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Quasi-equilibrium binary black hole initial data for dynamical evolutions
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We present a formalism for constructing quasiequilibrium binary black hole initial data suitable for
numerical evolution.We construct quasiequilibrium models by imposing an approximate helical Killing
symmetry appropriate for quasicircular orbits. We use the sum of two Kerr-Schild metrics as our
background metric, thereby improving on conformal flat backgrounds that do not accommodate rotating
black holes and providing a horizon-penetrating lapse, convenient for implementing black hole excision.
We set inner boundary conditions at an excision radius well inside the apparent horizon and construct
these boundary conditions to incorporate the quasiequilibrium condition and recover the solution for
isolated black holes in the limit of large separation. We use our formalism both to generate initial data
for binary black hole evolutions and to construct a crude quasiequilibrium, inspiral sequence for binary
black holes of fixed irreducible mass.
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I. INTRODUCTION

The coalescence and merger of binary black holes is
expected to be one of the primary sources of gravitational
radiation to be detected by interferometric gravitational
wave detectors (including the Laser Interferometer
Gravitational Wave Observatory, LIGO, and the Laser
Interferometer Space Antenna, LISA). The detection
and interpretation of black hole mergers will be greatly
facilitated by theoretical predictions for the gravitational
waveforms produced by these events.

For large binary separations, post-Newtonian approx-
imations can be used to model the binary inspiral and
gravitational wave emission to excellent accuracy [1]. For
small binary separations, when finite size and nonlinear
effects become more important, it is expected that nu-
merical relativity simulations will provide the most ac-
curate models and wave form predictions.

Constructing numerical models of the binary inspiral
typically proceeds in two steps (see, e.g. [2] for a recent
review). In the first step, initial data are constructed by
solving the constraint equations of general relativity.
These initial data, which provide a snapshot of the gravi-
tational fields at a certain instant of time, are not unique,
and certain freely specifiable functions have to be chosen
in accordance with the astrophysical situation at hand (see
also the review [3]). In the second step, the initial data are
evolved dynamically forward in time, which provides the
subsequent binary evolution and with it the emitted
gravitational wave signal.

To date neither one of these two steps has been solved
completely satisfactorily. A number of groups have con-
structed initial data describing binary black holes in
nearly circular orbit [4–11], and there have been several
attempts at dynamical simulations of binary black holes
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[12–16]. While this effort has made significant progress,
the numerical modeling of binary black hole inspiral
remains an unsolved theoretical problem.

Building on the success of the BSSN formulation of
the evolution equations of general relativity [17,18], we
have recently developed a code that can stably evolve
single, rotating black holes for arbitrary long times
[19]. This code adopts a simple excision scheme [20] to
remove the black hole deep interior and its singularities
from the numerical grid. Implementation of such a
scheme requires a coordinate system that smoothly ex-
tends into the black hole interior (‘‘horizon-penetrating
coordinates’’), as, for example, Kerr-Schild coordinates
(see [21,22]). Our goal is to use this code for dynamical
simulations of binary black hole systems in corotating
coordinates. This requires initial data that describe binary
black holes in quasi-circular orbit in horizon-penetrating
coordinates.

The first models of binary black holes in quasicircular
orbits [4,5] adopted the Bowen-York decomposition of the
constraint equations [23]. When combined with maximal
slicing and conformal flatness, the momentum constraints
can be solved analytically, and only the Hamiltonian
constraint needs to be solved numerically. For general-
ization to spinning black holes (compare [8]) it may be
desirable to abandon conformal flatness. A recent spectral
implementation by [11] shows that in the extreme mass
ratio limit this approach does not recover the
Schwarzschild test particle result, which underlines the
need for alternative solutions. Furthermore, this approach
only provides the initial data for the gravitational fields,
and a suitable coordinate system for a subsequent evolu-
tion has yet to be chosen. Clearly, it is desirable to choose
a rotating coordinate system in which the binary appears
approximately static (i.e. a coordinate system that is based
33-1  2004 The American Physical Society
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on the existence of an approximate helical Killing vec-
tor). Such a coordinate system is constructed in [24].
However, this coordinate system is not horizon-
penetrating, since the lapse is not strictly positive. This
is undesirable for the dynamical evolution and singularity
excision (but see [16]; compare [25]).

An alternative approach [6,7] adopted a conformal
thin-sandwich decomposition of the constraint equations
[3,26,27] instead of the Bowen-York decomposition. This
approach seems more appealing for the construction of
quasiequilibrium initial data, since it allows for the ex-
plicit specification of the time derivatives of the confor-
mally related metric and the trace of the extrinsic
curvature (see also [24,28,29].) In addition, this approach
automatically provides a coordinate system that reflects
quasiequilibrium. In [6,7], this decomposition was com-
bined with the conformal-imaging approach of [4]. In
addition to leading to some inconsistencies on the black
hole throats (compare [30]) this again yields a lapse that is
not strictly positive. Attempts to combine the thin-
sandwich decomposition with a puncture approach
[5,31] fail because of mutually exclusive requirements
between the different methods [25].

In this paper we borrow various ideas and approaches
from previous investigators to construct initial data that
are better suitable for evolution with our dynamical evo-
lution code. In particular, we adopt the thin-sandwich
decomposition of the constraint equations together with
Kerr-Schild background data. In contrast to [28] we set
the time derivative of the trace of the extrinsic curvature
to zero, which we believe will result in data that are closer
to quasiequilibrium. On the excision surface we impose a
boundary condition that is derived from requiring that the
time derivative of the conformal factor vanish there. We
impose circular orbits by setting the ADM mass equal to
the Komar mass, which is equivalent to imposing a rela-
tivistic virial theorem [6,7] (see also [10,32].)

We solve these equations numerically by finite differ-
encing in Cartesian coordinates, which leads to results
that are less accurate than those achieved with spectral
methods (compare [28]), but better suited for evolutions
with our dynamical code, which also uses finite differ-
encing and Cartesian coordinates. The accuracy require-
ments for initial data are much less stringent than those
for constructing accurate quasiequilibrium sequences,
which are typically determined from small differences
between large numbers. As a by-product of our calcula-
tions, we nevertheless present a crude inspiral, quasiequi-
librium binary sequence.

The paper is organized as follows. In Sec. II we review
the basic equations, boundary conditions and the con-
struction of quasicircular orbits. We present numerical
results in Sec. III, and we discuss our findings in
Sec. IV.We also include several Appendices with specifics
of our numerical implementation.
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II. BASIC EQUATIONS

The thin-sandwich equations

We begin by writing the metric in the ADM form

ds2 � ��2dt2 � �ij�dxi � 
idt��dxj � 
jdt�; (1)

where � is the lapse function, 
i is the shift vector, and
�ij is the spatial metric. Throughout this paper, Latin
indices are spatial indices and run from one to three,
whereas Greek indices are spacetime indices and run
from zero to three.

The Einstein equations can then be decomposed into
the Hamiltonian constraint H and the momentum con-
straint Mi

H � R� KijK
ij � K2 � 0; (2)

M i � rjKij �riK � 0; (3)

and the evolution equations

@t�ij � �2�Kij �ri
j �rj
i: (4)

@tKij � �
�
Rij � 2Ki‘K‘

j � KKij
�
�rirj�� 
‘r‘Kij

�Ki‘rj
‘ � Kj‘ri
‘: (5)

Here we have assumed a vacuum spacetime (T�
 � 0),
and ri, Rij and R � �ijRij are the covariant derivative,
the Ricci tensor and scalar curvature associated with the
spatial metric �ij. The extrinsic curvature Kij is defined
by Eq. (4).

Most decompositions of the constraint equations start
with a York—Lichnerowicz conformal decomposition of
the metric

�ij �  4 ~�ij; (6)

where  is the conformal factor and ~�ij the conformally
related metric [33,34]. It is also useful to decompose the
extrinsic curvatureKij into its trace K and a tracefree part
Aij,

Kij � Aij �
1

3
�ijK; (7)

and to conformally transform Aij according to

Aij �  �10 ~Aij (8)

(so that Aij �  �2 ~Aij; see [35,36].) With these definitions
the Hamiltonian constraint (2) becomes

~r 2 �
1

8
 ~R�

1

12
 5K2 �

1

8
 �7 ~Aij ~A

ij � 0; (9)

where ~ri and ~R are the covariant derivative and scalar
curvature associated with ~�ij, and ~r2 � ~ri ~ri is the sca-
lar Laplace operator.
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For a complete derivation of the conformal thin-
sandwich decomposition we refer the reader to references
[26,27,37]. Here we focus on the construction of binary
black holes in quasiequilibrium. In a corotating coordi-
nate system one expects the gravitational field to depend
on time only very weakly, and it is therefore natural to
construct initial data for which as many functions as
possible have vanishing time derivative. Within the con-
formal thin-sandwich formalism both the time derivative
of the conformally related metric and the extrinsic cur-
vature appear as freely specifiable data, and it is therefore
both possible and natural to set

@tK � 0 (10)

and

@t ~�ij � 0: (11)

Inserting the latter into (4) we obtain

~A ij �
 6

2�

�
�~L
�ij

�
: (12)

where

�~LX�ij � ~riXj � ~rjXi �
2

3
~�ij ~r‘X‘: (13)

Equation (12) can now be inserted into the momentum
constraint (3), which yields

~�L

i � �~L
�ij ~rj ln

�
�

 6

�
�
4

3
�~riK;

where

~� L
i � ~rj�~L
�ij � ~r
2
i �

1

3
~ri�~rj
j� � ~R

i
j


j: (14)

Finally, condition (10) can be inserted into the trace of
the evolution Eq. (5), which, after combining with the
Hamiltonian constraint (9) becomes

~r 2�� ���
�
1

8
 ~R�

5

12
 5K2�

7

8
 �7 ~Aij ~A

ij
�
� 5
i ~riK;

(15)

To summarize, the thin-sandwich formalism then pro-
vides three equations

~� L
i � �~L
�ij ~rj ln
�
�

 6

�
�
4

3
�~riK � 0 (16)

~r 2 �
1

8
 ~R�

1

12
 5K2 �

1

8
 �7 ~Aij ~A

ij � 0 (17)

~r2�� � � �� � ��
1

8
~R�

5

12
 4K2 �

7

8
 �8 ~Aij ~A

ij
�
� 5
i ~riK; (18)

for the three unknowns �, 
i and  . The tracefree part of
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the extrinsic curvature is related to these unknowns
through Eq. (12). Before the equations can be solved, a
background geometry ~�ij and a background trace of the
extrinsic curvature K has to be chosen.

B. Kerr-Schild background data

We base our choice for the freely specifiable data on a
superposition of two Kerr black holes in Kerr-Schild
coordinates [21,22,28]. A Kerr-Schild metric is given by

g�� � ��� � 2Hl�l�; (19)

where ��� is the Minkowski metric, and l� is a null
vector with respect to both the full metric and the
Minkowski metric, g��l�l� � ���l�l� � 0. From the
spacetime metric (19) the spatial metric, the lapse and
the shift can be identified as

�ij � �ij � 2Hlilj; (20)

� � �1� 2Hltlt��1=2; (21)


i � �
2Hltli

1� 2Hltlt
: (22)

For a black hole of massM and angular momentumM~a at
rest at the origin, H and l� are given by

H �
Mr3

r4 � � ~a 	 ~x�2
; (23)

l� � �1; ~l�; (24)

~l �
r ~x� ~a� ~x� � ~a 	 ~x� ~a=r

r2 � a2
; (25)

with

r2 �
~x2 � ~a2

2
�

�
� ~x2 � ~a2�2

4
� � ~a 	 ~x�2

�
1=2
: (26)

For a nonrotating black hole with ~a � 0, H has a pole at
the origin, whereas for rotating black holes H has a ring
singularity.We therefore have to excise from the computa-
tional domain a region enclosing the singularity. In this
paper we adopt a nonspinning Kerr-Schild background to
describe corotating black hole binaries in a corotating
frame.

We want to generate initial data for a spacetime con-
taining two black holes with background masses MA and
MB, velocities ~vA and ~vB, and we will assume that the
background metric has zero spinM~a. Such initial data can
be constructed by adopting for the freely specifiable
background data a superposition of two Kerr-Schild co-
ordinate systems describing two individual black holes
[21,22]. The first black hole with label A has a spatial
metric
-3
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�Aij � �ij � 2HAlAilAj; (27)

an extrinsic curvatureKAij, a lapse �A and a shift
iA. The
trace of the extrinsic curvature is

KA �
2MA

r2A�1� 2MA=rA�3=2
�1� 3MA=rA�: (28)

The second black hole has a similar set of associated
quantities which are labeled with the letter B.

In Sec. IIA we have already adopted @t ~�ij � 0 and
@tK � 0, which leaves as the freely specifiable back-
ground quantities the background metric ~�ij and the trace
of the extrinsic curvature K, for which we choose the
‘‘superpositions’’

~� ij � �ij � 2HAlAilAj � 2HBlBilBj (29)

and

K � KA � KB: (30)
C. Outer boundary conditions

The requirement of corotation and the conditions of
asymptotic flatness yield boundary conditions at spatial
infinity

 jr!1 � 1; (31)


ijr!1 � ��@"�
i; (32)

�jr!1 � 1; (33)

where � is the angular velocity of the corotating frame.
Since our computational domain does not extend to spa-
tial infinity, we have to impose approximate boundary
conditions at a finite separation. The asymptotic behavior
of the metric in a binary black hole system is similar to
that of any rotating system in an asymptotically flat
spacetime, including a Kerr black hole. The asymptotic
form of a Kerr black hole tells us the form of the leading-
order, radial fall-off term of the shift that is important for
determining the system’s angular momentum (via a quad-
rature over the extrinsic curvature in Eqn. (53) below). To
incorporate the angular momentum of the binary in the
outer boundary condition of the shift vector, we consider
the asymptotic shift of a single, rotating Kerr-Schild
black hole and focus on the leading terms proportional
to the spin. In our asymptotic binary shift we ‘‘correct’’
the shift associated with the nonspinning background
metric with terms that have the same asymptotic fall-
off as these spin-dependent terms. A similar argument for
choosing the form of the asymptotic shift in our binary
has been put forward in Section III E of [38].
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For a single Kerr-Schild black hole we have


x �
2Mx

r2
� 2M

�2Mx� ay

r3
�O�r�3�;


y �
2My

r2
� 2M

�2My� ax

r3
�O�r�3�;


z �
2Mz

r2
� 4M2

z

r3
� 2M

�4M2 � a2�z

r4
�O�r�4�;

(34)

where we have assumed rotation about the z-axis, ~a �
�0; 0; a�. Equation (34) suggests the following fall-off
conditions at the edge of our computational grid for the
binary:

 � 1
1

r
; (35)


x � �
x 
y

r3
; (36)


y � �
y 
x

r3
; (37)


z � �
z 
z

r4
; (38)

�� 1
1

r
: (39)

Here the boundary condition of the shift vector consists of
an analytic part, �
i, and a higher-order part. �
i is the sum
of the analytic shifts from each nonspinning black hole
(a � 0) plus � ~�� ~r�i, which accounts for all shift terms
except for terms due to the orbital rotation (frame-
dragging) as identified above. The form of the higher-
order terms on the right hand side comes from considera-
tion of the way in which the system’s total angular mo-
mentum is embedded in the asymptotic shift, as we
argued above. The coefficients for the higher-order terms
are determined by numerically fitting to the data imme-
diately interior to the boundary; they are not given a
priori. Note that the shift in Section IV A of [6] exhibits
the same asymptotic behavior as in Eqn. (36)–(38), in-
cluding the higher-order, fall-off terms containing the
angular momentum data. The boundary conditions of [6]
and ours differ only in the analytical part: the background
shift in [6] is based on isotropic coordinates, while in our
approach it is based on Kerr-Schild coordinates. Apart
from the background, the form for the leading-order
terms, including the rotational terms, is the same in
both calculations (compare Eqns. (36)–(38) in our paper
with Equations 161–163 in [6]).

D. Inner boundary conditions

Since the metric is singular at the center of each hole,
some part of the black hole interior has to be excised from
the computational domain, which introduces the need for
inner boundary conditions. In [28] the following set of
inner boundary conditions was adopted
-4
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 � 1 all boundaries; (40a)


i � 
iA sphere inside hole A; (40b)


i � 
iB sphere inside hole B: (40c)

Since [28] specified the lapse as either � �  6�A�B or
� �  6��A � �B � 1�, no boundary condition for the
lapse was required. We solve Eq. (15) for the lapse, and
therefore need an addition boundary condition.

The set of conditions (40) is very simple to implement,
but does not necessarily lead to quasiequilibrium solu-
tions. Assuming that the black holes are equilibrium (or
‘‘isolated’’ in the language of [39]) Cook [30] derived an
alternative set of boundary conditions (see also [40,41]).
Unfortunately, the resulting equations are quite compli-
cated and difficult to implement numerically. We have
therefore chosen to adopt an alternative set of boundary
conditions, which is motivated by the observation that for
corotating, quasiequilibrium black holes in a binary black
hole system the time derivative

@t ln
����
�

p
� ri


i � �K (41)

should be small [42].
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For the lapse and shift we set

� � �A�B (42)


i � �A
iB � �B
iA (43)

on the inner boundaries and note that these choices reduce
to the correct values in the limit of infinite binary sepa-
ration. Imposing inner boundary conditions somewhere
inside the black hole horizon implicitly assumes that the
solution should not depend on where exactly this condi-
tion is imposed. This suggest that the above condition
should hold not only on the boundary itself, but, to a
certain approximation, also in the neighborhood of the
boundary. With our choices of the conformal metric

�ij �  4 ~�ij �  4��Aij � �Bij � �ij� (44)

and the trace of the extrinsic curvature

K � KA � KB: (45)

we can then compute
ri
i��K�ri��A
iB��B

i
A���A�B�KA�KB� �@i��A
iB��B


i
A���

j
ji��A


i
B��B


i
A���A�B�KA�KB�

��A�r
B
i 


i
B��BKB���B�r

A
i 


i
A��AKA��


i
B

�
@i�A��A��

j
ji�B�

j
ji�

�
�
iA

�
@i�B��B��

j
ji�A�

j
ji�

�

�
iB

�
@i�A��A@i ln

������������
�=�B

q �
�
iA

�
@i�B��B@i ln

������������
�=�A

q �
�
iB�A@i ln

������������������
�=�A�B

p
�
iA�B@i ln

������������������
�=�A�B

p
�
i@i ln�

����
�

p
��: (46)
Here we have used ri
i��K�0 as well as �jji�
@i ln

����
�

p
, ~�jji�@i ln

����
~�

p
, and ����1=2 for both back-

ground black holes A and B. With �� 12 ~�, Eq. (46)
can be rewritten

ri
i � �K � 
i@i ln�
����
�

p
�� � 
i@i ln�� 6

����
~�

p
�: (47)

According to (41) we expect ri
i � �K to be small, so
that (46) becomes

6
i@i �  
i�~�jji � @i ln�� � 0; (48)

which provides a Neumann condition for the conformal
factor on the inner boundary. Collecting the inner bound-
ary conditions, we then have

� � �A�B; 
i � �A
iB � �B
iA;

6
i@i � � 
i�~�jji � @i ln��:
(49)

In the limit of infinite separation each black hole reduces
to an isolated Kerr-Schild black hole, which satisfies the
above conditions.
E. Constructing quasiequilibrium circular orbits and
sequences

Solving Eqs. (16)–(18) subject to the boundary condi-
tions (35)–(39) and (49) yields a solution describing two
black holes at a particular separation d, mass M and
angular momentum J. Sequences of constant irreducible
mass binaries in circular-orbit can be constructed as
follows (see also the flow chart in Fig. 1).

Focusing on equal-mass binaries, we first choose a
value of the irreducible mass Mirr [43– 45], which re-
mains constant during the slow, adiabatic binary inspiral
(see also [7,46]). The irreducible mass is determined from
the area of the black hole event horizon, but in practice we
approximate this value by computing the area of the
apparent horizon

Mirr � �
A
16'

�1=2: (50)

We next choose a separation d, and begin the iteration
with a trial value of the background masses MA � MB �
M, which enters the background geometry ~�ij and K. We
also choose a trial value of the orbital angular velocity�,
which enters the orbital shift in �
i in the outer boundary
conditions (35)–(39). Solving Eq. (16)–(18) for these
-5



FIG. 1. Flow chart for the construction of sequences of
quasiequilibrium, circular-orbit binary black holes.
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values will provide a binary that is not necessarily in
circular-orbit and does not necessarily have the required
irreducible mass.

To impose circular orbits, we require that the system’s
ADM mass (e.g. [47])

MADM �
1

16'

I
1
�im�jn��mn;j � �jn;m�d2Si; (51)

be equal to its Komar mass [48]

MK �
1

4'

I
1
�ij�ri�� 
kKik�d2Sj: (52)

In the above expressions d2Si � �1=2��1=2,ijkdxjdxk is
the two-dimensional surface area element. In many cases,

kKik falls off faster than O�r�2� in (52) so that the
second term vanishes; in our case, however, this term
cannot be neglected. We evaluate these integrals as de-
scribed in Appendices A and B.

The equality of the ADM and Komar masses is closely
related to a relativistic virial theorem [49] and indicates
that the spacetime is stationary [50,51] in the rotating
frame. In [7] this criterion was adopted to impose circular
orbits in binary black hole spacetimes (see also [32] for a
pedagogical illustration). In our code we iterate over �
until MADM � MK has been achieved to within an accu-
racy of one part in 106.
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For a given circular orbit we then iterate over the
background mass M until the irreducible mass Mirr has
taken the desired value to within an accuracy of one part
in 106 [52]. Finally we vary the binary separation d to
construct an approximate inspiral sequence. For each
model the ADM mass MADM is found from (51) and the
angular momentum from

Ji �
1

8'
,kij

I
1
xjK‘

kd
2S‘ (53)

(see Appendix C). The innermost stable circular-orbit
(ISCO) can be found by locating minima in the ADM
mass and the angular momentum along a constant-mass
sequence.

III. NUMERICAL RESULTS

A. Tests

In this section we present two tests of our code. The first
test shows second-order convergence to the analytic Kerr-
Schild spacetime for a single black hole. The second test
shows second-order convergence in a particular (nonequi-
librium) binary solution previously considered by Pfeiffer
[28].

1. Single black hole tests

To recover a single nonrotating black hole in Kerr-
Schild coordinates we set MB � 0 and locate the black
hole A at the origin. We then solve Eqs. (16)–(18) impos-
ing Dirichlet inner boundary conditions

 �1; 
i��
2Hltli

1�2Hltlt
; ��

1���������������������
1�2Hltlt

p (54)

on a sphere of radius rexcision � 1:8M0, where M0 is the
background mass of one of our black holes at infinite
separation. We run these tests with the IBM pSeries 690
machine in NCSA. A typical run with 160� 80� 80
gridpoints takes about 16 CPU hours and uses about
two gigabytes of memory. In Fig. 2 we show numerical
errors for the conformal factor  and the shift 
i for
several different resolutions. The errors scale as expected,
establishing second-order convergence of our code. We
chose to impose the above Dirichlet condition for  
instead of the inner boundary condition (49) because, in
our numerical implementations, Dirichlet conditions are
easier to impose at a fixed physical location, which is
mandatory for achieving second-order convergence. For a
resolution of �x=M0 � 1=6 and with the outer boundary
at 20M0, we find J=M20 < 10

�8, MADM=M0 � 0:9990, and
MAH � 1:0013, which shows that the error in our solution
is of the order of a fraction of a percent.

2. Comparison with a previous binary black hole
calculation

In this Section we compare with numerical results by
Pfeiffer, Cook and Teukolsky [28] (hereafter PCT), who
-6



FIG. 2. Numerical errors in the conformal factor  and the shift 
i for three different resolutions �x for a single, nonrotating
Kerr-Schild black hole.
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used spectral methods to construct black hole binaries.
PCT solve Eqs. (16) and (18), but instead of solving (17)
for the lapse they experiment with two different choices
for an analytic dynastized lapse function. Here we com-
pare with their results for

� �6 � �A�B: (55)

For this test we also adopt their boundary conditions (40).
The implementation of PCTallows for imposing the outer
boundary conditions (31) at a much larger separation than
we can afford. Following PCT we construct a nonspin-
ning black hole binary with background mass M � M0,
centers of the excised spheres at a coordinate separation
d � 11:75M0, and angular velocity � � 0:0421=M0.
(According to the effective potential method in [4] this
choice of � corresponds to a circular orbit.)

In Fig. 3 we compare our results for the conformal
factor  and the shift 
i for different resolutions (all with
rexcision � 2:0M0), and again establish second-order con-
vergence or our numerical code. In Table I we tabulate
both PCT’s and our results for the binaries irreducible
mass, the ADM mass, the angular momentum and the
proper separation between the horizons. To compute the
ADM mass and the angular momentum we extrapolate
our numerical results to a grid with outer boundaries at
084033
150M0 as explained in Appendices A and C. We find
values that are very similar to those found by PCT, but
ours do not converge to theirs for a fixed location of the
outer boundary. We believe that this is caused by the
proximity of our outer boundary and expect, as the results
in Table I suggest, that the agreement would improve by
increasing both the resolution and the distance to the
outer boundaries. From Table I we estimate that the
numerical errors in our results, given the grid resolution
and location of the outer boundaries adopted in this paper,
are of the order of about a percent.

B. An approximate inspiral sequence

We now proceed to construct an approximate inspiral
sequence for a nonspinning black hole binary system,
adopting the inner boundary conditions described in
Sec. IID. Contours of the conformal factor  , the lapse
� and the shift 
i for one particular binary separation are
shown in Fig. 4.

The binding energy of an equal-mass binary can be
defined as [4]

Eb � MADM � 2Mirr: (56)

A simultaneous turning point in the binding energy and
-7



FIG. 3. Numerical convergence of the conformal factor  and the shift 
i for the PCT [28] binary configuration described in the
text. We plot the rescaled differences between four different resolutions to establish second-order convergence (see Appendix F).
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the angular momentum locates the ISCO. In Fig. 5 we
show both the binding energy and the angular momen-
tum. We show numerical results obtained with a resolu-
tion of �x � M0=4 and with the outer boundary at 30M0,
which corresponds to the highest resolution and largest
TABLE I. Comparison of our results with thos
binary with M � M0, d � 11:75M0 and � � 0
both black holes, Mirr is the irreducible mass,
momentum, and ‘ is the proper distance between
box refers to �20M � x � 20M, 0 � y � 20M a
to �30M � x � 30M, 0 � y � 30M and 0 � z

�x=M Domain Mirr=M
CTS 1.06528

1=2 small 1.089
1=3 small 1.081
1=4 small 1.079
1=6 small 1.074
1=2 big 1.088
1=3 big 1.081
1=4 big 1.079
1=6 big 1.074

084033
grid run in our comparison in Sec. IIIA2. The code is run
with the IBM pSeries 690 machine in NCSA. Each run
with 240� 120� 120 gridpoints takes about 1600 CPU
hours and uses about eight gigabytes of memory. We set
rexcision � 1:6M0 for these models. We also compare our
e of Pfeiffer, Cook and Teukolsky [28] for a
:0421=M0. Here M is the mass parameter of
MADM is the ADM mass, J is the angular
black hole horizons. Here a small boundary

nd 0 � z � 20M; a large boundary box refers
� 30M.

MADM=M J=M2 ‘=M
2.08436 3.3790 10.3971

2.106 3.389 10.121
2.110 3.391 10.123
2.113 3.391 10.125
2.120 3.392 10.126
2.092 3.379 10.122
2.093 3.381 10.124
2.094 3.382 10.126
2.097 3.382 10.127
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FIG. 4. The contour plots of the binary initial data with coordinate separation 12M0. The corresponding orbital velocity
2�Mirr � 0:0788. The left panel shows the contour of the conformal factor  ; the right panel shows the contour of lapse � and
the shift vector in the equatorial plane. The excision radius is 1:6M0. The two thick circles in the plots are the apparent horizons.
The numerical value of the lapse � on the apparent horizons exceeds 0.5 and is therefore positive, as required for horizon-
penetrating coordinates. It is evident from the plots that the solutions do not satisfy octant symmetry (see Appendix E).
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results with the numerical results of: Cook [41], for an
Eddington-Finkelstein slicing and d� =dr � 0 inner
boundary condition ([41] a), an Eddington-Finkelstein
slicing and � � 1=2 inner boundary condition
([41] b), and a maximal slicing and d� =dr � � =2r
inner boundary condition ([41] c); with the binary initial
data in [7]; with the second-order, post-Newtonian se-
quence in [4]; and with the third-order, post-Newtonian
sequence in [29].

Our results for the binding energy agree fairly well
with those of [41] b, while our results for the angular
momentum do not. Note that we find a turning point in the
binding energy, but not in the angular momentum. There
are several possible reasons for these findings. Solving the
constraints in the thin-sandwich decomposition leads to
configurations that are in approximate equilibrium, but
lacking dynamical evolutions, it is difficult to determine
just how good this approximation is for this scenario [53].
Another potential reason for our findings are the inner
0 0.05 0.1 0.15 0.2
2ΩM

irr

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

E
b/µ

[41]a
[41]b
ours
[29]
[41]c
[7]
[4]

FIG. 5. The binding energy Eb and angular momentum J as a f
square fits to our numerical results, marked by open circles. We c
Finkelstein slicing and d� =dr � 0 inner boundary condition ([
boundary condition ([41] b), and a maximal slicing and d� =dr �
data in [7], with the second-order, post-Newtonian sequence in [4],
� is the reduced mass (Mirr=2) and Mirr is the irreducible mass fo

084033
boundary conditions (49), which may lead to undesirable
deviations from quasiequilibrium. Probably more impor-
tant, however, is the limited numerical accuracy of our
finite-difference, Cartesian code. From Table I we esti-
mate that the accuracy of our values for the masses and
angular momenta is of the order of a percent or so. From
Eq. (56) the binding energy is computed as the difference
between two masses, and is of the order of about 10% of
each of those masses (see Fig. 5). The relative error in this
smaller difference is therefore significantly larger than
the error in each of the terms separately, and may be as
large as 10% or more. Such an error is large enough to
spoil the accuracy of an inspiral sequence. However, if
taken at face value, the orbital parameters at the turning
point of the binding energy agree fairly well with recent
results for the binary black hole ISCO (see Table II).

While our results are not accurate enough to reliably
locate the ISCO, we do believe that they are suitable for
adoption as initial data in current dynamical evolution
0 0.05 0.1 0.15 0.2
2ΩM

irr

3

3.5

4

4.5

5

J/
(2

µM
ir

r)

[41]a
[29]
[41]b
[41]c
[7]
ours
[4]

unction of orbital angular velocity. The dotted lines are least
ompare with thin-sandwich results in [41] for an Eddington-

41] a), an Eddington-Finkelstein slicing and � � 1=2 inner
� =2r inner boundary condition ([41] c), with the binary initial
and with the third-order, post-Newtonian sequence in [29]. Here
r one black hole.

-9



YO, et al. PHYSICAL REVIEW D 70 084033
calculations in finite-difference implementations. For
these purposes, the accuracy of the initial data only needs
to be as small as that of the dynamical evolution itself.
The individual metric quantities that must be specified as
initial data are not small differences of large numbers and
are determined to about a percent.

We also note that solving the constraints in the Bowen-
York formalism leads to higher accuracy solutions even in
finite-difference implementations (compare [5]). There,
the momentum constraint can be solved analytically,
leaving only the Hamiltonian constraint to be solved
numerically. Moreover, the angular momentum can be
determined analytically in terms of the background quan-
tities. The Bowen-York formalism also adopts maximal
slicing, K � 0, so that octant symmetry can be adopted
and a higher grid resolution can be chosen (compare
Appendix E). In our approach, five coupled equations
are solved simultaneously, and all orbital parameters
are computed numerically from the solutions, which
will clearly lead to a larger numerical error.

IV. DISCUSSION

We present a method for constructing solutions to the
constraint equations of general relativity, describing qua-
siequilibrium binary black holes in nearly circular orbit.
We expect that these solutions are suitable initial data for
dynamical evolution with current finite-difference evolu-
tion codes.

We solve the constraint equations in a conformal thin-
sandwich decomposition (e.g. [27]), and impose quasicir-
cular orbits by imposing that the ADM mass of the
binary be equal to its Komar mass (compare [7]). We
adopt a superposition of two Schwarzschild black holes
in Kerr-Schild coordinates as the conformal background
solution. This background choice leads to horizon-
penetrating coordinates, which are needed for dynamical
evolutions, and is likely to produce less spurious gravita-
TABLE II. Values for the binding energy Eb=�, the angular
velocity 2�Mirr and the angular momentum J=�2�Mirr� at the
ISCO as obtained in different approaches. The Schwarzschild
results refer to the innermost stable circular-orbit of a test
particle in a Schwarzschild spacetime. Our results for this
work are determined from the turning point of the binding
energy curve in Fig. 5, but as discussed in the text, they are
prone to large errors.

Reference Eb=� J=�2�Mirr� 2�Mirr

Schwarzschild -0.0572 3.464 0.068
[4] -0.09030 2.976 0.172
[5] -0.092 2.95 0.18
[7] -0.068 3.36 0.103
[41] -0.058 3.45 0.085
This work -0.06 3 0.08
[54] -0.0668 3.27 0.0883

084033
tional radiation, at least for rotating black holes. We
present a new set of simple inner boundary conditions,
to be imposed on the excision surface inside the black
hole, which we hope leads to reasonable approximation to
equilibrium (compare [30]).

We present two numerical tests— one for the limiting
case of an isolated black hole, and the other for a binary
configuration considered in [28]. We also construct an
approximate inspiral sequence. Our numerical accuracy
may not be sufficient to track the binding energy to high
precision, since it is computed as the small difference
between two significantly larger numbers. However, we
do expect that our solutions provide adequate initial data
for current finite-difference evolution codes. We also ex-
pect that when our formalism is implemented with higher
resolution and/or more accurate numerical schemes, the
inspiral sequence may provide a more reliable estimate of
the ISCO parameters.
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APPENDIX A: THE ADM MASS INTEGRAL

Having conformally decomposed the spatial metric
�ij, the ADM mass integral (51) can be written as

MADM �
1

16'

I
S1

�~�i � ~�jij � 8~ri �d~Si (A1)

where ~�i � ~�lm~�ilm (compare [19]) and where S1 is a
closed surface at spatial infinity. For the background
data described in Sec. IIB the first two terms can be
evaluated analytically and yield the sum of the two
background masses MA �MB, or, for equal-mass bi-
naries, 2M0. The ADM mass therefore reduces to

MADM � 2M0 �
1

2'

I
S1

~ri d~Si: (A2)

We now convert this surface integral into a volume in-
tegral using Gauss’ law; volume integrals are typically
more accurate numerically than surface integrals.
However, since a volume, say V1, containing a black
hole singularity is excised, a surface integral over the
surface of that volume, say S1, remains
-10



QUASI-EQUILIBRIUM BINARY BLACK HOLE INITIAL. . . PHYSICAL REVIEW D 70 084033
MADM � 2M0 �
1

2'

I
S1

~ri d~Si � 2M0 �
1

2'

I
S1

~ri d~Si �
1

2'

Z
V2�V3�V1

����
~�

p
~r2 d3x

� 2M0 �
1

2'

I
S1

~ri d~Si �
1

16'

Z
V2�V3�V1

����
~�

p �
� ~R�  �7 ~Aij ~A

ij �
2

3
 5K2

�
d3x; (A3)
FIG. 6. The diagram illustrates the relation between the
volumes V1, V2, and V3 and the surfaces S1, S2, and S3. S1
is a boundary outside both black holes, but well inside the
computational domain, S2 is a boundary near the outer edge of
the computational domain, and S3 is a boundary well outside
the computational domain (at very large, finite radius).
Here we have used the Hamiltonian constraint in the third
equality, and have denoted the volume outside V1 as V2 �
V3 � V1 as illustrated in Fig. 6. Volume V2 denotes the
space covered by our computational grid. Given our con-
straints on numerical grid resources, this volume extends
only to a separation of typically 30M0 from the black
holes. Restricting the ADM integral (A3) to this volume
would introduce a fairly large error. We therefore extend
the integration to a larger volume V3, in which the inte-
grand is estimated by extrapolating 
i, �, and  from
their values and fall-off conditions on the outer boundary
of the computational grid S2:

 � 1�
a1
r
; � � 1�

a2
r
; 
x � �
x �

a3y

r3
;


y � �
y �
a4x

r3
; 
z � �
z �

a5z

r4
: (A4)

Here the ai are coefficients that are determined as fol-
lows. For any point in V3, say ~r, we find the intersection of
the position vector ~r with S2. The value of the function at
that intersection determines the coefficient ai. Once the
coefficients ai have been found, the functions  , � and 
i

and hence the integrand of the ADM mass can be eval-
uated in V3 (compare [5]). Typically, the boundary of V3 is
at a separation of 150M0 from the black holes, so that this
construction increases the volume of our integration by a
factor of 125.

APPENDIX B: THE KOMAR MASS INTEGRAL

The Komar mass can be defined for stationary, asymp-
totically flat spacetimes. Stationarity implies the exis-
tence of a Killing vector 1�, which can be written as

1� � �n� � 
�; (B1)

where n� � ��t;� is the timelike unit normal on the
spatial hypersurfaces &t. The Komar mass is defined as

MK � �
1

8'

I
S1

1��;��dS�� � �
1

4'

I
S1

1�;�n�dS�;

(B2)

where S1 is a closed hypersurface of&t, diffeomorphic to
a two-sphere, at spatial infinity, and where we have used
Killing’s equation 1��;�� � 1�;�. The bi-vector dS�� �
2n��dS��, where dS� is a spatial oriented surface area
element, is normal on both S1 and &t. From (B1) we find

1�;�n� � ��;� � 
�;�n� � ��;� � 
�n;�� : (B3)
084033
Using the identity n;�� � �K�
� � a�n�, where a��

n�n�;� is the four-acceleration of normal observers, we
obtain

1�;�n�dS� � ���;� � 
�K�
� �dS�: (B4)

Inserting this into (B2) yields

MK �
1

4'

I
S1

�ri�� 
jKi
j�dSi: (B5)

The term 
jKi
j often falls off faster than 1=r2 in an

asymptotically flat space, in which case its contribution
to the integral vanishes. Here, however, this term must be
retained.

The Komar mass is independent of the surface S on
which the integral is evaluated, as long as all matter
sources are inside of S. To demonstrate this, we convert
the surface integral in (B5) into the volume integral
-11



YO, et al. PHYSICAL REVIEW D 70 084033
MK �
1

4'

Z
�rir

i�� 
jriKij � Kijri
j�
����
�

p
d3x:

(B6)

This integral can be rewritten by inserting the trace of the
evolution Eq. (5)

rir
i� � �

�
KijK

ij �
1

2
�2� s�

�
� 
iriK � @tK; (B7)

and the momentum constraint (3)

rjKij � riK � si; (B8)

where, for completeness, we have included the matter
sources 2, si and s

2 � n�n�T��; si � ��i�n�T��;

s � �i��i�T��:
(B9)

The volume integral (B6) then becomes

MK �
1

4'

Z ����
�

p
d3x

�
�
�
KijKij �

1

2
�2� s�

�

�@tK � Kijr
i
j � 
isi


: (B10)

We now use the evolution Eq. (4) to rewrite the term
Kijri
j as

Kijr
i
j � �KijK

ij �
1

2
Kij@t�ij: (B11)

This brings the integral (B10) into the form

MK �
1

4'

Z ����
�

p
d3x

�
1

2
��2� s� � 
isi � @tK

�
1

2
Kij@t�ij

�
: (B12)

As in the calculation of the ADM mass, part of the
numerical grid may have to be excluded from the inte-
gration, for example, if it contains a black hole singular-
ity. The integral over an outer surface S1 can then be
written as a volume integral V and a surface integral over
an inner surface, e.g. S1 as in Fig. 6

MK �
1

4'

I
S1

�ri�� 
jKi
j�dSi

�
1

4'

Z
V2�V3�V1

����
�

p
d3x

�
1

2
��2� s� � 
isi � @tK

�
1

2
Kij@t�ij

�
�
1

4'

I
S1

�ri�� 
jKi
j�dSi:

(B13)

From the above assumption of stationarity, the time de-
rivatives of �ij and K have to vanish, and as long as there
are no matter sources in �, 2 � s � si � 0, the volume
integral vanishes and we have
084033
1

4'

I
S1

�ri�� 
jKi
j�dSi �

1

4'

I
S1

�ri�� 
jKi
j�dSi

(B14)

(compare [55]).
APPENDIX C: THE ANGULAR MOMENTUM
INTEGRAL

In Cartesian coordinates, the angular momentum can
be defined as

Ji �
1

8'
,kij

I
S1

xjK‘
kd
2S‘ (C1)

(see [23,47]). In this paper we only consider rotations
about the z-axis, and therefore compute only the
z-component of the angular momentum which can be
rewritten as

Jz �
1

8'

I
S1

�x ~Aly � y ~Alx�d~Sl;

�
1

8'

I
S1

�x ~Aly � y ~Alx�d~Sl �
1

8'

Z
V2�V3�V1

�

�
~Axy �

2

3
 6x~ryK �

1

2
x ~Aij@y ~�ij � ~A

y
x

�
2

3
 6y~rxK �

1

2
y ~Aij@x ~�ij

� ����
~�

p
d3x: (C2)

As in the calculation of the ADM mass (Appendix A) we
have converted the surface integral into a volume integral
for greater numerical accuracy. As before, we evaluate the
integral from the numerical data in volume V2 and from
extrapolated values in volume V3. We neglect only those
contributions to the integral from volume V1.
APPENDIX D: INERTIAL AND ROTATING
FRAMES

Rotating frames are not asymptotically flat, so that the
expressions for the ADM (Appendix A), angular momen-
tum (Appendix C) and Komar mass (Appendix B) have to
be reevaluated.

The barred coordinates �t, �x, �y and �z in an inertial frame
are related to the unbarred coordinates t, x, y and z in a
rotating frame by the transformation

t � t; x � x cos�!t� � y sin�!t�;

y � x sin�!t� � y cos�!t�; �z � z:
(D1)

Here we are assuming a constant angular velocity ~! �
�0; 0; !� and rotation about the z-axis. At an arbitrary
instant �t � t � 0 at which the two frames are aligned the
gravitational field variables are related by [56]

� � ��; 
i � �
i � � ~!� ~r�i;

�ij � ��ij; Kij � �Kij;
(D2)
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The only effect of this transformation is therefore the
appearance of a new term in the shift. Since the shift does
not enter the integrals for the ADM mass nor the angular
momentum, those quantities remain unchanged and we
only have to reevaluate the Komar mass.

Transforming between the rotating and inertial frame,
we find that the Komar mass in the rotating frame MK is
related to that in the inertial frame �MK by

MK �
1

4'

I
�ri�� 
jKi

j�dSi

�
1

4'

I
�ri ��� �
j �Ki

j�d �Si �
1

4'

I
� ~!� ~r�j �Ki

jd �Si

� �MK �
!
4'

,jz‘
I
x‘ �Ki

jd �Si

� �MK � 2!J (D3)

(note that the angular momentum is the same in both
frames, so �J � J).

APPENDIX E: SYMMETRIES OF THE
COMPUTATIONAL DOMAIN

Symmetries can be used to reduce the size of the
computational grid, making it desirable to incorporate
as many symmetries as possible. One might expect that
the binary black hole configuration studied in this paper
would allow for octant symmetry. In this Appendix we
show that this is not the case, due to the presence of a
nonzero trace of the extrinsic curvature (i.e. nonmaximal
slicing).

Consider, for example, the momentum constraint (3)
and assume, for simplicity, conformal flatness. On the
x � 0 plane, it would be natural to assume that 
x be
symmetric, while 
y and 
z be antisymmetric (compare,
for example, [57]). Computing ~Aij from the shift accord-
ing to (12), assuming that all scalars are symmetric on all
coordinate planes, shows that ~Axx, ~Ayy, ~Ayz and ~Azz are all
antisymmetric on the x � 0 plane, while ~Axy and ~Axz are
symmetric. The divergence ri

~Axi, for example, is then
symmetric on the x � 0 plane. The gradient riK, how-
ever, must be antisymmetric, meaning that the momen-
084033
tum constraint (3) violates this symmetry assumption.
Similar arguments hold on the y�0 plane. Under the
assumption of maximal slicing K�0, octant symmetry
can be adopted, but in this paper we adopt a Kerr-Schild
background with K � 0. The above issue does not apply
on the z � 0 plane, so that equatorial symmetry can be
assumed even in the nonmaximal slicing case K � 0.

It is possible, however, to adopt '-symmetry, whereby

f��x;�y; z� � 5f�x; y; z�: (E1)

For scalar functions we have 5 � 1, while for the x, y and
z-component of the shift we have 5x � �1, 5y � �1,
and 5z�1, respectively.
APPENDIX F: SECOND-ORDER CONVERGENCE

Second-order convergence is most easily demonstrated
by doubling the computational grid resolution several
times and showing that numerical errors scale in the
expected way. Given the constraints of computational
resources it is often impossible to double the grid size
several times, so instead we establish second-order con-
vergence by considering three arbitrary (but different)
grid spacings h1, h2, and h3.

Let Q�h� be a quantity obtained from a finite-
difference scheme with spacing h. A Taylor expansion
around h � 0 yields

Q�h� � Q�0� � h
@Q
@h

��������h�0
�
h2

2

@2Q

@h2
Q
��������h�0

�O�h3�

� Q0 �Q1h�Q2h
2 �O�h3�: (F1)

Second-order convergence implies that Q1 � 0. Given
two different resolutions h1 and h2 we can eliminate Q0
and find

Q2 �
Q�h2� �Q�h1�

h22 � h21
�O�h�: (F2)

Alternatively, Q2 can be computed from the two grid
spacings h2 and h3. Second-order convergence can then
be established by showing that the differences between
different values for Q2 decrease at least as fast as h.
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[10] W. Tichy and Bernd Brügmann, Phys. Rev. D 69, 024006

(2004).
-13



YO, et al. PHYSICAL REVIEW D 70 084033
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