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Timelike naked singularity
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We construct a class of spherically symmetric collapse models in which a naked singularity may
develop as the end state of collapse. The matter distribution considered has negative radial and
tangential pressures, but the weak energy condition is obeyed throughout. The singularity forms at
the center of the collapsing cloud and continues to be visible for a finite time. The duration of visibility
depends on the nature of energy distribution. Hence the causal structure of the resulting singularity
depends on the nature of the mass function chosen for the cloud. We present a general model in which
the naked singularity formed is timelike, neither pointlike nor null. Our work represents a step toward
clarifying the necessary conditions for the validity of the Cosmic Censorship Conjecture.
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The cosmic censorship conjecture (CCC) has been
widely recognized as one of the most important
open problems in gravitational physics today. This
is because several important areas in the theory and
applications of black hole physics crucially depend
on CCC. Nevertheless, the CCC remains unproved and
there exists no mathematically precise and definite
statement for the CCC which one could try to prove
(see, e.g., [1–6] for some recent reviews, and references
therein).

For this reason, a detailed study of dynamically devel-
oping gravitational collapse models within the framework
of general relativity becomes rather essential. The hope is
that such a study may allow us to formulate a provable
statement of the CCC, if it is correct in some form. Such
investigations also help us to discard certain statements of
the CCC which might sound plausible but for which there
exist counter-examples which show that the CCC cannot
be valid in such a form. They may even illustrate the
physical conditions that give rise to naked singularities
(NS) or black holes (BH) as end states of a realistic
gravitational collapse. So far, such dynamical collapse
studies have focused largely on collapse models that
create either BH or NS, depending on the nature of the
initial profiles of density, pressure, and velocity from
which the collapse develops. In many of these cases,
when an NS develops, it is located at the center of the
spherically symmetric cloud (a central singularity, see,
e.g., [5–7]). In that case, there will exist families of non-
spacelike future directed geodesics, which will be acces-
sible to distant observers in the future, and which will
terminate at the singularity in the past, thus making it
visible in principle. This is opposed to the BH case where
the apparent horizon forms early enough to cover all of
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the singularity, with no portion of it remaining visible to
outside observers.

If we require the pressure to be positive then the ‘‘cen-
tral’’ singularity, if it is naked, corresponds to a singu-
larity along a visible null line. The remainder of the
singularity is spacelike and covered by a horizon. In
this paper, however, we permit the pressure to be negative
and examine the structure of the singularity.We construct
an explicit solution in which the singularity may be time-
like. It may even change its character, being timelike
along a certain region and, after being visible for a finite
time, turning spacelike and being covered. The collapsing
matter is described by a particularly chosen matter field
that satisfies the weak energy condition although the
radial and tangential pressures are negative and unequal.
While what is presented here is a specific construction of
a class of collapse models, involving somewhat special
choices, we make sure that physical reasonability condi-
tions such as the energy conditions and the regularity of
the initial data at the initial surface are respected.

The spherically symmetric metric in a general form
can be written as

ds2 � �e2��t;r�dt2 � e2 �t;r�dr2 � R2�t; r�d�2; (1)

where d�2 is the line element on a two-sphere. Choosing
the co-moving frame, the stress-energy tensor for a gen-
eral (type I) matter field is given in a diagonal form as

Ttt � ��; Trr � pr; T

 � T�� � p
; (2)

where �, pr and p
 are the energy density, and the radial
and tangential pressures, respectively. We assume that the
matter field satisfies the weak energy condition, that is, the
energy density as measured by any local observer is non-
negative and, for any timelike vector Vi,

TikViVk � 0; (3)

which amounts to,
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� � 0; �� pr � 0; �� p
 � 0: (4)

The initial data consists of three metric functions, the
energy density, and the radial and tangential pressures at
the initial time t � ti. This is given in terms of six
arbitrary functions of the radial coordinate, viz.,
��ti; r� � �0�r�,  �ti; r� �  0�r�, R�ti; r� � r, ��ti; r� �
�0�r�, pr�ti; r� � pr0�r�, p
�ti; r� � p
0�r�, where, using
the scaling freedom for the radial coordinate r we have
chosen R�ti; r� � r at the initial epoch. The dynamic
evolution of the initial data is then determined by the
Einstein equations, which for the metric (1) become
(8�G � c � 1),

� �
F0

R2R0
; pr � �

_F

R2 _R
; (5)

�0 �
2�p
 � pr�
�� pr

R0

R
�

p0
r

�� pr
; (6)

�2 _R0 � R0
_G
G
� _R

H0

H
� 0; (7)

G�H � 1�
F
R
; (8)

where F � F�t; r� is an arbitrary function. In spherically
symmetric spacetimes F�t; r� is interpreted as the mass
function, with F � 0. In order to preserve the regularity
of the initial data we must also require F�ti; 0� � 0, i.e.,
the mass function should vanish at the center of the cloud.
The functions G and H are defined as G�t; r� � e�2 �R0�2

and H�t; r� � e�2�� _R�2.
All the initial data above are not mutually independent:

from Eq. (6) we find that the function �0�r� is determined
in terms of rest of the initial data. Also, by rescaling of
the radial coordinate r, the number of independent initial
data functions reduces to four. We then have a total of five
field equations with seven unknowns, �, pr, p
,  , �, R,
and F, giving us the freedom of choice of two free
functions. Selection of these functions, subject to the
given initial data and weak energy condition, determines
the matter distribution and metric of the space-time and
thus leads to a particular collapse evolution of the initial
data. At this point it is convenient to introduce a scaling
variable v�t; r�, defined as

R�t; r� � rv�t; r�; (9)

where,

v�ti; r� � 1; v	ts�r�; r
 � 0; and _v < 0; (10)

the last condition being necessary for a collapse. Let us
consider the following choice of the allowed free func-
tions, F�t; r� and ��t; r�,

F�t; r� � r3M�r�v; (11)
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where r3M�r� is a suitably differentiable and monotoni-
cally nondecreasing function, and

��t; r� � �0�R�: (12)

The function M may be expanded in a Taylor series about
r � 0,

M �r� � M0 �M2r2 �M3r3 � . . . : (13)

Then, from Eq. (5), we have

� �
3Mv� r	M;rv�Mv0


v2	v� rv0

(14)

and

pr � �
M�r�

v2
: (15)

The above choice of mass function therefore implies that
the radial pressure is negative (see also, [8]). The weak
energy condition, however, does hold. If R0 � v� rv0

and F0 are both positive in the Eq. (14), then clearly � �
0. Again, for �� pr � 0 at all epochs, it must be true that

�2M0 � 4M2r
2 � 5M3r

3 � . . .�v � 0: (16)

But, because v � 0, it follows that if the condition ��
pr � 0 is satisfied at the initial epoch, it is satisfied
throughout the evolution. Finally, from Eq. (6),

�� p
 �
1

2
��� pr�	1� R�0�R�;R
 �

r2M

R2 � 0 (17)

if 	1� R�0�R�;R
 � 0 for all epochs. This provides a
necessary condition for the weak energy condition to be
satisfied.

At the initial epoch we then have

�0�r� � 3M0 � 5M2r2 � 6M3r3 � . . . (18)

and

pr0�r� � �	M0 �M2r2 �M3r3 � . . .
 (19)

At the initial epoch, the radial and the tangential pres-
sures must be equal at the center and all the pressure
gradients must vanish. It follows that the initial tangential
pressure must have the form

p
0�r� � �	M0 � p
2r
2 � p
3r

3 � . . .
: (20)

Hence, from Eq. (6) we see that �0�r� becomes,

�0�r� � a2r2 � a3r3 � . . . ; (21)

where

a2 �
p
2 �M2

2M0
; a3 �

p
3 �M3

2M0
;

and, from Eq. (12),

��t; r� � �0�R� � a2R2 � a3R3 � . . . (22)
-2



TIMELIKE NAKED SINGULARITY PHYSICAL REVIEW D 70 084038
The dynamic evolution of p
�t; r� is obtained by inserting
Eq. (12) in Eq. (6) and simplifying to get,

p
�r; v� � pr �
Rp0

r

2R0
�

1

2
�0�R�;RR��� pr�: (23)

There exists, therefore, an � ball around the central shell
for which p
 � pr and the perfect fluid equation of state
is valid.

Using Eq. (12) in Eq. (7), we get,

G�t; r� � b�r�e2�0�R�; (24)

where b�r� is another arbitrary function of r. In corre-
sponding dust models, we can write b�r� � 1� r2b0�r�,
where b0�r� is the energy distribution function of the
collapsing shells. Thus, the metric (1) becomes,

ds2 � �e2�a2R
2�...�dt2 �

R02e�2�a2R2�...�dr2

1� r2b0�r�
� R2d�2

(25)

and is valid for small values of r, for all epochs, i.e., for
all values of v�r; t�, till the singularity.

Solving the equation of motion (8) we find that

_v� � e2�0�rv�
��������������������������������������������������������������������������������������
v2�2a2�2a3rv . . .��b0�r�e2�0�rv��M�r�

q
;

(26)

which may be integrated to obtain

t�v; r��
Z 1

v

e�2�0�rv�dv�������������������������������������������������������������������������������������������
v2�2a2 � 2a3rv . . .� � b0�r�e2�0�rv� �M�r�

q :

(27)

We note that the radial coordinate r is treated as a con-
stant in the above equation, which gives the time taken
for a shell labeled r, to reach a later epoch v in collapse
from the initial epoch v � 1.

It is clear that an explicit solution of the above integral
will give a closed form solution of the form t � f�v; r� or,
inversely, v � g�t; r�, which will then determine the met-
ric function R � rg�t; r� thereby giving an exact solution
for the metric (25). Unfortunately, the integral cannot be
expressed in closed form and we make a Taylor expansion
of the integral about the center of the cloud.

t�v; r� � t�v; 0� � rX�v� �O�r2� (28)

where the function X�v� is given by,

X �v� � �
1

2

Z 1

v
dv

2v4a3 � b1

	
�������������������������������������������������
b0�0� � 2v2a2 �M�0�

p

3

(29)

If a closed form solution of R exists up to the
first approximation, it will be of the form R �
rX�1f	t�v; r� � t�v; 0�
=rg. Therefore, by expanding as
above we are actually solving for R and so for the metric
(25) to the first approximation, although we do not write
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it in closed form. This is because it is only the sign of
X�0� that determines the final end state of the collapse,
which is the issue of interest here.

The time taken for the central shell at r � 0 to reach
the singularity, ts�0�, is given by

ts�0� �
Z 1

0

dv����������������������������������������������������
v2�2a2� � b0�0� �M�0�

p : (30)

The time taken for the other shells (r � 0) to reach the
singularity, ts�r�, can be given as,

ts�r� � ts�0� � rX�0� �O�r2�; (31)

where the function X�0� is given by,

X �0� � �
1

2

Z 1

0
dv

2v4a3 � b1

	
�������������������������������������������������
b0�0� � 2v2a2 �M�0�

p

3
: (32)

We see that by suitable choice of the coefficients of initial
density, pressure and energy profiles we can make X�0�
positive or negative. Furthermore, at the singularity, for a
constant v surface we have

lim
v!0

v0 �
�����������������������������
b0�r� �M�r�

q
X�0� �O�r2� (33)

and, because we have expressions for v0 and _v, near the
central singularity, we can in principle calculate v�r; t� in
the neighborhood of the central singularity. This solves
the system of Einstein equations.

The apparent horizon is the boundary of the trapped
region of the space-time and is given by R=F � 1. If the
neighborhood of the center gets trapped earlier than the
singularity, then it will be covered and a black hole will
be the final state of the collapse. Otherwise, the singu-
larity can be naked with nonspacelike future directed
trajectories escaping from it to outside observers. Using
(11), we find that the apparent horizon is just the surface

r2M�r� � 1: (34)

Therefore, if r2bM�rb�< 1 there will be no trapped sur-
faces in space-time, where rb is the radial coordinate of
the boundary of the cloud.

It is simplest to examine the nature of the singularity
by noting that it occurs at R � 0. This implies that at the
singularity,

ds2 �
�
exp�2 � � exp�2��

R02

_R2

�
dr2: (35)

If the right hand side is negative, the singularity is time-
like. Therefore, for a timelike singularity, G�H > 0, or

1� r2M�r�> 0: (36)

But, because the function r2M�r� is monotonically non-
decreasing, it follows that the singularity is timelike near
r � 0, becomes null at r2M�r� � 1 and finally spacelike
when r2M�r�> 1.
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This result may also be obtained explicitly near the
center by examining the outgoing null geodesics. To see
this specifically at r � 0, the outgoing radial null lines
are given by

dt
dr

� e ��; (37)

which, at the singularity, corresponds to�
dt
dr

�
null

� lim
v!0

rv0������������������������
1� r2b0�r�

p : (38)

In order to find the existence or otherwise of an outgoing
null geodesic from the singularity we substitute the value
of v0 at the singularity in the above equation to obtain

�
dt
dr

�
null

�

�
r

�����������������������������
b0�r� �M�r�

p
������������������������
1� r2b0�r�

p
��
dt
dr

�
s
: (39)

If �
dt
dr

�
s
� X�0� � 0 (40)
084038
then, for all values of r for which

�
r

�����������������������������
b0�r� �M�r�

p
������������������������
1� r2b0�r�

p
�
� 1 (41)

or 1� r2M�r�> 0 , there will be a visible outgoing null
geodesic leaving the singularity.

The model discussed here is based on a special choice
of the mass function. The fluids described by this choice
are not intended to describe an actual physical system:
both the radial and the tangential pressures are negative.
Nevertheless the initial data satisfy appropriate regularity
conditions and the weak energy condition is maintained
throughout. Therefore, the system can serve as a guide to
further clarifying and precisely formulating the CCC.

Understanding what is possible in dynamically devel-
oping collapse models is necessary to arrive at a plausible
concrete statement of the CCC. We have an example that
shows that even in spherically symmetric collapse, the
naked singularity need not always be either pointlike or
null, but can have an interesting causal structure, includ-
ing being timelike.
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