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Exact black hole solution with a minimally coupled scalar field
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An exact four-dimensional black hole solution of gravity with a minimally coupled self-interacting
scalar field is reported. The event horizon is a surface of negative constant curvature enclosing the
curvature singularity at the origin, and the scalar field is regular everywhere outside the origin. This
solution is an asymptotically locally anti-deSitter spacetime. The strong energy condition is satisfied on
and outside the event horizon. The thermodynamical analysis shows the existence of a critical
temperature, below which a black hole in vacuum undergoes a spontaneous dressing up with a nontrivial
scalar field in a process reminiscent of ferromagnetism.
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I. INTRODUCTION

In four dimensions, exact black hole solutions in
General Relativity with a minimally coupled self-
interacting scalar field have not been reported previously.
This fact may be seen as a natural consequence of the so
called no-hair conjecture, which originally stated that a
black hole should be characterized only in terms of its
mass, angular momentum and electric charge [1,2] (for
recent discussions see, e.g., [3]). This obstacle can be
circumvented introducing a cosmological constant �
and a conformal coupling, in which case exact black
hole solutions are known in three [4,5] and four dimen-
sions [6]. For vanishing �, a four-dimensional black
hole is also known, but the scalar field diverges at the
horizon [7].

However, for minimal coupling, an exact black hole
solution is known only in three dimensions [5], provided
� < 0, in which case, spherically symmetric black hole
solutions have also been found numerically in four [8,9]
and five dimensions [10]. On the other hand, a negative
cosmological also allows for the existence of black holes
whose horizon has nontrivial topology in four [11–13]
and higher dimensions [14,15], as well as for gravity
theories containing higher powers of the curvature
[16–19].

In this paper we report an exact black hole solution in
four dimensions for gravity with a negative cosmological
constant, with a minimally coupled self-interacting sca-
lar field. The event horizon is a surface of negative con-
stant curvature enclosing the curvature singularity at the
origin. The spacetime is asymptotically locally anti-de
Sitter (AdS), and the scalar field is regular everywhere
outside the origin. It is shown that there is a second order
phase transition at a critical temperature Tc � �2�l��1,
below which a black hole in vacuum undergoes a sponta-
neous dressing up with a nontrivial scalar field. As is
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shown in the appendix, the transformation of this theory
to the conformal frame maps this solution into another
black hole with a rich causal structure.
II. BLACK HOLE SOLUTION

Consider four-dimensional gravity with negative cos-
mological constant (� � �3l�2) and a scalar field de-
scribed by the action

I�g�	; �� �
Z

d4x
�������
�g

p
�
R � 6l�2

16�G
�

1

2
g�	@��@	�

� V���

�
; (1)

where l is AdS radius, and G is Newton’s constant.We take
the following self-interaction potential

V��� � �
3

4�Gl2
sinh2

����������
4�G
3

s
�; (2)

which has a global maximum at � � 0, and has a mass
term given by m2 � V 00j��0 � �2l�2. This mass satisfies
the Breitenlohner-Freedman bound that ensures the per-
turbative stability of AdS spacetime [20,21]. This poten-
tial has a natural interpretation in the conformal frame
(see the Appendix). The field equations are

G�	 �
3

l2
g�	 � 8�GT�	; (3)

�� �
dV
d�

� 0; (4)

where � � g�	r�r	, and the stress-energy tensor is
given by

T�	 � @��@	� �
1

2
g�	g��@��@�� � g�	V���: (5)

A static black hole solution with topology R2  ,
where  is a two-dimensional manifold of negative con-
stant curvature, is given by
35-1  2004 The American Physical Society
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ds2 �
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�1
dr2 � r2d�2

�
; (6)

and the scalar field is

� �

����������
3

4�G

s
arctanh

G�
r � G�

: (7)

Here d�2 is the line element of the base manifold ,
which has negative constant curvature (rescaled to �1)
and hence is locally isometric to the hyperbolic manifold
H2. This means that  must be of the form  � H2=�,
where � is a freely acting discrete subgroup of O�2; 1�
(i.e., without fixed points). The configurations (6) are
asymptotically locally AdS spacetimes, with a single
timelike Killing vector @t, provided  is assumed to be
compact without boundary1. As it is shown in Sec. III, the
mass of this solution is given by

M �
�
4�

�; (8)

where � denotes the area of . The only singularities of
the curvature and the scalar field occur where the con-
formal factor in (6) vanishes, that is at r � 0 and at r �
�2G�. The range of r is taken as r > �2G� for negative
mass, and r > 0 otherwise. These singularities are sur-
rounded by an event horizon located at

r� �
l
2
�1�

������������������������
1� 4G�=l

q
�; (9)

provided the mass is bounded from below by

� > �
l
4G

: (10)

The causal structure is the same as for the
Schwarzschild-AdS black hole, but at each point of the
Penrose diagram the sphere is replaced by .

For non-negative masses, the horizon radius satisfies
r� � l. For the massless case, the metric takes a simple
form

d�s2 � �

�
r2

l2
� 1

�
dt2 �

�
r2

l2
� 1

�
�1

dr2 � r2d�2; (11)

which is a locally AdS spacetime (i.e. it has constant
curvature), and the scalar field vanishes. For �l�4G��1 <
� < 0, the horizon radius is in the range l=2 < r� < l,
1For � � 0, these spacetimes admit Killing spinors provided
 is a noncompact surface [22]. Such a configuration describes
the supersymmetric ground state of a warped black string and
is therefore expected to be stable. As it was shown in Ref. [23],
these configurations are also stable under gravitational
perturbations.
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and for � � �l�4G��1, r� � l=2 becomes a double root
which coincides with the singularities.

Note that the scalar field cannot be switched off keep-
ing the mass fixed. In fact, there is only one integration
constant (�), and for � ! 0 the geometry approaches the
massless black hole (11). This means that for a given mass
there are two branches of different black hole solutions,
the one with nontrivial scalar field (6), (7), and the
vacuum solution (with � � 0) found in Refs. [12,13],
whose metric reads

ds20 ��

�
�2

l2
� 1�

2G�0

�

�
dt2

� �
�2

l2
� 1�

2G�0

�
��1d�2 � �2d�2; (12)

with mass M � ��0=4�.
III. THERMODYNAMICS

The partition function for a thermodynamical en-
semble is identified with the Euclidean path integral in
the saddle point approximation around the Euclidean
continuation of the classical solution [24]. Thus, we con-
sider the Euclidean continuation of the action (1) in
Hamiltonian form

I �
Z
��ij _gij � p _� � NH � NiH i�d

3xdt � B; (13)

where B is a surface term.We consider the minisuperspace
of static Euclidean metrics

ds2 � N�r�2f�r�2dt2 � f�r��2dr2 � R�r�2d�2 (14)

with 0 � t � � periodic, r � r� and a scalar field of the
form � � ��r�. The inverse of the period � corresponds
to the temperature T, and the reduced Hamiltonian action
is

I � ���
Z 1

r�
N�r�H �r�dr � B; (15)

where � is the area of the base manifold , and

H � NR2

�
1

8�G

�

�f2�0R0

R
�

2f2R00

R
�

1

R2 �1� f2�

�

��

�
1

2
f2��0�2 � V���

�
:

The Euclidean black hole solution is static and satisfies
the constraint H � 0. Therefore, the value of the action
on the classical solution is just given by the boundary
term B. This boundary term must be such that the action
(13) attains an extremum within the class of fields con-
sidered here [25]. We now turn to the evaluation of the
Euclidean action on shell. The condition that the geome-
tries allowed in the variation should contain no conical
singularities at the horizon requires
-2



2The mass could also be found using covariant methods, see,
e.g., [29].
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��N�r��f2�r��0�jr�r� � 4�; (16)

which for the solution (6), directly yields the period � as
a function of r�,

T � ��1 �
1

2�l

�
2r�
l

� 1
�
: (17)

In what follows, we work in the canonical ensemble, that
is, we consider variations of the action with constant �.
The variation of the boundary term is

&B � &B� � &BG;

where

&BG �
��
8�G

fN�RR0&f2 � �f2�0R&R� � 2f2R�N&R0

� N0&R�g1r� ;

(18)

and the contribution from the matter sector is

&B� � ��NR2f2�0&�j1r� : (19)

For the black hole solution (6) and (7), the variation of the
fields at infinity are

&f2j1 �
2G

l2

�
G� �

l2 � 3G2�2

r
�

2G�l2 � 8G3�3

r2

� O�r�3�

�
&�;

(20)

&�j1 �

�������
3G
4�

s �
1

r
�

2G�

r2
� O�r�3�

�
&�; (21)

&Rj1 �

�
�

G2�
r

�
3G3�2

r2
� O�r�3�

�
&�; (22)

and thus, we obtain

&BGj1 �
3��

4�l2
�G�r � 4�G��2 � l2=3� O�r�1��&�:

(23)

Note that &BGj1 has a potentially dangerous divergent
term. As is shown in Sec. V, this is a consequence of the
slower falloff of our metric compared with that of pure
gravity with a standard localized distribution of matter
[26]. This occurs because the scalar field goes to zero at
infinity at a slower rate than under the usual assumptions.
As a result of this there is a nonvanishing &B�j1 given by

&B�j1 � �
3��

4�l2
�G�r � 4�G��2 � O�r�1��&�;

(24)

which exactly cancels the divergence coming from &BGj1
and gives a finite contribution, yielding a finite expression
084035
for the boundary term at infinity,

Bj1 � �
��
4�

�: (25)

This is a generic effect observed for scalar fields with a
self-interacting potential unbounded form below in
asymptotically AdS spacetimes [5,10,27,28].

The variation of the boundary term at the horizon, is
obtained using

&Rjr� � &R�r�� � R0jr�&r�;

&f2jr� � ��f2�0jr�&r�;

together with (16), in Eqs. (18) and (19). Note that &B�jr�
vanishes, and hence

&Bjr� � �
��

16�G
N�r���f2�0jr�&R2�r��

� �
�
4G

&R2�r��: (28)

Therefore, the boundary term at the horizon is

Bjr� � �
�
4G

R2�r��: (26)

Combining Eqs. (25) and (26), the on shell value of the
Euclidean action is found to be

I � �
��
4�

� �
�
4G

R�r��
2; (27)

up to an arbitrary additive constant. Since the Euclidean
action is related to the free energy (in units where �h �
kB � 1) as I � ��F, then

I � S � �M; (28)

where M and S denote mass and entropy, respectively.
Comparing expressions (27) and (28), the mass and

entropy are identified as

M �
�
4�

�;

and

S �
�
4G

R2�r�� �
Horizon Area

4G
;

respectively2. With these expressions it is simple to check
that the first law of thermodynamics dM � TdS is
satisfied.
IV. PHASE TRANSITION

The specific heat can be found using Eqs. (9) and (17)

C �
@M
@T

�
�l2

4G

�
2r�
l

� 1
�
;
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which is always positive for r� > l=2 (i.e. G� > �l=4),
and therefore the black hole dressed with the scalar field
can always reach thermal equilibrium with a heat bath.
However, note that for a fixed temperature, the action
principle (1), with the same boundary conditions, also
admits the vacuum solution (12) with � � 0. This raises
the question of whether one black hole can decay into the
other. Since Z � exp���F�, this can be examined eval-
uating the difference between their respective free ener-
gies. The temperature of the vacuum black hole is

T0 �
1

4�

�
3��

l2
�

1

��

�
; (29)

where �� � l=
���
3

p
. Matching this with the temperature in

Eq. (17) fixes the relation between their respective horizon
radii as

r� �
3��

4
�

l2

4��

�
l
2

: (30)

The Euclidean action evaluated on the vacuum black hole
(12) reads

I0 �
�
4G

�4
� � l2�2

�

3�2
� � l2

;

and hence, using Eq. (27), the difference between both
Euclidean actions is given by

�I � I� � I0 �
�

16G
�l � ���

3

��

l2 � 3l�� � 4�2
�

3�2
� � l2

:

(31)

Analogously, for a fixed temperature, the difference be-
tween both black hole masses is

�M � M� � M0

� �
�

8�G
��� � l���� � l�2

�2
�l2

�
�2
� �

l��

8
�

l2

8

�
;

(32)

which cannot be positive for the allowed range of ��, i:e:,
�M � M� � M0 � 0. Similarly, since S0 � ��2

��4G��1,
the entropies are found to obey �S � S� � S0 � 0. Both
inequalities are saturated for r� � �� � l. However, at
this radius, �I changes of sign, signaling the existence of
a phase transition at the critical temperature

Tc �
1

2�l
:

At the transition temperature, both black hole branches
intersect at the massless configuration (11) (with M� �

M0 � 0), describing a spacetime of negative constant
curvature (i.e., locally AdS). The two phases at each
side of the critical point are T > Tc —In this phase, �� >
l, and both black holes have positive mass. As �I in
Eq. (31) is negative, there is a greater probability for the
084035
decay of the black hole dressed with the scalar field into
the bare black hole, induced by thermal fluctuations. In
the decay process, the scalar black hole absorbs energy
from the thermal bath, increasing its horizon radius and
consequently its entropy. This suggests that in this process
the scalar field is, in some sense, absorbed by the black
hole.
T < Tc—In this phase, �� < l, both black holes have

negative mass, but now �I > 0, which means that the
configuration with nonzero scalar field has greater proba-
bility. As a consequence, below the critical temperature,
the bare black hole undergoes a spontaneous ‘‘dressing
up’’ with the scalar field. In the process, the mass and
entropy of the black hole decrease, so that the difference
in energy and entropy are transferred to the heat bath.

At the critical temperature, the thermodynamic func-
tions of the two phases match continuously, hence, the
phase transition is of second order. The order parameter
that characterizes the transition can be defined in terms of
the value of the scalar field at the horizon,

. �

								tanh
����������
4�G
3

s
��r��

								�


 Tc�T
Tc�T for T < Tc

0 for T > Tc
V. SUMMARY AND DISCUSSION

We have shown the existence of an exact four-
dimensional black hole solution of gravity with a mini-
mally coupled self-interacting scalar field. The spacetime
is asymptotically locally AdS, and has a curvature singu-
larity hidden by an event horizon which is a surface of
negative constant curvature. The scalar field is regular
everywhere outside the origin.

The specific heat is positive for the entire mass range,
so that thermal equilibrium with a heat bath can always
be attained. Furthermore, there is a critical temperature
Tc � �2�l��1. For temperatures above Tc, a black hole
dressed with the scalar field is likely to decay into the
bare black hole (bare phase). For temperatures below Tc
however, a bare black hole would spontaneously acquire a
nontrivial scalar field (scalar phase), in a phenomenon
reminiscent of ferromagnetism, where the scalar field
plays the role of the magnetization. It would be interesting
to see how this phase transition manifests itself in the
dual Conformal Field Theory [30].

The black hole mass is bounded by M �
��l�16�G��1, and it is simple to verify that the strong
energy condition is satisfied for r � r�, as it occurs for a
Schwarzschild-AdS black hole.

The self-interacting potential V��� is negative and
unbounded from below, possessing a global maximum
at � � 0. The effective mass around this point satisfies
the Breitenlohner-Freedman bound that guarantees the
perturbative stability of global AdS spacetime [20]. For
the topology considered here, it was shown that the
-4
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stability of the locally AdS spacetime (11) under scalar
perturbations holds, provided the mass satisfies the same
Breitenlohner-Freedman bound [31]. However, in general,
the stability is no longer guaranteed for nonperturbative
solutions. For the dressed black hole considered here, the
scalar field cannot be treated as a probe. This is because,
even for small mass, there is a strong back reaction that
reaches the asymptotic region.

The presence of matter fields with nontrivial asymp-
totic behavior has generically two effects: It gives rise
to a back reaction that modifies the asymptotic form
of the geometry, and it generates additional contribu-
tions to the charges that depend explicitly on the matter
fields at infinity which are not already present in the
gravitational part. These two effects have been observed
in similar setups and for various dimensions in
Refs. [5,10,27,28,32]. Indeed, the scalar field would not
contribute to the conserved charges if it falls off as � �

r�3=2�", whereas here the asymptotic behavior of the
scalar field (7) is

� �

�������
3G
4�

s �
�
r
�

G�2

r2

�
� O�r�3�:

The effect of this on the geometry can be seen making
r2 � �2 � G2�2 in (6) so that the g�� component of the
metric, which behaves as

g�� �
l2

�2 �

�
1�

3G2�2

l2

�
l4

�4 � O���5�;

is the only one relaxed in comparison with the bare black
hole, for which

g0
�� �

l2

�2 �
l4

�4 � O���5�:

In spite of the fact that the scalar field is more spread
out and the geometry exhibits a greater deviation from
AdS in the asymptotic region, the conserved charges are
still well-defined and finite.
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APPENDIX

The form of the self-interacting potential considered
here (2) can be naturally obtained through the relation
between the conformal and Einstein frames. Performing
a conformal transformation, with a scalar field redefini-
tion of the form

ĝ�	 �

�
1�

4�G
3

�2

�
�1

g�	;

� �

����������
3

4�G

s
tanh

����������
4�G
3

s
�;

(A1)

the action (1) and (2), reads

I�ĝ�	;�� �
Z

d4x
�������
�ĝ

p �
R̂ � 6l�2

16�G
�

1

2
ĝ�	@��@	�

�
1

12
R̂�2 �

2�G

3l2
�4

�
: (A2)

In this frame, the matter action is invariant under arbi-
trary local rescalings ĝ�	 ! .2�x�ĝ�	 and � ! .�1�,
so that the scalar field equation is conformally invariant.

The black hole solution (6) and (7), acquires a simple
form once expressed in the conformal frame

dŝ2 ��

�
r2

l2
�

�
1�

G�
r

�
2
�
dt2

�

�
r2

l2
� �1�

G�
r
�2
�
�1

dr2 � r2d�2; (A3)

with

� �

����������
3

4�G

s
G�

r � G�
: (A4)

Note that the mapping between both frames (A1) is
invertible in the region where the conformal factor 1�
4�G�2=3 is positive. That is, for non-negative mass
(� � 0), for r > 0, and for negative mass, r > �2G�.

For non-negative masses this solution possesses only
one event horizon and it has the same causal structure as
in the Einstein frame. However, for the rest of the al-
lowed range, �l=4 < G� < 0, the metric develops three
horizons, satisfying 0 < r�� < �G� < r� < l=2 < r�.
From a cursory look, one may say that this solution seems
to describe a black hole inside a black hole. In this frame,
the scalar field becomes singular at r � �G�, but since
the geometry as well as the stress-energy tensor are
regular there, this singularity seems to be harmless. A
detailed analysis of the causal and thermodynamic prop-
erties of the solution in the conformal frame is out of the
scope of this appendix, and will be discussed elsewhere.
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