. We therefore write

 0�v; r; 
;  � � �
X
m

��m�v� � i�m�v��Rm�r�2Y
m
2 �
;  �;

(9.24)

where Rm�r� is a radial function normalized so that
Rm�r 	 r�� � 1; this function must be a solution to
Eq. (2.10) of Teukolsky and Press [1], in which we set
! � 0.

The explicit form of the radial equation is�
x�1�x�

d2

dx2
��3�2x�1��

2im��
d
dx

�4im�
2x�1

x�1�x�

�
Rm�x��0; (9.25)

where

x �
r� r�
r� � r�

(9.26)

is a new independent variable, and

� �
a

r� � r�
; (9.27)

we recall that r� � M�
������������������
M2 � a2

p
. The relevant solu-

tion to Eq. (9.25) is

Rm�r� � Amx
�2�1 � x��2F��4; 1;�1 � 2im�;�x�;

(9.28)

in which the hypergeometric function is actually an ordi-
nary polynomial of degree 4 in the variable �x.
Equation (9.28) is essentially Eq. (5) from Ref. [18], and
the superficial difference is attributed to the fact that Alvi
works in Boyer-Lindquist coordinates instead of our Kerr
coordinates. This is also Eq. (3.7) in Chapter VI of
Teukolsky’s Ph.D. dissertation [53], and Eq. (9.28) is
equivalent to Eq. (3.5.7) of Ref. [19]. The constant Am
must be chosen so that the radial function approaches
unity when x ! 1; a simple calculation shows that it
must be given by

Am � �
i
6
m��1 � im���1 � 4m2�2� (9.29)

when m � 0.
The case m � 0 must be considered separately. It is

formally obtained by setting � � 0 in Eq. (9.25), and
Eq. (9.27) shows that this amounts to letting a � 0. For
m � 0, therefore, Eq. (9.25) reduces to Teukolsky’s radial
equation in Schwarzschild spacetime; the independent
variable is now given by x � r=r� � 1. The relation
between 
m�v; 
� and the asymptotic value of  0 was
already worked out, for Schwarzschild spacetime, in
-29
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Sec. VIII E —Eq. (8.37). There it was revealed that it is of
the schematic form 
m � r� _ 0�v; r 	 r�; 
;  �, and that
it involves a derivative of the asymptotic field with re-
spect to v. This relation is very different from what was
anticipated in Eq. (9.24), and therefore different from
what is known to be true for m � 0. These considerations
imply that for m � 0 and a � 0, the relation between

m�v; 
� and the asymptotic value of  0 comes with an
additional factor of M=R relative to terms with m � 0.
We conclude that it is appropriate to neglect the m � 0
term in Eq. (9.24), which becomes

 0 � �
X
m�0

Am��m�v� � i�m�v��x�2�1

� x��2F��4; 1;�1 � 2im�;�x�2Y
m
2 �
;  �;

(9.30)

where x � �r� r��=�r� � r��, � � a=�r� � r��, Am is
given by Eq. (9.29), and �m�v�, �m�v� are listed in
Eqs. (9.17), (9.18), (9.19), (9.20), (9.21), and (9.22).

The functions 
m�v; 
� are obtained by substituting
Eq. (9.30) into Eq. (5.6) and taking the limit r ! r�, or
x ! 0; we recall that  0�v; r; 
;  � is the Weyl scalar
constructed with the Kinnersley tetrad, and that

�v; r�; 
;  � is decomposed as in Eq. (9.5). Simple

algebra, using a � "M, r� � M�1 �
���������������
1 � "2

p
�, and � �

1
2"�1 � "2��1=2, yields


m�v; 
� � �
im"�1 � "2�3=2

12�1 �
���������������
1 � "2

p
�2

�1 � im���1 � 4m2�2�

� ��m�v� � i�m�v��2Y
m
2 �
; 0�:

(9.31)

This result holds when m � 0, and it reveals that 
m�0 is
of order R�2; as we have seen, when m � 0 we have
instead the Schwarzschild result 
0 � O�M=R3�.

D. Fluxes

We now insert Eq. (9.31) into the approximate flux
formulas of Eqs. (9.10) and (9.11). The fact that 
0 �
O�M=R3� implies that the error term of Eq. (9.10) is in
fact dominant, and we obtain

h _Mi � O�M5=R5�: (9.32)

This result indicates that to calculate h _Mi requires infor-
mation that is not accessible to the leading-order analysis
carried out here. To go beyond this leading-order calcu-
lation should be feasible, but this lies beyond the scope of
this work.

A more definite result can be obtained for h _Ji.
Substitution of Eq. (9.31) into Eq. (9.11) and integration
over 
—recall the explicit forms of the spin-weighted
spherical harmonics specified by Eqs. (9.14), (9.15), and
(9.16) —returns
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h _Ji � �
M5"
45

X
m�0

�1 � �m2 � 1�"2��4 � �m2 � 4�"2�

� hj�m�v� � i�m�v�j2i

after simplification; notice that a factor of m2 is canceled
by the integral

R
j2Y

m�0
2 �
; 0�j2 sin
d
 � 8=�5m2�. This

becomes

h _Ji � �
2

45
M5"��4 � 3"2�hE2

13 � E2
23 � B2

13 � B2
23i

� 4�1 � 3"2�h�E11 � E22�
2 � 4E2

12 � �B11 � B22�
2

� 4B2
12i�

after using Eqs. (9.17), (9.18), (9.19), (9.20), (9.21), and
(9.22).

At this stage we introduce the invariants

E1 � EabE
ab � E��E

��; (9.33)

E2 � Eabs
bEacs

c � E��s
�E��s

�; (9.34)

E3 � �Eabsasb�2 � �E��s�s��2; (9.35)

and

B1 � BabB
ab � B��B

��; (9.36)

B2 � Babs
bBa

cs
c � B��s

�B�
�s

�; (9.37)

B3 � �Babs
asb�2 � �B��s

�s��2; (9.38)

where the unit vector sa gives the direction of the black
hole’s spin in the local asymptotic rest frame, and s� �
sae�a is the corresponding spacetime vector. We therefore
have Ja � Jsa, J � "M2, and h _Ji � h _Jaisa. In terms of
these invariants we have, for example, E2

13 � E2
23 � E2 �

E3 and �E11 � E22�
2 � 4E2

12 � 2E1 � 4E2 � E3. Our final
expression for the rate of change of angular momentum is

h _Ji � �
2

45
M5"�8�1 � 3"2�hE1 � B1i � 3�4 � 17"2�

�hE2 � B2i � 15"2hE3 � B3i�: (9.39)

This result reveals that h _Ji � O�M5=R4�.
The first law of black-hole mechanics implies that the

rate of change of the horizon area is given by ��=8���
h _Ai � ��Hh _Ji �O�M5=R5�, with a leading term scal-
ing asM4=R4. The ratio �H=� can be expressed in terms
of M and " 
 a=M, and we obtain

h _Ai �
16�
45

M5"2���������������
1 � "2

p �8�1 � 3"2�hE1 � B1i � 3�4

� 17"2�hE2 � B2i � 15"2hE3 � B3i�; (9.40)

this scales as M5=R4. This result is equivalent to
Eq. (3.5.39) of the book by D’Eath [19].
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E. Comparison with Thorne and Hartle

The rate of change of angular momentum for a general
body interacting with a tidal gravitational field was cal-
culated by Thorne and Hartle [33] and their result dis-
played in Eq. (8.42). We wish to compare this general
expression with our result for h _Ji displayed in Eq. (9.39);
recall that h _Ji � h _Jaisa, with sa giving the direction of
the angular-momentum vector.

The quadrupole moments of a Kerr black hole im-
mersed in an external universe include an intrinsic com-
ponent that would be present even if the black hole were
isolated, and an induced component that comes from the
hole’s tidal distortion. We write

Mab � Mintrinsic
ab �Minduced

ab ; (9.41)
Jab � Jintrinsicab � Jinducedab ; (9.42)

and we know that [33]

Mintrinsic
ab �

1

3
M3"2��ab � 3sasb�; Jintrinsicab � 0:

(9.43)

We recall that Mab is the hole’s mass quadrupole moment,
while Jab is its current quadrupole moment; both tensors
are symmetric and trace-free. We wish to see if we can
determine Minduced

ab , Jinducedab and establish compatibility
between Eqs. (8.42) and (9.39).

It is easy to show, by substituting Eq. (9.43) into
Eq. (8.42), that the coupling between the intrinsic mo-
ments and the tidal gravitational fields does not affect the
magnitude of the angular-momentum vector; the only
effect is to produce a precession of Ja described by _Ja �
"abc�

b
PJ

c, where �a
P 
 �M"Eabs

b is the precessional
angular velocity. We conclude that only the induced mo-
ments will contribute to h _Ji, and we now seek to deter-
mine them.

To ease the comparison between Eq. (8.42) and
Eq. (9.39) we set sa � �0; 0; 1� and compute h _Ji 
 h _J3i,
which we compare with the result displayed immediately
before Eq. (9.33). This reveals that Minduced

ab is partially
determined by the relations M11 �M22 / 16�1 �
3"2�E12, M12 / �4�1 � 3"2��E11 � E22�, M13 /
�4 � 3"2�E23, and M23 / ��4 � 3"2�E23, where the
(unique) constant of proportionality is equal to 2

45M
5".

Analogous relations link 4
3 J

induced
ab to Bab. These relations

determine Minduced
ab (and Jinducedab ) up to a term proportional

to �ab � 3sasb; the coefficient must be a scalar formed
from Eab (or Bab), �ab, sa, and "abc, and the only possible
candidate is an arbitrary function of " multiplying
Eabsasb (or Babsasb).
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We therefore arrive at

Minduced
ab �

2

45
M5"�6�"���ab � 3sasb�Ecds

csd � 8�1

� 3"2�Ec
�a"b�cds

d � 30"2s�a"b�cds
cEdes

e�

(9.44)

for the mass quadrupole moment, and

Jinducedab �
1

30
M5"���"���ab � 3sasb�Bcds

csd � 8�1

� 3"2�Bc
�a"b�cds

d � 30"2s�a"b�cdscBd
ese�

(9.45)

for the current quadrupole moment, where 6�"� and��"�
are unknown functions of the hole’s rotational parameter.
We conclude that our results are indeed compatible with
the general results of Thorne and Hartle [33]. We observe
that the relationships between the induced moments and
the tidal gravitational fields have the schematic form
Minduced �M5E, Jinduced �M5B (but with a complicated
tensorial structure), and that the moments scale as
M3�M=R�2. These results follow expectation, and they
are markedly different from those of Sec. VIII G; recall
that for a nonrotating black hole the relationships involve
an additional factor of M and a time derivative.

We emphasize that the induced moments are only
partially determined: the functions 6�"� and��"� cannot
be determined by the comparison with Thorne and
Hartle, because the terms to which they belong in Mab
and Jab do not affect the magnitude of the angular-
momentum vector. They produce instead a small frac-
tional correction of order �M=R�2 to �a

P, the precessional
angular velocity.

F. Comparison between Kerr and
Schwarzschild results

The main results of Sec. VIII, Eqs. (8.38) and (8.39), or
equivalently Eqs. (8.40) and (8.41), hold to leading-order
in M=R � 1, and they reveal that for a Schwarzschild
black-hole, h _Mi � O�M6=R6� and h _Ji � O�M6=R5�. On
the other hand, the main results of this section, Eqs. (9.32)
and (9.39), hold to leading order in M=R � ", and they
reveal that for a Kerr black hole, h _Mi � O�M5=R5� and
h _Ji � O�M5=R4�. The scalings are very different, and
the condition M=R � " implies that the Schwarzschild
results cannot straightforwardly be obtained from the
Kerr results in a limit " ! 0.

The origin of the difference in scalings can easily be
understood in the special case of rigid rotation, for which
h _Mi and h _Ji are given by Eqs. (4.29), (4.30), and (4.31),

h _Mi � ��� � �H�K; h _Ji � �� � �H�K;

where K is defined by Eq. (4.32) and � � O�R�1� is the
hole’s angular velocity in the external spacetime. This
argument was first presented to me by Kip Thorne (per-
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sonal communication), and it was then elaborated on by
Alvi [18].

Suppose, as we shall show below, that K �
O�M6=R4�. In the case of a nonrotating black hole we
have �H � 0, and it follows that h _Mi � �2K �
O�M6=R6� and h _Ji � �K � O�M6=R5�; those are pre-
cisely the scalings obtained previously for a
Schwarzschild black hole. The situation is different for
a rotating black hole. In this case the condition M=R �
" implies that � � �H, and we have instead h _Mi �
���HK � O�M5=R5� and h _Ji � ��HK �
O�M5=R4�; those are precisely the scalings obtained
previously for a Kerr black hole. Notice that in the case
of Kerr, h _Mi and h _Ji are both proportional to �H and
therefore to "; this observation is confirmed by Eq. (9.39).

The different scalings reflect the different technical
meanings assigned to the phrase ‘‘small-hole/slow-
motion approximation’’: For a Schwarzschild black hole
we impose M=R � 1 and we naturally have � 	 �H;
for a Kerr black hole we impose instead M=R � " and
we consequently have � � �H. In generic situations
(that is, in the absence of rigid rotation) the scaling
argument given previously continues to apply, but � �
R�1 is now interpreted as an inverse time scale associ-
ated with changes in the Weyl tensor of the external
spacetime.

An expression for K can be obtained from the approxi-
mate relation h _Ji � ��HK which holds for a rotating
black hole. We obtain

K �
4

45
M6�1 �

���������������
1 � "2

q
��8�1 � 3"2�hE1 � B1i

�3�4 � 17"2�hE2 � B2i � 15"2hE3 � B3i�; (9.46)
and we confirm that indeed, K � O�M6=R4�. Notice
that there is no obstacle to taking the limit " ! 0 of
this expression.

G. Black hole in a circular binary:
Slow-motion approximation

We now specialize the results of Sec. IX D to a Kerr
black hole placed on a circular orbit in the weak gravita-
tional field of an external body of mass Mext. This is the
slow-motion approximation, and we shall repeat here
most of the steps described in Sec. VIII H.

As before the tidal gravitational fields of the external
universe are approximated by Eab ’ ;ab and Bab ’ 0,
where  � �Mext=jx� rextj is the Newtonian potential
associated with the external body. As before the black
hole is moving on a circular orbit, and we assume that the
orbital angular-momentum vector is either aligned or
antialigned with the hole’s spin vector: L̂ � s 
 C � �1.
The hole’s orbital angular velocity is then
084044
� � C

���������������������
M�Mext

b3

s
; (9.47)

where b is the orbital radius; the angular velocity is
positive when the orbital and spin angular momenta are
aligned, and it is negative when they are antialigned.

A simple calculation, along the lines of what was
presented in Sec. VIII H, yields

h _Mi � �C
8

5
D2

�
M

M�Mext

	
3
"�1 � 3"2�V15 (9.48)

and

h _Ji � �
8

5
D2

�
M

M�Mext

	
3
�M�Mext�"�1 � 3"2�V12;

(9.49)

where D � MMext=�M�Mext�
2 is a dimensionless

reduced-mass parameter and

V �

���������������������
M�Mext

b

s
� 1 (9.50)

is the relative orbital velocity. Notice that while we could
not calculate h _Mi in the general case described in
Sec. IX D, here it is simply given by �h _Ji because the
black hole is in rigid rotation around Mext. The results of
Eqs. (9.48) and (9.49) agree with earlier expressions ob-
tained by Alvi [18]. In the regime Mext 	 M they also
agree with earlier results derived by Tagoshi, Mano, and
Takasugi [17].

H. Black hole in a circular binary:
Small-hole approximation

We now allow the Kerr black hole to move rapidly in
the strong gravitational field of a Schwarzschild hole of
mass Mext. We no longer restrict the size of V but we now
impose M � Mext; this is the small-hole approximation,
and we shall repeat here most of the steps described in
Sec. VIII I.

Once more we take the orbit to be circular. In the
standard Schwarzschild coordinates �t; r; 
; )� used in
the background spacetime of the large black hole, the
orbital radius is b and the four-velocity of the small
hole is u� � ��1; 0; 0;��, where � � �1 � 3Mext=b�

�1=2

is a normalization factor and

� � C

����������
Mext

b3

s
(9.51)

is the angular velocity; as in the preceding subsection C �
�1 gives the orientation of the orbital angular-
momentum vector relative to the hole’s spin vector, s� �
�0; 0;�1=b; 0�. Calculation of E��, B�� using Eqs. (8.4)
and (8.5), and substitution into Eqs. (9.33), (9.34), (9.35),
(9.36), (9.37), (9.38), and (9.39) gives
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h _Mi � �C
8

5

�
M
Mext

	
5
"�1

� 3"2�V15
�1 � 2V2��1 � 4�27"2

4�12"2 V2�

�1 � 3V2�2
(9.52)

and

h _Ji � �
8

5

�
M
Mext

	
5
Mext"�1

� 3"2�V12
�1 � 2V2��1 � 4�27"2

4�12"2 V2�

�1 � 3V2�2
; (9.53)

where V �
���������������
Mext=b

p
� 6�1=2 is a measure of the hole’s

orbital velocity. These results agree with those of the
preceding subsection in a common domain of validity
defined by M � Mext and V � 1. To the best of my
knowledge, the results of Eqs. (9.47) and (9.48), complete
with all-order relativistic corrections, have never ap-
peared before in the literature.

I. Black hole in a static tidal field

For completeness we explore another special case of
Eq. (9.39), in which the rotating black hole is at rest in a
static tidal gravitational field.We wish to calculate the rate
at which this black hole loses its angular momentum. This
calculation was presented many times before, most nota-
bly by Hartle [54,55], Teukolsky [53], Chrzanowski [56],
Thorne, Price, and Macdonald [28], and Alvi [18]. The
point of this subsection is to illustrate how easily the
classic spin-down result of Eq. (9.55) follows from
Eq. (9.39).

We assume that the tidal gravitational field is purely
electric in the local asymptotic rest frame of the black
hole, and that it is axially symmetric in the arbitrary
direction of the unit vector na. With these specifications
we have

E ab � �
1

2
E��ab � 3nanb�; Bab � 0; (9.54)

where E 
 Eabnanb. If, for example, the tidal field is
produced by a body of mass Mext maintained at a fixed
position r � bn relative to the black hole, then E �
�2Mext=b3. We assume that the black hole’s angular
momentum makes an angle � with respect to the direc-
tion of na, so that sana � cos�. We then have Eabs

b �
1
2 E�3 cos�na � sa�, Eabsasb � 1

2 E�3cos2�� 1�, and the
invariants of Eqs. (9.33), (9.34), and (9.35) are easily
computed. After simplification we find that Eq. (9.39)
reduces to

_J � �
2

5
E2M5"sin2�

�
1 �

3

4
�1 � 5sin2��"2

�
; (9.55)

which is the classic spin-down formula.
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APPENDIX: PERTURBATIONS OF A
SCHWARZSCHILD BLACK HOLE

In this Appendix I collect a few key results from the
theory of gravitational perturbations of a Schwarzschild
black hole [3,4,35,43]. I employ a covariant/gauge-
invariant formalism that was inspired by the work of
Gerlach & Sengupta [57,58] and Sarbach & Tiglio [59].
These results are presented without derivation; details can
be found in Martel’s PhD dissertation [10].

1. Background metric

The Schwarzschild metric is expressed as

ds2 � gijdx
idxj � r2�ABd


Ad
B; (A1)

in a form that is covariant under two-dimensional coor-
dinate transformations xi ! xi

0
. The indices i; j; k; . . . run

over the values 0 and 1, and the indices A;B;C; . . . run
over the values 2 and 3. The traditional Schwarzschild
coordinates are xi � �t; r�, and in the text we use the
ingoing Eddington-Finkelstein coordinates xi � �v; r�,
where v � t� r� 2M ln�r=2M� 1�, with M denoting
the black-hole mass. In the metric of Eq. (A1), r is viewed
as a scalar function of the arbitrary coordinates xi, and
�AB � diag�1; sin2
� is the metric on the unit two-sphere.

We use gij and its inverse to lower and raise all lower-
case Latin indices. And in this Appendix, contrary to
previous usage in the body of the paper, we use �AB and
its inverse to lower and raise all upper-case Latin indices.
We indicate covariant differentiation with respect to a
connection compatible with gij with a dot: gij:k � 0. And
we indicate covariant differentiation with respect to a
connection compatible with �AB with a colon:
�AB:C � 0.

2. Spherical harmonics

The tensorial nature of the spherical harmonics refers
to the unit two-sphere, whose metric is �AB. The defini-
tions adopted below agree with those of Regge and
Wheeler [3]. The Levi-Civita tensor on the unit two-
sphere is denoted "AB, with "
) � sin
.

The scalar harmonics are the usual spherical-harmonic
functions Ylm�
A�, which satisfy the eigenvalue equation
�ABYlm:AB � l�l� 1�Ylm � 0.

Vectorial spherical harmonics come in two types. The
even-parity harmonics are

Ylm:A �even parity�; (A2)
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while the odd-parity harmonics are

XlmA � �"A
BYlm:B �odd parity�: (A3)

The vectorial harmonics satisfy the following orthogo-
nality relations:Z

�Y:A
lmY

l0m0

:A d� �
Z

�XAlmX
l0m0

A d� � l�l� 1��ll0�mm0

(A4)

and Z
�Y:A
lmX

l0m0

A d� � 0; (A5)

where an overbar indicates complex conjugation and
d� � sin
d
d).

Tensorial spherical harmonics come in the same two
types. The even-parity harmonics are

Ylm�AB; Ylm:AB �even parity�: (A6)

It is useful to define also

ZlmAB � Ylm:AB �
1

2
l�l� 1�Ylm�AB: (A7)

By virtue of the eigenvalue equation for the scalar har-
monics, �ABZlmAB � 0; these harmonics are therefore
trace-free. The odd-parity harmonics are

XlmAB � �Xlm�A:B� �odd parity�; (A8)

these are also trace-free: �ABXlmAB � 0. We record the
following relations between the tensorial harmonics and
the spherical harmonics of spin-weight s � �2 [60]:

ZlmAB �
1

2

��������������������������������������������
�l� 1�l�l� 1��l� 2�

p
��2Y

lmCACB � 2Y
lm �CA �CB�

(A9)

and

XlmAB �
i
2

��������������������������������������������
�l� 1�l�l� 1��l� 2�

p
��2Y

lmCACB

� 2Y
lm �CA �CB�; (A10)

where the vectors CA 
 �1; i sin
�=
���
2

p
satisfy �ABCACB �

�AB �CA �CB � 0 and �ABCA �CB � 1. The tensorial harmon-
ics satisfy the following orthogonality relations:Z

�ZABlm Z
l0m0

AB d� �
Z

�XABlm X
l0m0

AB d�

�
1

2
�l� 1�l�l� 1��l� 2��ll0�mm0 (A11)

and Z
�ZABlm X

l0m0

AB d� � 0: (A12)

The spherical-harmonic functions constructed thus far
are complex, and they are all proportional to eim). We
shall also need a set of real spherical harmonics of degree
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l � 2, which we denote Ym, Ym
:A, Xm

A , Ym
:AB, Zm

AB, and Xm
AB.

The label m runs over the set f0; 1c; 1s; 2c; 2sg; the nu-
merical part of this label refers to the azimuthal index m,
and the letter indicates whether the corresponding scalar-
harmonic function is proportional to cos�m)� or sin�m)�.
Explicitly,

Y0 �
1

2
�3cos2
� 1�; Y1c � sin
 cos
 cos);

Y1s � sin
 cos
 sin); Y2c � sin2
 cos2);

Y2s � sin2
 sin2):

(A13)

The vectorial and tensorial harmonics are generated by
acting on Ym with the same differential operators as those
involved in Eqs. (A2), (A3), and (A6)–(A8).

3. Odd-parity perturbations

The odd-parity perturbations of the Schwarzschild
metric are those which are expanded in terms of odd-
parity spherical harmonics. This sector of the metric
perturbation is given by

�giA�x
i; 
A� � hi�x

i�XlmA �
A�; (A14)

�gAB�xi; 
A� � h2�xi�XlmAB�

A�: (A15)

We suppress usage of the lm label on the fields hi and h2,
and it is understood that the right-hand sides are summed
over l and m. It can be shown that the combinations

~h i � hi �
1

2
h2;i �

1

r
r;ih2 (A16)

are invariant under odd-parity gauge transformations.
The linearized Einstein field equations are then naturally
expressed in terms of ~hi and its covariant derivatives. One
of these equations is required in the text: In the absence of
sources it can be shown that

~h i :i � 0: (A17)

The remaining field equations can be manipulated to form
a one-dimensional wave equation for the master variable


RW 

1

r
r;i ~hi; (A18)

which is evidently gauge invariant. The function 
RW�xi�
is known as the Regge-Wheeler function [3], and in the
absence of sources it satisfies the differential equation

�
RW �

�
l�l� 1�

r2
�

6M

r3

�

RW � 0; (A19)

where �
 
 gij
:ij is the one-dimensional wave opera-
tor acting on the scalar function 
�xi�. It is well under-
stood that in a specified gauge, all components of the
odd-parity metric perturbation can be reconstructed from
the Regge-Wheeler function.
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4. Even-parity perturbations

The even-parity perturbations are expanded in terms
of even-parity spherical harmonics. This sector of the
metric perturbation is given by

�gij�xi; 
A� � hij�xi�Ylm�
A�; (A20)

�giA�x
i; 
A� � ji�x

i�Ylm:A �
A�; (A21)

�gAB�xi; 
A� � r2�K�xi�Ylm�
A��AB �G�xi�Ylm:AB�

A��:

(A22)

Once more we suppress usage of the lm label on the fields
hij, ji, K, and G, and it is understood that the right-hand
sides are summed over l and m. The combinations

~h ij � hij � 2"�i:j�; ~K � K �
2

r
r;i"i; (A23)

where "i � ji �
1
2 r

2G;i, are invariant under even-parity
gauge transformations. The linearized Einstein field
equations are then naturally expressed in terms of these
fields and their covariant derivatives. They can be ma-
nipulated to form a one-dimensional wave equation for
the master variable


ZM 

2r

l�l� 1�

�
~K �

2

.
�r;ir;j ~hij � rr;i ~K;i�

�
; (A24)

where . 
 �l� 1��l� 2� � 6M=r. The function 
ZM�xi�
is known as the Zerilli-Moncrief function [4,43], and it is
evidently gauge invariant; it satisfies a differential equa-
tion similar to Eq. (A19), but with a more complicated
potential. The normalization of the Zerilli-Moncrief
function is chosen so as to agree with the definition
proposed by Lousto and Price [13].

5. Waveforms and energy radiated at infinity

When examined near future null infinity, the gravita-
tional perturbations of Eqs. (A14), (A15), and (A20)–
(A22) can be presented in an outgoing-radiation gauge
that permits an easy identification of the radiative field. It
can be shown that the two fundamental polarizations of
the gravitational waves are given by
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h� � ih� �
1

2r

X
lm

�����������������������������������������
�l�1�l�l�1��l�2�

p
�
lm

ZM�u�

�2i
Z u


lm
RW�u0�du0��2Y

lm�
A�; (A25)

where u � t� r� 2M ln�r=2M� 1� is retarded time,
and �2Y

lm�
A� are spherical harmonics of spin-weight
s � �2. The fact that the waveforms are expressed in
terms of an integral of the Regge-Wheeler function
means that this master variable is rather ill-suited to
describe the radiative aspects of the metric perturbation.
An alternative choice of master variable, which is free of
this blemish, was proposed by Cunningham, Price, and
Moncrief [61,62]; it was recently revived by Jhingan and
Tanaka [63].

The energy and angular momentum radiated to infinity
are given by

h _Ei �
1

64�

X
lm

�l� 1�l�l� 1��l� 2�h4j
lm
RW�u�j2

� j _
lm
ZM�u�j2i; (A26)

h _Ji�
1

64�

X
lm

�l�1�l�l�1��l�2��im�

�
4
lm

RW�u�

�
Z u

�
lm
RW�u0�du0 � _
lm

ZM�u� �
lm
ZM�u�


: (A27)

The expressions are very similar to the horizon-flux for-
mulas of Eqs. (7.8) and (7.9).

Note added.—Conversations with Kip Thorne and John
Friedman (whom I thank) made me understand that the
discussion of induced quadrupole moments inserted in
Secs.VIII G and IX E is incomplete. I should have realized
that the tidal-heating formulas of Eqs. (8.42) and (8.43)
allow the determination of Mab only up to a term propor-
tional to Eab, and the determination of Jab up to a term
proportional to Bab. Such terms do not participate in the
tidal heating and leave h _Mi and h _Jai unchanged. It is
therefore possible for a tidally distorted Schwarzschild
black hole to have quadrupole moments given by Mab �

aM5Eab � �32=45�M6 _Eab and Jab � a0M5Bab �

�8=15�M6 _Bab, where a and a0 are undetermined dimen-
sionless constants. Such moments would scale asM5=R2,
which is the expected scaling.
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