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I describe the Einstein’s gravitation of 3� 1 dimensional spacetimes using the (2,2) formalism
without assuming isometries. In this formalism, quasilocal energy, linear momentum, and angular
momentum are identified from the four Einstein’s equations of the divergence-type, and are expressed
geometrically in terms of the area of a two-surface and a pair of null vector fields on that surface. The
associated quasilocal balance equations are spelled out, and the corresponding fluxes are found to
assume the canonical form of energy-momentum-flux as in standard field theories. The remaining non-
divergence-type Einstein’s equations turn out to be the Hamilton’s equations of motion, which are
derivable from the nonvanishing Hamiltonian by the variational principle. The Hamilton’s equations are
the evolution equations along the out-going null geodesic whose affine parameter serves as the time
function. In the asymptotic region of asymptotically flat spacetimes, it is shown that the quasilocal
quantities reduce to the Bondi energy, linear momentum, and angular momentum, and the correspond-
ing fluxes become the Bondi fluxes. The quasilocal angular momentum turns out to be zero for any two-
surface in the flat Minkowski spacetime. I also present a candidate for quasilocal rotational energy
which agrees with the Carter’s constant in the asymptotic region of the Kerr spacetime. Finally, a simple
relation between energy-flux and angular momentum-flux of a generic gravitational radiation is
discussed, whose existence reflects the fact that energy-flux always accompanies angular
momentum-flux unless the flux is an s-wave.
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I. INTRODUCTION

It has been known for sometime that the Plebañski
equation [1], the self-dual Einstein’s equation of 4-
dimensional Euclidean space, can be obtained as the
large n limit of the equations of motion of a certain class
of sl�n�-valued nonlinear sigma models in two dimen-
sions [2–4]. The equivalence of these equations defined in
two different dimensions is quite unexpected, but if one
realizes that large n limit of the sl�n� Lie algebra is just
the Lie algebra of area-preserving diffeomorphisms of an
auxiliary 2-dimensional surface [5–7], and that the equa-
tions of motion of sl�1�-valued nonlinear sigma models
in two dimensions are in fact partial differential equa-
tions on four dimensional space, then one might be more
comfortable with the idea of describing 4-dimensional
self-dual Einstein’s gravity as a limit of a certain class of
2-dimensional field theories, and can show that the two
theories are in fact identical. This correspondence is
supported further by the observation that the Plebañski
equation and the sl�n�-valued 2-dimensional nonlinear
sigma models are both integrable.

One may be interested in extending this idea of describ-
ing 3� 1 dimensional theories from 1� 1 dimensional
perspective without the self-dual restriction and in the
Lorentzian regime. There are several advantages of such a
description, if it is possible at all. They stem from the fact
that 1� 1 dimensional field theories are usually more
dress :yoonjh@konkuk.ac.kr
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manageable than 3� 1 dimensional ones, both classically
and quantum mechanically. For example, a number of
field theories in 1� 1 dimensions are renormalizable, due
to the dimensionlessness of field variables in a naive
power counting. There would be an enormous gain if
one ever succeeds in describing the Einstein’s gravitation
in 3� 1 dimensions as a limit of some kind of 1� 1
dimensional field theories which eventually proves to be
renormalizable. This idea sounds strange but does not
seem impossible, since the renormalizability is highly
sensitive to the spacetime dimensions on which the theo-
ries are defined.

These reasonings led us to seek the possibility whether
the Einstein’s gravity in 3� 1 dimensions without the
self-dual restriction is describable as a 1� 1 dimensional
field theory [8]. The idea was simply to split a 3� 1
dimensional spacetime into a 1� 1 dimensional base
manifold and a 2-dimensional fibre space, and write
down the Einstein-Hilbert action. Then the Einstein-
Hilbert action becomes 1� 1 dimensional field theory
action, where the infinite dimensional group of diffeo-
morphisms of 2-dimensional fibre space becomes the
Yang-Mills gauge symmetry. But this program was suc-
cessful only in a formal sense, since the resulting 1� 1
dimensional action did not seem much useful, which
made the whole idea of describing the Einstein’s gravita-
tion as 1� 1 dimensional field theory questionable. The
follow-up idea was to use the gauge freedom of the 3� 1
dimensional spacetime [9–14]. If one chooses one of the
spacetime coordinates as the affine parameter of the out-
37-1  2004 The American Physical Society
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going null geodesic, then it turns out that the 1� 1
dimensional field theory description of the Einstein’s
gravitation is simplified significantly.

The purpose of this paper is to present several unex-
pected results that I obtained in the (2,2) fibre bundle
description of the Einstein’s gravitation, and discuss their
physical implications. First, I will present quasilocal
balance equations of energy, linear momentum, and an-
gular momentum for an arbitrary compact two-surface,
which are just two-surface integrals of the four
divergence-type equations that are part of the Einstein’s
equations [13–15]. Quasilocal energy, linear momentum,
and angular momentum are expressed in the coordinate-
independent and geometric way in terms of the area of a
two-surface and the in- and out-going null vector fields at
each point of that surface [16,17]. They are Bondi-like,
since their rates of changes are given by fluxes of the
canonical form [18]

T0��� �
X
I

	IL�qI; (1.1)

where� is an appropriate vector field defined at each point
of a two-surface.

Second, problems of defining quasilocal angular mo-
mentum and associated rotational energy have been par-
ticularly subtle issues [19–24]. This is due to the fact that
the very notion of rotation depends on the choice of the
coordinates, which implies that one can always remove
the effects of rotation by working in a corotating coor-
dinate system. On the other hand, it is natural to demand
that the angular momentum and the rotational energy of
any compact two-surface in the flat Minkowski spacetime
be zero. It will be seen that our quasilocal angular mo-
mentum and rotational energy not only become zero for
any two-surface in the flat Minkowski spacetime, but also
reduce to the standard values of the total angular mo-
mentum and the Carter’s constant in the asymptotic
region of the Kerr spacetime, respectively [25–28]. In
this sense, our quasilocal rotational energy may be re-
garded as a quasilocal generalization of the Carter’s
constant of a generic gravitational field.

Third, using the affine parameter of the out-going null
geodesic as the time coordinate, I will write down the
Hamiltonian of the Einstein’s theory [29]. I will obtain
the Hamilton’s equations of motion from this
Hamiltonian using appropriate boundary conditions,
which determine the time flows of the field variables.
Together with the quasilocal balance equations (or the
constraint equations depending on the signature of the 3-
dimensional hypersurface), it will be seen that the
Hamilton’s equations of motion constitute the full
Einstein’s equations.

Finally, I will present a simple but general relation
between quasilocal energy-flux and angular momentum-
flux of a generic gravitational radiation that has no isome-
tries. It is a generalization of the well-known relation of
084037
mass-loss and angular momentum-loss [30],

�U �
!
mz
�Lz (1.2)

for small perturbations around a stationary and axi-
symmetric spacetime, where ! and mz are the frequency
and azimuthal angular momentum of the perturbations,
respectively. To my knowledge, such a relation between
these gravitational fluxes of the most general type has not
been discussed before, but it strongly indicates that our
identifications of fluxes are physically correct, since
energy-flux always carries angular momentum-flux un-
less the radiation is an s-wave.

This paper is organized as follows. In Sec. II, I will
introduce the kinematics of the (2,2) fibre bundle formal-
ism, and write down the Einstein’s equations. Then I will
discuss 1� 1 dimensional gauge theory aspects of the
Einstein’s gravitation of 3� 1 dimensions from this fibre
bundle point of view.

In Sec. III, I will study the four Einstein’s equations
that are first-order in the derivatives along the out-going
null vector field. These equations, which are the natural
analogs of the Einstein’s constraint equations in the 3� 1
formalism, turn out to be divergence-type equations. It is
from the two-surface integrals of these equations that one
obtains quasilocal balance equations of gravitational en-
ergy, linear momentum, and angular momentum. I will
also present quasilocal gravitational rotational energy.
The Carter’s constant, which is usually interpreted as a
measure of intrinsic rotation of gravitational field, is
known to exist for a certain class of spacetimes that
have two commuting Killing symmetries, and for the
Kerr spacetime, it is just the total angular momentum
squared. Our quasilocal rotational energy reduces to the
Carter’s constant for asymptotically Kerr spacetimes, as
is shown in Sec. VI, and therefore, may be regarded as a
quasilocal generalization of the Carter’s constant to
spacetimes that have no isometries.

In Sec. IV, it will be shown that the remaining
Einstein’s equations, which are second-order in the de-
rivatives along the out-going null vector field, are the
Hamilton’s equations of motion derivable from a non-
vanishing Hamiltonian by the variational principle. The
details of this derivation are given in the Appendix. Thus,
together with the quasilocal balance equations (or con-
straint equations depending on the signature of the 3-
dimensional hypersurface), the Hamilton’s equations of
motion make up for the full Einstein’s equations in this
formalism.

In Sec. V, quasilocal energy, linear momentum, and
angular momentum of the previous sections will be ex-
pressed in the coordinate-independent and geometric
way, using the area of a two-surface and a pair of null
vector fields orthogonal to that surface. Relative to a given
background spacetime against which these quasilocal
quantities are measured, quasilocal energy and linear
-2
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momentum are given by the rates of changes of the area of
the two-surface along the in- and out-going null vector
fields, respectively, and quasilocal angular momentum
associated with a vector field � is given by two-surface
integral of the projection of the twist of the in- and out-
going null vector fields onto � modulo a background-
dependent subtraction term.

In Sec.VI, I will study the quasilocal balance equations
at the null infinity and show that they all agree with the
well-known Bondi formulae of energy-loss, momentum-
loss, and angular momentum-loss. In order to show these
correspondences, it is necessary to find the asymptotic
fall-off rates of the metric and their derivatives near the
null infinity, using the affine parameter of the out-going
null geodesic as the radial coordinate [13,14,31–33]. I
will present the asymptotic fall-off rates in this section.
It will be shown that the quasilocal rotational energy in
the asymptotic region of the asymptotically Kerr space-
times agrees with the Carter’s constant of the Kerr
spacetime.

In Sec. VII, a general relation between quasilocal
energy-flux and angular momentum-flux will be pre-
sented for a generic gravitational radiation. When re-
stricted to small perturbations around a stationary and
axi-symmetric spacetime, it will be shown that this rela-
tion reduces to the well-known relation of mass-loss and
angular momentum-loss in the perturbation theory of the
Kerr black hole [30].

In the Appendix, I present in detail the derivation of the
non-divergence type Einstein’s equations as the
Hamilton’s equations of motion associated with a non-
vanishing gravitational Hamiltonian.
1+1 dimensional
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FIG. 1. This figure shows the geometry of the (2,2) fibre
bundle splitting of 3� 1 dimensional spacetime. The 1� 1
dimensional base manifold is spanned by f@
g and the two
dimensional fibre space N2 by f@ag. The horizontal vector fields
f@̂
g are orthogonal to N2, and Aa
 are the connections valued
in the Lie algebra of the diffeomorphisms of N2.
II. KINEMATICS

In this section, I will introduce the kinematics of the
(2,2) fibre bundle formalism [34,35], and write down the
Einstein’s equations. This section serves mainly to fix the
notations. Let us consider the following line element

ds2 �� 2dudv� 2hdu2 ��ab�dya � Aa�du� A
a
�dv�

� �dyb � Ab�du� A
b
�dv�; (2.1)

where�;� stands for u; v, respectively [9–14,36–39]. In
order to understand the geometry of this metric, it is
convenient to introduce the following vector fields f@̂
g
defined as

@̂�: � @� � A
a
�@a; (2.2)

@̂�: � @� � Aa�@a; (2.3)

where

@� �
@
@u
; @� �

@
@v
; @a �

@
@ya

�a � 2; 3�:

(2.4)

The inner products of the vector fields f@̂
; @ag are given
084037
by

<@̂�; @̂�> � �2h; <@̂�; @̂�> � �1;

<@̂�; @̂�> � 0; <@̂
; @a> � 0;

<@a; @b> � �ab:

(2.5)

The hypersurface u � constant is an out-going null hy-
persurface generated by @̂� whose norm is zero. The
hypersurface v � constant is generated by @̂� whose
norm is �2h, which can be either negative, zero, or
positive, depending on whether @̂� is timelike, null, or
spacelike, respectively. The vector fields f@̂
g are called
horizontal since they are orthogonal to f@ag, and two
dimensional section spanned by f@̂
g has the Lorentzian
signature. The intersection of two hypersurfaces u; v �
constant defines a spacelike two-surface N2 labeled by
fyag, which is assumed to be compact with a positive-
definite metric �ab on it (see Fig. 1). The metric �ab is
decomposed into the area element e! and the conformal
two-metric "ab normalized to have a unit determinant

�ab � e!"ab �det"ab � 1�: (2.6)

For later uses, let us express the in-going null vector
field n and out-going null vector field l in term of f@̂
g.
They are given by

n � @̂� � h@̂�; (2.7)

l � @̂�; (2.8)

and satisfy the normalization condition

<n; l> � �1: (2.9)

Notice that @=@v is either spacelike or null, since its norm
is given by
-3
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<
@
@v
;
@
@v
> � e!"abAa�Ab� � 0: (2.10)

The coordinate v increases uniformly as l evolves, since
we have

L lv � 1: (2.11)

In the gauge where Aa� � 0, l is given by

JONG HYUK YOON
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l �
@
@v
; (2.12)
which tells us that v becomes the affine parameter of the
out-going null geodesic l.

The complete set of the vacuum Einstein’s equations
are found to be [11]
�a� e!D�D�!�e
!D�D�!�2e

!�D�!��D�!��2e
!�D�h��D�!��

1

2
e2!"abF

a
��F

b
���e

!R2

�he!
�
�D�!�

2�
1

2
"ab"cd�D�"ac��D�"bd�

�
�0; (2.13)

�b� �e!D2
�!�

1

2
e!�D�!�2�e!�D�h��D�!��e!�D�h��D�!��2he!�D�h��D�!��e!Fa��@ah

�
1

4
e!"ab"cd�D�"ac��D�"bd��@a�"

ab@bh��h
�
�e!�D�!��D�!��

1

2
e!"ab"cd�D�"ac��D�"bd�

�
1

2
e2!"abF

a
��F

b
���e

!R2

�
�h2e!

�
�D�!�

2�
1

2
"ab"cd�D�"ac��D�"bd�

�
�0; (2.14)

�c� 2e!�D2
�!� � e!�D�!�2 �

1

2
e!"ab"cd�D�"ac��D�"bd� � 0; (2.15)

�d� D��e
2!"abF

b
��� � e

!@a�D�!� �
1

2
e!"bc"de�D�"bd��@a"ce� � @b�e

!"bcD�"ac� � 0; (2.16)

�e� �D��e2!"abFb����e
!@a�D�!��

1

2
e!"bc"de�D�"bd��@a"ce��@b�e!"bcD�"ac��2he!@a�D�!�

�he!"bc"de�D�"bd��@a"ce��2e!@a�D�h��2@b�he!"bcD�"ac��0; (2.17)

�f� � 2e!D2
�h� 2e

!�D�h��D�!� � e
!D�D�!� e

!D�D�!� e
!�D�!��D�!� �

1

2
e!"ab"cd�D�"ac��D�"bd�

� e2!"abFa��F
b
�� � 2he

!
�
D2
�!�

1

2
�D�!�2 �

1

4
"ab"cd�D�"ac��D�"bd�

�
� 0; (2.18)

�g� hfe!D2
�"ab � e!"cd�D�"ac��D�"bd� � e!�D�"ab��D�!�g �

1

2
e!�D�D�"ab �D�D�"ab�

�
1

2
e!"cdf�D�"ac��D�"bd� � �D�"bc��D�"ad�g �

1

2
e!f�D�"ab��D�!� � �D�"ab��D�!�g

� e!�D�"ab��D�h� �
1

2
e2!"ac"bdFc��F

d
�� �

1

4
e2!"ab"cdFc��F

d
�� � 0: (2.19)
Here R2 is the scalar curvature of N2, and the
diffN2-covariant derivatives are given by [8,10],

Fa�� � @�A
a
� � @�A

a
� � A�; A��

a
L; (2.20)

D
! � @
!� A
; !�L; (2.21)

D
h � @
h� A
; h�L; (2.22)

D
"ab � @
"ab � A
; "�Lab: (2.23)
In general, the diffN2-covariant derivative of a tensor
density fab��� with weight w with respect to the diffeo-
morphisms of N2 is given by

D
fab��� � @
fab��� � A
; f�Lab���; (2.24)

where the bracket A
; f�Lab��� is the Lie derivative of
fab��� along A
: � Aa
@a,

A
; f�Lab���: �A
c

@cfab��� � fcb���@aA

c

 � fac���@bA

c



� � � � � w�@cA
c

�fab���: (2.25)
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For instance, the diffN2-covariant derivatives of the area
element e! and the conformal metric "ab which are scalar
and tensor density with weight 1 and �1 with respect to
the diffN2 transformations, respectively, are given by

D
e! � @
e! � Ac
@ce
! � �@aAa
�e

!; (2.26)

D
"ab � @
"ab � A
c

@c"ab � "cb@aA

c

 � "ac@bA

c



� �@cAc
�"ab: (2.27)

If one uses the Leibniz rule in (2.26), then one has

D
! � @
!� Ac
@c!� @aA
a

 � @
!� A
; !�L;

(2.28)

which is just the Eq. (2.21).
The spacetime integral of the scalar curvature of the

metric (2.1) is given by

I �
Z
dudvd2yL� surface integrals; (2.29)

where L is given by [9–14]

L ��
1

2
e2!"abFa��F

b
�� � e

!�D�!��D�!�

�
1

2
e!"ab"cd�D�"ac��D�"bd� � e

!R2

� 2e!�D�h��D�!� � he
!�D�!�

2

�
1

2
he!"ab"cd�D�"ac��D�"bd�: (2.30)

Each term in (2.30) is manifestly invariant under the
diffeomorphisms of N2, since the fyag-dependence of
each term is completely hidden in the diffN2-covariant
derivatives. In this sense one may regard N2 as a kind of
internal space as in Yang-Mills theory, with the infinite
dimensional group of diffeomorphisms of N2 as the asso-
ciated gauge symmetry. Thus, the Einstein’s gravitation of
3� 1 dimensional spacetimes is describable as 1� 1
dimensional Yang-Mills type gauge theory interacting
with 1� 1 dimensional scalar fields !, h, and nonlinear
sigma fields "ab whose interactions are dictated by the
above Lagrangian density L. If one uses the diffN2 gauge
freedom so that Aa� � 0, then the metric (2.21) becomes
identical to the metric of the null hypersurface formalism
studied in [38]. In this paper, however, I shall retain the
Aa� field, since its presence will make the coordinate
choice less restrictive and the diffN2-invariant Yang-
Mills type gauge theory aspect more transparent.
III. A SET OF QUASILOCAL BALANCE
EQUATIONS

Notice that the equations (2.13), (2.14) and (2.17) are
partial differential equations that are first-order in D�
derivatives. Therefore, it is of particular interest to study
these equations, since they are the analogs of the
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Einstein’s constraint equations in the standard 3� 1 for-
malism. Thus, in this (2,2) formalism, the natural vector
field that defines the evolution isD�. Then the momentum
variables 	I � f	h;	!; 	a; 	abg conjugate to the con-
figuration variables qI � fh;!; Aa�; "abg are defined as

	I: �
@L

@�D�qI�
: (3.1)

They are found to be

	h � �2e!�D�!�; (3.2)

	! � �2e!�D�h� � 2he!�D�!� � e!�D�!�; (3.3)

	a � e2!"abF
b
��; (3.4)

	ab � he!"ac"bd�D�"cd� �
1

2
e!"ac"bd�D�"cd�: (3.5)

Conversely, one can express D� derivatives of the con-
figuration variables in terms of the conjugate momenta as
follows,

D�h � �
1

2
e�!	! �

1

2
D�!�

1

2
he�!	h; (3.6)

D�! � �
1

2
e�!	h; (3.7)

Fa�� � e�2!"ab	b; (3.8)

D�"ab �
1

h
e�!"ac"bd	cd �

1

2h
D�"ab: (3.9)

Notice that 	ab is traceless

"ab	ab � 0; (3.10)

due to the identities

"abD
"ab � 0 (3.11)

which are direct consequences of the condition

d et "ab � 1: (3.12)

The Hamiltonian density H0 is given by [13,14]

H0: � 	ID�q
I � L � H � total divergences; (3.13)

where H is

H ��
1

2
e�!	!	h �

1

4
he�!	2h �

1

2
e�2!"ab	a	b

�
1

2h
e�!"ac"bd	ab	cd �

1

2
	h�D�!�

�
1

2h
	ab�D�"ab� �

1

8h
e!"ab"cd�D�"ac��D�"bd�

� e!R2: (3.14)

Notice that H and H0 are Hamiltonian densities that
-5
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differ by total divergences only. In terms of the canonical
variables, the first-order equations (2.13), (2.14), and
(2.17) can be written as, after a little algebra,

�i� 	abD�"ab � 	!D�!� hD�	h
� @��h	h � 2e

!D�!� � @a�h	hA
a
� � 2A

a
�e

!D�!

� 2he�!"ab	b � 2"ab@bh� � 0; (3.15)

�ii� H � @�	h � @a�Aa�	h � e
�!"ab	b� � 0; (3.16)

�iii� @�	a � @b�Ab�	a� � 	b@aA
b
� � 	!@a!� @a	!

� 	h@ah� 	
bc@a"bc � @b�	

bc"ac� � @c�	
bc"ab�

� @a�	
bc"bc� � 0: (3.17)

Notice that (3.15) and (3.16) are divergence-type equa-
tions of the following form [15]

A� @�B� @aC
a � 0: (3.18)

One can also express (3.17) as another divergence-type
equation. If we contract (3.17) by an arbitrary function �a

of fv; ybg such that

@��
a � 0; (3.19)

then we have

	abL�"ab � 	!L�!� 	hL�h� 	aL�Aa� � @���
a	a�

� @a���
a	! � 2	

ab�c"bc � A
a
��

b	b� � 0; (3.20)

which is in the same form as (3.18). Here L�fab��� is the
Lie derivative defined in (2.25),

L �fab��� � �; f�Lab��� ��: � �a@a�: (3.21)

Integrals of the divergence-type equations (3.15), (3.16),
and (3.20) over a compact two-surface N2 become, after
normalizing by 1=16	,

@
@u
U�u; v� �

1

16	

I
d2y�	abD�"ab � 	!D�!

� hD�	h�; (3.22)

@
@u
P�u; v� �

1

16	

I
d2yH; (3.23)

@
@u
L�u; v; �� �

1

16	

I
d2y�	abL�"ab � 	!L�!

� hL�	h � A
a
�L�	a�; (3.24)

where we used the identities
I
d2y	hL�h � �

I
d2yhL�	h; (3.25)

I
d2y	aL�Aa� � �

I
d2yAa�L�	a: (3.26)

Here U�u; v�, P�u; v�, and L�u; v; �� are two-surface in-
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tegrals defined as

U�u; v�: �
1

16	

I
d2y�h	h � 2e

!D�!� � �U; (3.27)

P�u; v�: �
1

16	

I
d2y�	h� � �P; (3.28)

L�u; v; ��: �
1

16	

I
d2y��a	a� � �L �@��a � 0�;

(3.29)

where �U, �P, and �L are undetermined subtraction terms
that satisfy the conditions

@ �U
@u
�
@ �P
@u
�
@ �L
@u
� 0: (3.30)

Notice that choices of subtraction terms are not unique,
since it is the subtraction terms that define the references
against which these quasilocal quantities are measured. A
natural criterion for the ‘‘right’’ choice of subtraction
terms would be that values of quasilocal quantities repro-
duce ‘‘standard’’ values in the well-known limiting cases,
but otherwise they can be chosen arbitrarily.

Let us notice that the integrand of the r.h.s. of (3.24)
assumes the canonical form of angular momentum-flux,

T0a�
a �

X
I

	IL�q
I; (3.31)

where � is tangent to the two-surface N2. One can also put
the r.h.s. of (3.22) into the canonical form of energy-flux,

T0��� �
X
I

	I@�qI; (3.32)

where �� � ���. To show this, let us contract (3.17) with
A�

a and integrate over N2. Then we have
I
d2y�Aa�@�	a� �

I
d2y�	abLA�"ab � 	!LA�!

� hLA�	h�: (3.33)

If we use the Eq. (3.33) and the diffN2-covariant deriva-
tive D� defined in (2.24), then (3.22) can be written as

@
@u
U�u; v� �

1

16	

I
d2y�	ab@�"ab � 	!@�!

� h@�	h � Aa�@�	a�; (3.34)

where the r.h.s. indeed assumes the canonical form of
energy-flux [18].

In the region where @̂� is timelike (2h > 0), the
Eqs. (3.23), (3.24), and (3.34) are quasilocal balance
equations that relate the instantaneous rates of changes
of two-surface integrals at a given u-time to the associ-
ated net fluxes across the timelike tube generated by @̂�
[see Fig. 2(a)]. Let us remark that, unlike the Tamburino-
Winicour’s quasilocal conservation equations that are
-6
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‘‘weak’’ conservation equations since the Ricci flat con-
ditions (i.e., the full vacuum Einstein’s equations) were
assumed in their derivation [40], our quasilocal balance
equations are ‘‘strong’’ conservation equations in that
only four Einstein’s equations of the divergence-type
were used in the derivation.

In the region where @̂� is spacelike (2h < 0), the vector
field @=@u is spacelike,

<
@
@u
;
@
@u
> � �2h� e!"abA

a
�A

b
� > 0; (3.35)

so that u is the radial coordinate [see Fig. 2(b)]. Then the
Eqs. (3.15), (3.16), and (3.17) are constraint equations
rather than balance equations, and each equation splits
into a divergence term and a source term. The source term
either assumes the canonical form of energy-momentum
‘‘density’’ �	IL�qI and �	I@�qI as in Eqs. (3.31) and
(3.32), or is given by the Hamiltonian density H in (3.14).
Notice that the source term is not ‘‘flux’’ but ‘‘density,’’
since the v � constant hypersurface is now a 3-
dimensional spacelike hypersurface. These constraint
equations describe how the quasilocal quantities at a
given u-radius change as the radius u changes on a given
spacelike hypersurface. Thus, the difference of two-
surface integrals evaluated on two successive two-spheres
on a given spacelike hypersurface is given by the 3-
dimensional spatial integral of the ‘‘density’’ over the
region between the two-spheres of interest. This is exactly
what happens in Maxwell’s theory, where the Gauss law
constraint is given by

~r � ~E � 4	": (3.36)
FIG. 2. (a) This figure shows the spacetime geometry in the reg
(b) This figure shows the spacetime geometry in the region where 2
N2 is represented by a circle.

084037
If one integrates (3.36) over a 3-dimensional spacelike
region V whose boundaries are two-spheres S1 and S2,
then one has

I
S1
Enda�

I
S2
Enda � 4	

Z
V
"dv: (3.37)

Thus, in Maxwell’s theory, the difference of two-surface
integrals of the ‘‘momentum’’ En on two successive two-
spheres is given by the spatial integral of the charge
density over the volume between the two-spheres. In
this paper, however, we shall be concerned with the
case 2h > 0 only, and the case 2h � 0 will be discussed
elsewhere [41].

If we introduce a function WR�u; v� defined as

WR�u; v�: �
1

16	

Z u

0
du

I
d2yAa�@�	a; (3.38)

then we have

@
@u
WR�u; v� �

1

16	

I
d2yAa�@�	a; (3.39)

so that (3.34) can be written as

@
@u
fU�u; v� �WR�u; v�g �

1

16	

I
d2y�	ab@�"ab

� 	!@�!� h@�	h�:

(3.40)

Notice that the r.h.s. of (3.39) has the form

@
@u
WR�u; v� �

X
a

�a@�La; (3.41)
ion where 2h > 0, and v � constant hypersurface is timelike.
h < 0, and v � constant hypersurface is spacelike. In both cases

-7
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where

�a � Aa�; (3.42)

La �
1

16	
	a; (3.43)

which represents the work done per unit u-time by chang-
ing the angular momentum La of the system that has the
angular velocity�a. From this perspective, the Eq. (3.39)
is the work done on N2 per unit u-time by changing the
angular momentum density 	a=16	 of gravitational field
that has the angular velocity Aa� at each point of N2. This
observation suggests that WR�u; v� be identified as the
quasilocal rotational energy of N2. Indeed, as is shown
in Sec. VI, WR�u; v� reduces to the Carter’s constant for
the asymptotically Kerr spacetimes, the total angular
momentum squared [25–28]. This is a strong indication
that supports our identification of WR�u; v� as the rota-
tional energy of gravitational field in the circumstances
where no isometries are present.

In the limit where Aa� is independent of u such that

@�A
a
� � 0; (3.44)

WR�u; v� becomes

WR�u; v� �
1

16	

I
u�u

d2y�Aa�	a� �
1

16	

�
I
u�0

d2y�Aa�	a�: (3.45)
IV. HAMILTON’S EQUATIONS OF MOTION

Let us define the Hamiltonian K as the integral of H in
(3.14),

K: �
Z
du

I
d2yfH � 5�det"ab � 1�g; (4.1)

where 5 is a Lagrange multiplier that enforces the uni-
modular condition (3.12). In the Appendix, we have
shown that the Eqs. (2.15), (2.16), (2.18), and (2.19) are
the Hamilton’s equations of motion

D�qI �
�K
�	I

; (4.2)

D�	I � �
�K
�qI

; (4.3)

where f	I; qIg are

	I � f	h;	!; 	a; 	abg; qI � fh; !; Aa�; "abg; (4.4)

assuming the boundary conditions

�! � �"ab � 0 (4.5)

at the endpoints of the u-integration. Thus, together with
the divergence-type Einstein’s Eqs. (2.13), (2.14), and
084037
(2.17), from which follow the integral equations (3.22),
(3.23), and (3.24) that may be interpreted as either the
quasilocal balance equations or constraint equations de-
pending on the signature of the 3-dimensional hypersu-
face, the Hamilton’s equations of motion (4.2) and (4.3)
make up for the complete set of the vacuum Einstein’s
equations. Thus, in the (2,2) fibre bundle formalism, the
Einstein’s equations split into 12 first-order Hamilton’s
equations of motion dictating the evolution along the out-
going null geodesic and the four quasilocal balance equa-
tions or the constraint equations that implement the
Hamilton’s evolution equations.
V. GEOMETRICAL INTERPRETATIONS

Two-surface integrals (3.27), (3.28), and (3.29) can be
given geometric interpretations in terms of the area of N2
and null vector fields orthogonal to N2. In order to see
this, it is necessary to recall the definitions of the in- and
out-going null vector fields n and l given by (2.7) and
(2.8), respectively.

A. Quasilocal Energy

Let us observe that, apart from the subtraction term �U,
(3.27) can be written as the Lie derivative of the area A of
N2 along n. Notice that we have
I
d2y�h	h � 2e!D�!� � 2

I
d2ye!�D�!� hD�!�

� 2
I
d2yLne

!: (5.1)

But one has
I
d2yLne

! � LnA; (5.2)

where A is given by

A �
I
d2ye!: (5.3)

The identity (5.2) follows from the fact that the order of
d2y integration and the Lie derivation Ln is interchange-
able, since the in-going null vector field n is orthogonal to
N2. Thus we have

U�u; v� �
1

8	
LnA� �U: (5.4)

In order to fix �U, it is necessary to introduce a reference
spacetime. In principle, the reference spacetime can be
chosen arbitrarily, provided that the pullback of the back-
ground metric toN2 is the same as e!"ab. If we denote the
coordinates of the reference spacetime as � �u; �v; ya�, then
its metric can be written as

d �s2 � �2d �ud �v� 2 �hd �u2 � e!"ab�dya � �Aa�d �u

� �Aa�d �v��dy
b � �Ab�d �u� �Ab�d �v�; (5.5)
-8
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where f �h; �Aa
g are the embedding degrees of freedom of
N2 into the reference spacetime. The vector fields f �n; �lg

�n �
�
@
@ �u
� �Aa�

@
@ya

�
� �h

�
@
@ �v
� �Aa�

@
@ya

�
; (5.6)

�l �
�
@
@ �v
� �Aa�

@
@ya

�
(5.7)

are null with respect to the background metric, and
satisfy the same normalization conditions as before,

< �n; �n>ref � 0; <�l; �l>ref � 0; < �n; �l>ref � �1: (5.8)

If �U is chosen as

�U: � �
1

8	
L �nA; (5.9)

such that it satisfies the u-independent condition

@ �U
@u
� 0; (5.10)

then (5.4) becomes

U�u; v� �
1

8	
L�n� �n�A: (5.11)

This expression is entirely geometrical, stating that
U�u; v� is determined by the rate of change of the area
A of N2 along the difference n� �n of the in-going null
geodesics, and becomes zero when

n � �n: (5.12)
B. Quasilocal Linear Momentum

One can also express P�u; v� geometrically. Let us
notice that

1

16	

I
d2y�	h� � �

1

8	

I
d2ye!D�!

� �
1

8	

I
d2ye!Ll! � �

1

8	
LlA:

(5.13)

Therefore, if we choose the subtraction term �P as

�P: �
1

8	
L�lA (5.14)

such that it satisfies the u-independent condition

@
@u

�P � 0; (5.15)

then (3.28) becomes

P�u; v� � �
1

8	
L�l��l�A: (5.16)

Thus, P�u; v� is given by the minus of the rate of change
of the area A of N2 along the difference l� �l of the out-
084037
going null geodesics, and becomes zero when

l � �l: (5.17)
C. Quasilocal Angular Momentum

Let us now find the geometrical expression of
L�u; v; ��. If we notice that the Lie bracket of n and l is
given by

n; l�L � �Fa��@a � �D�h�l; (5.18)

then we have

1

16	

I
d2y��a	a� �

1

16	

I
d2ye!�aFa��

� �
1

16	

I
d2ye!�an; l�aL

� �
1

16	

I
d2ye! < �; n; l�L>;

(5.19)

where we used

�a � e!"ab�
b; (5.20)

and the fact that l is orthogonal to �,

la�a � 0: (5.21)

If we choose the subtraction term �L as

�L: �
1

16	

I
d2ye! < �;  �n; �l�L>ref ; (5.22)

and require that the condition

@
@u

�L � 0 (5.23)

hold, then (3.29) becomes

L�u; v;�� � �
1

16	

I
d2ye!�<�; n; l�L >�

< �;  �n; �l�L>ref�: (5.24)

Thus, L�u; v; �� is given by the integral over N2 of the
projection of the twist n; l�L onto � � �a@a modulo the
subtraction term �L. Notice that �a is an arbitrary function
of fv; ybg, so that the vector field � need not satisfy any
Killing’s equations. Thus, � is an arbitrary vector field
tangent to N2, defining the direction of rotation at each
point of that surface.

If L�u; v; �� is to be regarded as an acceptable candi-
date of quasilocal angular momentum, its value must be
zero for any two-surface embedded in the flat Minkowski
spacetime. Our expression clearly satisfies this criterion,
as can be seen by the following observation[42]. Let � be
a diffeomorphism from a given spacetime M3�1 to itself,
and �� be the push-forward associated with �. For any
vector fields X, Y defined on M3�1, the inner product and
the Lie bracket are preserved by the mapping ��[42],
-9
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<��X;��Y> � �� <X; Y>; (5.25)

��X;��Y�L � ��X; Y�L: (5.26)

Suppose that M3�1 is the flat Minkowski spacetime, and
let n and l be the null vector fields at each point of N2 of
the flat Minkowski spacetime. Then these null vector
fields remain null and the normalization condition is
preserved under the mapping ��, since we have

<��n;��n> � �� < n; n> � 0; (5.28)

<��l; ��l> � �� < l; l> � 0; (5.29)

<��n;��l> � �� < n; l> � �1:

The following identity

��n;��l�L � ��n; l�L � 0 (5.30)

is also true, since two null vector fields at any points in
the flat Minkowski spacetime must commute. Therefore,
n; l�L � 0 holds on any two-surface (and its deforma-
tions) in the flat Minkowski spacetime. Thus, L�u; v; �� is
zero on any two-surface N2 in the flat Minkowski space-
time, modulo the subtraction term that can be trivially put
to zero.

Notice that L��� is linear in �. That is, for any � given
by

� � a�1 � b�2; (5.31)

where a; b are constants, we have

L��� � aL��1� � bL��2�; (5.32)

which shows that the quasilocal angular momentum is
additive. Asymptotic properties of quasilocal angular
momentum and its flux will be studied in Sec. VI.

D. Quasilocal Rotational Energy

Like quasilocal angular momentum, the value of any
reasonable candidate of quasilocal rotational energy must
be zero for any two-surface in the flat Minkowski space-
time. The quasilocal rotational energy WR defined in
(3.38) trivially satisfies this criterion. Since WR can be
written as

WR � �
1

16	

Z u

0
du

I
d2yAa�@��e

2!"abn; l�bL�; (5.33)

it is zero when

n; l�aL � 0; (5.34)

which is true for any n and l of the flat Minkowski
spacetime.

VI. ASYMPTOTICALLY FLAT LIMITS

In this section I will show that the limits of quasilocal
balance equations in the asymptotically flat zones are the
084037
Bondi energy-loss, linear momentum-loss, and angular
momentum-loss equations[13,14]. Moreover, the integral
WR turns out to be proportional to the total angular
momentum squared in this limit, which is a strong in-
dication that it is to be regarded as a quasilocal general-
ization of the Carter’s constant[25–27] for a generic
gravitational field.

The general form of asymptotically flat met-
rics[13,19,31–33] is given by

ds2 ���!� 2dudv�
�
1�

2m
v
��� �

�
du2�

�
4masin2#

v

�
4ma3sin2#cos2#

v3
��� �

�
dud’

�v2
�
1�

a2cos2#

v2
��� �

�
d#2�v2sin2#

�
1�

a2

v2

��� �

�
d’2� sin2#

�
4ma3

v3
�
8m2a3

v4
��� �

�
dvd’

�

�
a2sin2#

v2
��� �

�
dv2; (6.1)

as v! 1. From this expansion, asymptotic fall-off rates
of the metric coefficients are found to be

e ! � v2sin#
�
1�O

�
1

v2

��
; (6.2)

"## � �sin#��1
�
1�

C�u; #; ’�
v

�O
�
1

v2

��
; (6.3)

"’’ � sin#
�
1�

C�u; #; ’�
v

�O
�
1

v2

��
; (6.4)

"#’ � O
�
1

v2

�
; (6.5)

2h � 1�
2m
v
�O

�
1

v2

�
; (6.6)

A’� �
2ma

v3
�O

�
1

v4

�
; (6.7)

A’� �
2ma3

v5
�O

�
1

v6

�
; (6.8)

A#
 � O
�
1

v6

�
; (6.9)

and their derivatives are given by

@�! � O
�
1

v2

�
; (6.10)
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@�! �
2

v
�O

�
1

v2

�
; (6.11)

@�"ab � O
�
1

v

�
; (6.12)

@�"ab � O
�
1

v2

�
; (6.13)

L �"ab � O
�
1

v

�
; (6.14)

	ab � �
1

2
e!"ac"bd�@�"cd� �O�1�; (6.15)

	h � �4vsin# �O�1�; (6.16)

	! � �2vsin# �O�1�; (6.17)

	’ � 6masin3# �O
�
1

v

�
; (6.18)

	# � O
�
1

v2

�
: (6.19)

Therefore, n and l become, asymptotically,

n ���! @
@u
�

�
1

2
�
m
v

�
@
@v
; (6.20)

l ���! @
@v
: (6.21)

The natural reference spacetime at the asymptotic infinity
is the flat Minkowski spacetime,

d �s2 � �2d �ud �v� d �u2 � r2�d#2 � sin2#d’2�; (6.22)

where N2 � S2. Thus the embedding degrees of freedom
of S2 into the flat Minkowski spacetime are given by

�A a
 � 0; 2 �h � 1; (6.23)

so that �n and �l are given by

�n �
@
@ �u
�
1

2

@
@ �v
; (6.24)

�l �
@
@ �v
: (6.25)
A. The Bondi Energy-Loss Relation

In the asymptotic region v! 1 where v � constant
hypersurface is timelike, the r.h.s. of (3.34) represents the
canonical energy-flux carried by gravitational radiation
crossing N2. Then the l.h.s. should be identified as the
instantaneous rate of change in the gravitational energy of
the region enclosed byN2. Energy-flux in general does not
084037
have a definite sign, since it includes the energy-flux
carried by the in-coming as well as the out-going radia-
tion across N2. In the asymptotically flat region, however,
energy-flux turns out to be negative-definite, representing
the physical situation that there is no in-coming flux
coming from the infinity[43].

Let us show that the balance equation (3.34) indeed
reduces to the Bondi energy-loss formula at the null
infinity. Let �U be given by (5.9), and use �n in (6.24).
Then we find that

�U �
�v
2
: (6.26)

Let us suppose that the coordinates fu; v; yag approach the
coordinates of the Minkowski spacetime f �u; �v; #;’g as
v! 1,

u ���! �u; v ���! �v; ya ���! f#;’g: (6.27)

Then �U trivially satisfies the condition (5.10), since

@
@u

�U ���! @
@ �u

�U � 0: (6.28)

If we use the asymptotic formula

n� �n ���! m
v
@
@v
; (6.29)

then the total energy is given by

UB�u�: � lim
v!1

U�u; v� � lim
v!1

1

8	
L�n� �n�A � m�u�;

(6.30)

which is just the Bondi mass at the null infinity.
Asymptotic limit of the balance equation (3.34) is

found to be

d
du
UB�u� � � lim

v!1

1

32	

I
S2
d�v2"ac"bd�@�"bc��@�"ad�

� � lim
v!1

1

32	

I
S2
d�v2�ja�bj

b
�a� � 0; (6.31)

where ja�b is the shear current defined as

ja�b: � "
ac@�"bc �ja�a � 0�; (6.32)

which represents traceless shear degrees of freedom of
gravitational radiation. The relation (6.31) is just the
Bondi energy-loss formula with the correct normalization
coefficient[43]. Notice that the energy-flux is bilinear in
ja�b. Equivalently, it can be written as

d
du
UB�u� � �

1

16	

I
S2
d��@�C�

2 � 0; (6.33)

if one uses the expansion of "ab given by (6.3), (6.4), and
(6.5).
-11



JONG HYUK YOON PHYSICAL REVIEW D 70 084037
B. The Bondi Linear Momentum and Linear
Momentum-Flux

The total linear momentum PB�u� and its flux are
trivially zero,

PB�u�: � lim
v!1

P�u; v� � � lim
v!1

1

8	
L�l��l�A � 0; (6.34)

d
du
PB�u� � 0; (6.35)

since we have

l� �l ���! 0: (6.36)

That the net-flux of the total linear momentum is zero can
be also seen by evaluating each term of H in (3.14) in the
asymptotic limit. Let us notice that although the fourth,
sixth, and seventh term in (3.14) are not zero individually,
they add up to zero asymptotically,

1

2h
e�!"ab"cd	ac	bd �

1

2h
	ab�D�"ab�

�
1

8h
e!"ab"cd�D�"ac��D�"bd�

�
h
2
e!"ab"cd�D�"ac��D�"bd� � O

�
1

v2

�
; (6.37)

where we used the definition of 	ab in (3.5). The third and
fifth terms become zero, respectively,

�
1

2
e�2!"ab	a	b � O

�
1

v4

�
; (6.38)

1

2
	h�D�!� � O

�
1

v

�
: (6.39)

The remaining nonvanishing terms are given by

lim
v!1
�

1

16	

I
S2
d2y

�
1

2
e�!	h	!

�
� �1; (6.40)

lim
v!1

1

16	

I
S2
d2y

�
1

4
he�!	2h

�
�
1

2
; (6.41)

lim
v!1

1

16	

I
S2
d2ye!R2 �

1

4
>; (6.42)

where > � 2 for S2. Since these terms add up to zero, it
follows that the net momentum-flux H is zero at the null
infinity.

C. The Bondi Angular Momentum and Angular
Momentum-Flux

Likewise, the total angular momentum LB�u; �� is
defined as the asymptotic limit of quasilocal angular
momentum L�u; v;��,
084037
LB�u; ��: � lim
v!1

L�u; v; ��

� � lim
v!1

1

16	

I
d2ye!�<�; n; l�L >�

< �;  �n; �l�L>ref�: (6.43)

Let � be asymptotic to the azimuthal Killing vector field

� � �a@a ���! @
@’
: (6.44)

From the expansions (6.2), � � � , (6.9), we find that

e ! ���! v2sin#; (6.45)

�’ ���! v2sin2#; (6.46)

�# ���! 0; (6.47)

where we used the definition of �a in (5.20). The Lie
bracket n; l�L is found to be

n; l�’L ���! � 6ma
v4
�O

�
1

v5

�
; (6.48)

n; l�#L ! O
�
1

v6

�
: (6.49)

Since  �n; �l�L � 0, we find that

LB�u; �� �
1

16	

Z 2	

0
d’

Z 	

0
d#�6ma�sin3# � ma;

(6.50)

which is just the total angular momentum of the Kerr
spacetime.

The Bondi angular momentum-loss relation will be
obtained by taking the limit of the quasilocal balance
equation (3.24),

dLB
du
� lim

v!1

1

16	

I
S2
d2y�	abL�"ab � 	!L�!

� hL�	h � Aa�L�	a�: (6.51)

Let us evaluate each term of this equation. The first term
has a finite limit, which is

I
S2
d2y	abL�"ab ���!� 1

2

I
S2
d�v2"ac"bd�@�"cd�

� �L’"ab�; (6.52)

where we used the notation

L ’: � L@=@’: (6.53)

Notice that

	!L�! ���! f�2vsin# �O�1�gL’!: (6.54)

But ! becomes, asymptotically,
-12
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! ���! 2lnv� lnjsin#j � ln
�
1�O

�
1

v2

��
; (6.55)

so that we have

L ’! � O
�
1

v2

�
: (6.56)

Thus the second term becomes zero,

I
S2
d2y	!L�! � O

�
1

v

� ���! 0: (6.57)

Notice also that

hL�	h � L��h	h� � 	hL�h

���! L��h	h� � 4sin#L�m�O
�
1

v

�

� L��h	h � 4msin#� �O
�
1

v

�
: (6.58)

Thus the third term also becomes zero,

I
S2
d2yhL�	h � O

�
1

v

� ���! 0: (6.59)

The fourth term dies off much faster, since

I
S2
d2yAa�L�	a � O

�
1

v3

� ���! 0: (6.60)

From (6.52), (6.57), (6.59), and (6.60), we find that (6.51)
becomes

dLB
du
� � lim

v!1

1

32	

I
S2
d�v2"ac"bd�@�"cd��L’"ab�;

(6.61)

which is just the Bondi angular momentum-loss relation
with the correct normalization coefficient. It is worth
noting that (6.61) is the coordinate-dependent expression
of the angular momentum-flux discussed in [22–24]. If
we use the asymptotic expansion of "ab given by (6.3),
(6.4), and (6.5), then this relation can be expressed as

dLB
du
� �

1

16	

I
S2
d��@�C��L’C�: (6.62)
D. Gravitational Carter’s Constant

Let us find what WR becomes in this limit. The
Eq. (3.39) becomes

d
du
WR ���! 3

4	v3
Z 2	

0
d’

Z 	

0
d#sin3#�ma�

d�ma�
du

�
1

v3
d
du
�ma�2: (6.63)

If we choose the constant of u-integration as zero, then we
have
084037
lim
v!1

v3WR � �ma�2; (6.64)

which is just the total angular momentum squared for the
Kerr spacetime. Thus,WR may be regarded as a quasilocal
generalization of the Carter’s constant[25–28], and
physically, could be interpreted as gravitational contribu-
tion to the quasilocal rotational energy.
VII. RELATION BETWEEN ENERGY-LOSS AND
ANGULAR MOMENTUM-LOSS

In general, if a given system undergoes an energy-
losing process, then it always accompanies angular
momentum-loss, unless the system remains spherically
symmetric throughout the whole process. Since we al-
ready found general expressions of quasilocal energy-flux
and angular momentum-flux, it is natural to ask what
relation exists between them, if there is any. The relation
is that the angular momentum-flux (3.24) and energy-flux
(3.34) transform into each other

@
@u
L�u; v; �� !

@
@u
U�u; v�; (7.1)

under the exchange of the derivatives

L � !
@
@u

(7.2)

in the flux integrals.
Let us examine the implication of this symmetry for

spacetimes close to a background spacetime that pos-
sesses two commuting Killing vector fields. Let us choose
the coordinates of the background spacetime as
f �u; �v; #; ’g, and let f@=@ �u; @=@’g be two Killing vector
fields of the background spacetime. Let us also suppose
that the coordinates fu; v; yag approach the coordinates of
the background spacetime f �u; �v; #; ’g as v! 1,

u ���! �u; v ���! �v; ya ���! f#;’g: (7.3)

If we perturb this background spacetime by adding a
small amount of gravitational waves, then we may regard
these waves as propagating in the background spacetime,
carrying a small amount of energy and angular momen-
tum. Let us write qI � fh; !; Aa�; "abg and 	I �
f	h;	!; 	a; 	

abg about an exact solution f �qI; �	Ig of the
Einstein’s equations,

qI � �qI� �v; #� � �qI; (7.4)

	I � �	I� �v; #� � �	I; (7.5)

where f�qI; �	Ig represents gravitational waves propagat-
ing on the background spacetime. The dependence of a
given mode on �u and ’ is given by

�qI � QI� �v; #�ei! �u�imz’ � c:c:; (7.6)

�	I � "I� �v; #�ei!
�u�imz’ � c:c:; (7.7)
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where fQI;"Ig are the amplitudes of the wave that has the
frequency ! and the azimuthal quantum number mz
(mz � 0;
1; � � � ). Now, if we use (7.3) and the fact that
f@=@ �u; @=@’g are the timelike and azimuthal Killing
vector fields of the background spacetime, respectively,
then from the symmetry (7.1) and (7.2) we obtain the
following relation[44]

dU
d �u
�
!
mz

dLz
d �u

; (7.8)

which is a well-known relation between energy-loss and
angular momentum-loss for perturbations around the
stationary and axi-symmetric spacetime. Thus, the sym-
metry (7.1) and (7.2) is the sought-for relation between
the energy-loss and angular momentum-loss for a generic
gravitational radiation that has no isometries.

VIII. DISCUSSIONS

The key ingredient of the (2,2) fibre bundle formalism
discussed so far is the observation that the out-going null
vector field defines a natural time flow. With the affine
parameter of the out-going null geodesic as the time
function of the theory, the canonical variables were in-
troduced and the nonvanishing gravitational Hamiltonian
was spelled out. Then I obtained the Hamilton’s equations
of motion from the Hamiltonian by the variational prin-
ciple, which are the evolution equations along the out-
going null geodesics with respect to the affine parameter.
Thus, in this paper, I have shown that the Einstein’s
equations split into 12 first-order Hamilton’s equations
of motion and the four quasilocal balance equations or
constraint equations that implement the Hamilton’s evo-
lution equations.

I also found coordinate-independent and geometric
expressions of quasilocal gravitational energy, linear mo-
mentum, and angular momentum for any two-surface.
The corresponding fluxes of gravitational field were
found to assume the canonical form of energy-momen-
tum-flux,

T0��� �
X
I

	IL�qI; (8.1)

just as in standard field theories. I have shown that the
quasilocal balance equations correctly reproduce the
well-known Bondi relations at the null infinity of asymp-
totically flat spacetimes. However, because of the break-
down of the coordinate system due to potential
occurrence of caustics after a finite propagation along
the out-going null geodesics, there could be difficulties
in extending the Hamilton’s evolution equations beyond
the caustics. In principle, however, it is still possible to
approach the null infinity by using a new coordinate
system after the breakdown of the old one, and perhaps
one could use the quasilocal balance equations across the
caustics and search for ‘‘weak’’ solutions[45]. However, it
084037
must be mentioned that, the farther out one goes, the less
likely is the chance for caustics to occur due to the weak-
ness of gravity near the infinity. If one is interested in the
strong gravity region near black holes, or black hole
dynamics itself, then the caustics might cause serious
problems since they are much more likely to occur as
we approach strong gravity region along the in-going null
geodesics.

Quasilocal angular momentum was defined in this
paper for spacetimes that have no isometries, and was
found to be zero for any two-surface in the flat Minkowski
spacetime. It was found to have the additive property,
being a linear functional of a vector field � that defines
the rotation at each point of the two-surface. One might be
interested in studying symmetry properties of this qua-
silocal angular momentum, and look for some general-
ization of the BMS symmetries at a finite region[19].

In addition, I obtained a quasilocal generalization of
the Carter’s constant of gravitational field, and inter-
preted it as gravitational contribution to the quasilocal
rotational energy. The Carter’s constant is known to exist
when the system under study has two commuting Killing
vector fields, such as the Einstein-Maxwell system and
the Einstein’s equations coupled to a scalar field. For a
generic gravitational field that has no isometries, no ana-
log of the Carter’s constant is known. In this paper, I
presented a candidate for the generalized Carter’s con-
stant which becomes zero for any two-surface in the flat
Minkowski spacetime, and reduces to the total angular
momentum squared in the asymptotic region of the Kerr
spacetime. It is interesting to see how this quasilocal
Carter’s constant generalizes when the electromagnetic
and scalar fields are present.

There could be a number of applications of the quasi-
local balance equations in astrophysics. The most impor-
tant and challenging problem seems to be the calculation
of back-reaction on the geometry of black holes as a
consequence of the emission or absorption of gravita-
tional radiation. One could also use the quasilocal balance
equations in searching for consistent boundary conditions
at a finite boundary in numerical relativity, since the
boundary data at a finite boundary must satisfy the qua-
silocal balance equations. These problems are left for
future works.

Another issue in this (2,2) formalism is the well-
posedness of the initial value problem. When the initial
three dimensional hypersurface is chosen spacelike, there
is no problem in the well-posedness of the initial value
problem since the null direction can be viewed as a limit
of timelike direction. But there are several other choices
of initial surfaces, such as the double null initial surfaces
and the initial/boundary value problems where the
boundary can be either timelike or null. One of the
difficulties associated with the characteristic or initial/
boundary value problem is that one has to know the
-14
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‘‘flows of information’’ across the characteristic or the
timelike boundary that belongs to the future. In these
hybrid formulations of the Einstein’s equations, not so
many articles that aim to study the well-posedness of the
field equations appeared. However, a series of the recent
papers by Frittelli[46] shows that, for a certain choice of
first-order variables for the characteristic problem of the
linearized Einstein’s equations, the system can be cast
into manifestly well-posed form. For the nonlinear char-
acteristic problems, the notion of well-posedness is still
not available. It is interesting to examine whether the
first-order variables in this paper might have any rele-
vance in establishing the well-posedness of the nonlinear
characteristic initial value problem.

Finally, there are problems related to the gauge invari-
ance of this (2,2) fibre bundle formalism. It is obvious that
this formalism is tied to a particular gauge, and the non-
vanishing Hamiltonian is obtained as a consequence of
selecting a particular time function, namely, choosing the
affine parameter along the null direction as the time
function. But one should notice that, in the standard
ADM formalism, it is also possible to obtain another
nonvanishing Hamiltonian if one chooses a time function
such as the Gauss normal time coordinate[29]. Moreover,
if one quantizes the theory in a particular gauge, the
resulting quantum theory will depend on that gauge,
losing the spacetime diffeomorphism invariance that
one wishes to carry over to the quantum regime. In
view of the present situation that there is not any single
complete version of sensible quantum theory of gravity,
however, this gauge problem does not seem to be an urgent
problem. Clearly, quantizing the full Einstein’s gravity is
beyond the scope of the present paper.

ACKNOWLEDGMENTS

It is a great pleasure to thank S. Hollands, R. Geroch for
interesting discussions at the last stage of preparing this
paper, and, in particular, R. Wald for the hospitality
extended to the author during the sabbatical leave at the
University of Chicago. The author also thanks the referee
for his criticism that helped to improve the original
manuscript on several delicate issues.

APPENDIX: HAMILTON’S EQUATIONS OF
MOTION

In this Appendix, I will show that, the Einstein’s equa-
tions, (2.15), (2.16), (2.18), and (2.19), which are second-
order in D� derivatives, are the Hamilton’s equations of
motion,

D�qI �
�K
�	I

; (A1)

D�	I � �
�K
�qI

; (A2)
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if the boundary conditions

�! � �"ab � 0 (A3)

are assumed at the endpoints of u-integration in K, where
the Hamiltonian K is given by

K �
Z
du

I
d2yfH � 5�det"ab � 1�g; (A4)

and the Hamiltonian density H is

H ��
1

2
e�!	!	h �

1

4
he�!	2h �

1

2
e�2!"ab	a	b

�
1

2h
e�!"ac"bd	

ab	cd �
1

2
	h�D�!�

�
1

2h
	ab�D�"ab� �

1

8h
e!"ab"cd�D�"ac��D�"bd�

� e!R2: (A5)
1. Variations with Respect to 	h and h

It is trivial to see that the equation

D�h �
�K
�	h

(A6)

is identical to the Eq. (3.6), and the equation

D�	h � �
�K
�h

(A7)

can be written as

D�	h ��
1

4
e�!	2h �

1

2h2
e�!"ab"cd	

ac	bd

�
1

2h2
	abD�"ab �

1

8h2
e!"ab"cd�D�"ac�

� �D�"bd�: (A8)

Let us show that the Eq. (A8) is just the Eq. (2.15), using
the Eq. (A6). Notice that each term in (2.15) becomes

�i� 2e!D2
�! � �

1

2
e�!	2h �D�	h; (A9)

�ii� e!�D�!�
2 �

1

4
e�!	2h; (A10)

�iii�
1

2
e!"ab"cd�D�"ac��D�"bd�

�
1

2h2
e�!"ab"cd	

ac	bd �
1

2h2
	abD�"ab

�
1

8h2
e!"ab"cd�D�"ac��D�"bd�:

(A11)

From (A9), (A10), and (A11), it follows that the Eq. (2.15)
is identical to the Eq. (A8).
-15



JONG HYUK YOON PHYSICAL REVIEW D 70 084037
2. Variations with Respect to 	! and !

It is trivial to show that the equation

D�! �
�K
�	!

(A12)

is identical to the Eq. (3.7). In the variation

D�	! � �
�K
�!

; (A13)

the less trivial part is the following one,

�
Z
du

I
d2y�	hD�!� �

Z
du

I
d2y	hD��!

� �
Z
du

I
d2y�D�	h��!

�
Z
du

I
d2yD��	h�!�

� �
Z
du

I
d2y�D�	h��!

�
Z
du

d
du

�I
d2y	h�!

�
:

(A14)

Therefore, if we assume the boundary condition

�! � 0 (A15)

at the endpoints of u-integration, then we have

1

2

�
�!

�Z
du

I
d2y	hD�!

�
� �

1

2
D�	h: (A16)

The remaining variations are straightforward, so that
(A13) becomes

D�	! ��
1

2
e�!	!	h �

1

4
he�!	2h � e

�2!"ab	a	b

�
1

2h
e�!"ab"cd	

ac	bd �
1

2
D�	h

�
1

8h
e!"ab"cd�D�"ac��D�"bd�: (A17)

In order to show that the Eq. (A17) is the same as the
Eq. (2.18), we need to express the derivatives of D� and
D2
� in (2.18), using the conjugate momenta. Notice that

the first term in (2.18) becomes

2e!D2
�h � e!D�f�e�!	! �D�!� he�!	hg

� �e�!	h	! �D�	! � e
!D�D�!

�
1

2
	hD�!� he�!	2h � hD�	h: (A18)

Since the third term in the r.h.s. of (A18) can be written as

e !D�D�! � e!D�D�!� @a�e
!Fa���

� �
1

2
D�	h �

1

2
	hD�!� @a�e

�!"ab	b�;

(A19)
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(A18) becomes

�i� 2e!D2
�h ��D�	! � e

�!	h	! �
1

2
D�	h

� 	hD�!�
3

4
he�!	2h

�
1

2h
e�!"ab"cd	ac	bd �

1

2h
	abD�"ab

�
1

8h
e!"ab"cd�D�"ac��D�"bd�

� @a�e
�!"ab	b�; (A20)

where we used the equation of motion of 	h given by
(A8). It is straightforward to express the remaining terms
in (2.18) using the canonical variables. They are given by

�ii�

2e!�D�h��D�!� �
1

2
e�!	h	! �

1

2
	hD�!

�
1

2
he�!	2h;

(A21)

�iii� e!D�D�! � �
1

2
D�	h �

1

2
	hD�!; (A22)

�iv�

e!D�D�! � �
1

2
D�	h �

1

2
	hD�!

� @a�e�!"ab	b�;

(A23)

�v� e!�D�!��D�!� � �
1

2
	hD�!; (A24)

�vi�
1

2
e!"ab"cd�D�"ac��D�"bd�

�
1

2h
	abD�"ab �

1

4h
e!"ab"cd�D�"ac��D�"bd�;

(A25)

�vii� e2!"abFa��F
b
�� � e�2!"ab	a	b: (A26)

If we plug (A20), � � � , (A26) into (2.18), then the
Eq. (2.18) becomes

D�	! �
1

2
e�!	!	h �

1

4
he�!	2h � e

�2!"ab	a	b

�
1

2h
e�!"ab"cd	ac	bd �

1

2
D�	h

�
1

8h
e!"ab"cd�D�"ac��D�"bd�

� 2he!
�
�D2
�!� �

1

2
�D�!�

2

�
1

4
"ab"cd�D�"ac��D�"bd�

�
� 0: (A27)

But the term in the bracket fg in (A27) is zero if we use
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(2.15), and this shows that the Eqs. (2.18) and (A17) are
identical.

3. Variations with Respect to 	a and Aa�
The equation

D�Aa� �
�K
�	a

(A28)

is

D�A
a
� � �e

�2!"ab	b; (A29)

which is the defining equation (3.8) of 	a, since the
covariant derivative of Aa� is given by

D�Aa�: � F
a
��: (A30)

In order to write down the equation

D�	a � �
�K
�Aa�

; (A31)
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one needs to do the following variations. Notice that

�
Z
du

I
d2y�	hD�!� �

Z
du

I
d2yf	h��@�!

� Aa�@a!� @aA
a
��g

�
Z
du

I
d2yf��	h@a!

� @a	h��Aa� � @a�	h�A
a
��g:

(A32)

Thus we have

�
�Aa�

Z
du

I
d2y

1

2
�	hD�!� � �

1

2
	h@a!�

1

2
@a	h:

(A33)

Let us also notice that, for an arbitrary field Aab, the
following is true,
Z
du

I
d2yAab��D�"ab� �

Z
du

I
d2yAabf���Ac��@c"ab � �@a�A

c
��"cb � �@b�A

c
��"ac � �@c�A

c
��"abg

�
Z
du

I
d2yf�Aab@c"ab � @a�Aab"cb� � @b�Aab"ac� � @c�Aab"ab�g�Ac�

� @a�Aab"cb�Ac�� � @b�A
ab"ac�Ac�� � @c�A

ab"ab�Ac���: (A34)
Let us consider the following two cases, (a) and (b). (a) If
we choose

Aab: �
1

2h
	ab; (A35)

then from (A34) we obtain

�
�Aa�

Z
du

I
d2y

1

2h
	bc�D�"bc�

� �
1

2h
	bc@a"bc � @b

�
1

h
	bc"ca

�
; (A36)

where we used the identity,

"ab	ab � 0: (A37)

(b) If we choose

Aab: �
1

4h
e!"ae"bf�D�"ef�; (A38)

which now depends on Aa�, then (A34) becomes

�
�Aa�

Z
du

I
d2y

1

8h
e!"bd"ce�D�"bc��D�"de�

� �
1

4h
e!"bd"ce�D�"de��@a"bc�

� @b

�
1

2h
e!"bcD�"ca

�
; (A39)

where we used the identity
"abD�"ab � 0: (A40)

From the Eqs. (A33), (A36), and (A39), we find that the
Eq. (A31) becomes

D�	a �
1

2
	h@a!�

1

2
@a	h

�
1

2h

�
	bc �

1

2
e!"bd"ce�D�"de�

�
�@a"bc�

� @b

�
1

h
	bc"ca �

1

2h
e!"bc�D�"ca�

�
: (A41)

Using the definitions of the momenta (3.6), � � � , (3.9), one
can easily show that the Eq. (2.16) is identical to (A41).

4. Variations with Respect to 	ab and "ab
It is trivial to see that the equation

D�"ab �
�K

�	ab
(A42)

is just the Eq. (3.9). Let us show that the equation

D�	
ab � �

�K
�"ab

(A43)

is identical to the Eq. (2.19). If we vary terms in K which
do not contain D�"ab, then we have
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�
�"ab

Z
du

I
d2y

�
�
1

2
e�2!"cd	c	d

�
1

2h
e�!"ce"df	ce	df

�

�
1

2
e�2!"ac"bd	c	d �

1

h
e�!"cd	ac	bd: (A44)

Varying terms linear in D�"ab, we find that

�
Z
du

I
d2y

�
1

2h
	abD�"ab

�

� �
Z
du

I
d2yD�

�
1

2h
	ab

�
�"ab �

Z
du

d
du

�

�I
d2y

�
1

2h
	ab�"ab

��
: (A45)

If we assume the boundary condition

�"ab � 0; (A46)
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then we have

�
�"ab

Z
du

I
d2y

�
1

2h
	cdD�"cd

�
� �D�

�
1

2h
	ab

�
:

(A47)

Now let us define

Sab: � "
acD�"cb: (A48)

Then we have

1

8h
e!"ab"cd�D�"ac��D�"bd� �

1

8h
e!SbaS

a
b; (A49)

and the variation of Sab is given by

�Sab � �"
acSdb�"cd � "

acD��"cb: (A50)

Therefore, we have
�
Z
du

I
d2y

�
1

8h
e!"ab"cd�D�"ac��D�"bd�

�
�

Z
du

I
d2y�

1

4h
e!Sba�Sab�

�
Z
du

I
d2y

�
�
1

4h
e!"acSdcSbd�"ab �

1

4h
e!"acSbcD��"ab

�

�
Z
du

I
d2y

�
�
1

4h
e!"acSdcSbd �D�

�
1

4h
e!"acSbc

��
�"ab: (A51)

Therefore, we find that

�
�"ab

Z
du

I
d2y

�
1

8h
e!"ce"df�D�"cd��D�"ef�

�
� �

1

4h
e!"ac"bd"ef�D�"ce��D�"df� �D�

�
1

4h
e!"ac"bdD�"cd

�
:

(A52)

Finally, we have to vary the Lagrange multiplier term in

(4.1). It is given by

�
�"ab

Z
du

I
d2y5�det"cd � 1� � 5"

ab: (A53)

The scalar curvature term e!R2 is a topological density
that does not contribute to the metric variation. From
(A44), (A47), (A52), and (A53), we have

D�	ab �
1

2
e�2!"ac"bd	c	d �

1

h
e�!"cd	ac	bd

�D�

�
1

2h
	ab �

1

4h
e!"ac"bd�D�"cd�

�

�
1

4h
e!"ac"bd"ef�D�"ce��D�"df� � 5"

ab � 0:

(A54)

The Lagrange multiplier 5 is determined by taking the
trace of (A54). Notice that for any traceless field >ab such
that

"ab>
ab � 0; (A55)

we have
"abD
>ab � �>abD
"ab: (A56)
Thus, for >ab defined as

>ab: �
1

2h
	ab �

1

4h
e!"ac"bdD�"cd; (A57)

one has

�"abD�

�
1

2h
	ab �

1

4h
e!"ac"bdD�"cd

�

�
1

2h
	abD�"ab �

1

4h
e!"ac"bd�D�"ab��D�"cd�:

(A58)

Therefore, the trace of the Eq. (A54) becomes

0 � 25� 	abD�"ab �
1

2
e�2!"ab	a	b

�
1

h
e�!"ab"cd	

ac	bd �
1

2h
	abD�"ab

� 25�
1

2
e�2!"ab	a	b � 	

ab
�
�D�"ab

�
1

h
e�!"ac"bd	

cd �
1

2h
D�"ab

�

� 25�
1

2
e�2!"ab	a	b; (A59)
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where we used the Eq. (A42). Thus 5 is given by

5 � �
1

4
e�2!"cd	c	d: (A60)

Thus we find that the Eq. (A54) finally becomes

D�	ab ��
1

2
e�2!"ac"bd	c	d �

1

4
e�2!"ab"cd	c	d �

1

h
e�!"cd	ac	bd �D�

�
1

2h
	ab �

1

4h
e!"ac"bd�D�"cd�

�

�
1

4h
e!"ac"bd"ef�D�"ce��D�"df�: (A61)

One can show that this equation is the same as the Eq. (2.19). To show this, let us multiply the Eq. (A61) by "am"bn, and
use the definitions of the conjugate momenta (3.3), � � � , (3.5). Then each term in (A61) becomes as follows,

�i� "am"bn�D�	
ab� �"am"bnD�

�
�
1

2
e!"ac"bd�D�"cd��he

!"ac"bd�D�"cd�
�
��

1

2
e!�D�!��D�"mn�

�
1

2
e!"cd�D�"mc��D�"nd��

1

2
e!"cd�D�"nc��D�"md��

1

2
e!�D�D�"mn�� e

!�D�h��D�"mn�

� he!�D�!��D�"mn�� 2he
!"cd�D�"mc��D�"nd��he

!�D2
�"mn�; (A62)

�ii�
1

2
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1

4
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1

2
e2!"mc"ndFc��F

d
�� �

1

4
e2!"mn"cdFc��F

d
��; (A63)

�iii�
1

h
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1

4h
e!"cd�D�"mc��D�"nd� �

1

2
e!"cd�D�"mc��D�"nd�

�
1

2
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!"cd�D�"mc��D�"nd�; (A64)

�iv� � "am"bnD�

�
1

2h
	ab �

1

4h
e!"ac"bd�D�"cd�

�
� �

1

2
"am"bnD�fe!"ac"bd�D�"cd�g
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1

2
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1
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e!"cd�D�"mc��D�"nd�

�
1
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�v� �
1

4h
e!"ac"bd"ef�D�"ce��D�"df�"am"bn � �

1

4h
e!"cd�D�"mc��D�"nd�: (A66)

After a little algebra, we find that the Eq. (A61) is identical to the Eq. (2.19). Thus, assuming the boundary conditions
(A3), I have shown that the 12 Hamilton’s equations of motion, (A1) and (A2), are just the first-order form of the six
Einstein’s equations (2.15), (2.16), (2.18), and (2.19). Therefore, the Hamilton’s equations of motion, (A1) and (A2),
together with the four divergence-type equations (3.15), (3.16), and (3.17), are completely equivalent to the full
Einstein’s equations (2.13), � � � , (2.19).
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