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Role of anisotropy and inhomogeneity in Lemaitre-Tolman-Bondi collapse
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We study the effects of shear and density inhomogeneities in the formation of naked singularities in
spherically symmetric dust space-times. We find that in general, complete knowledge of either one of
these (time-dependent) functions, along with physically motivated boundary conditions, fully deter-
mines the entire space-time and consequently uniquely specifies the end-state of the gravitational
collapse. In contrast–and of more physical relevance–we show that measurements of shear or density
inhomogenity at an instant of time do not uniquely determine the outcome of the collapse.We do this by
(i) showing that, for open sets of initial data, the same initial shear (or initial density contrast) can give
rise to both naked and covered solutions, in particular, this can happen for zero initial shear or zero
initial density contrast; (ii) demonstrating that asymptotically (near the singularity) both shear and
density contrast are invariant under a one parameter set of linear transformations acting on the initial
data set; and (iii) showing that asymptotically one cannot in general establish a direct relationship
between the rate of change of shear (or density contrast) and the nature of the singularities. However,
one can uniquely determine the nature of the singularity if both the initial shear and initial density
contrast are known. These results are important in understanding the effects of the initial physical state
and, in particular, the role of shear in determining the end-state of the gravitational collapse.
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I. INTRODUCTION

An important outcome of general relativity has been to
show that subject to a number of physically reasonable
assumptions the final state of gravitational collapse will
be singular in a range of settings (see, e.g., [1]). An out-
standing question concerns the nature of the resulting
singularities and, in particular, whether and under what
conditions they may be naked or black holes [2,3]. Over
the recent years a great deal of effort has gone into the
study of these questions. These have mainly concentrated
on collapse in spherically symmetric settings and involve
the study of collapse of scalar field [4,5] as well as other
matter sources including dust [6,7], perfect fluids [8,9],
imperfect fluids [10–13] and null strange quark fluids
[14,15].

All these studies show that the end-state of the spheri-
cal collapse can be either a black hole or a naked singu-
larity, depending upon the nature of the initial data. Apart
from the mathematical questions concerning the likeli-
hood of each end-state, an important question from a
physical point of view is how the nature of the end-state
of collapse in the spherical settings may depend on physi-
cal characteristics of the regime under consideration. In
particular, we ask how does the inhomogeneity and an-
isotropy influence the process and the final outcome of
collapse?

This issue has been studied by a number of authors.
Penrose [16] discusses the possibility that anisotropy
might play a role in the occurrence of naked singularities.
Herrera et al. [17] considered a spherically symmetric
collapsing space-time with an anisotropic fluid (with
04=70(8)=084030(10)$22.50 70 0840
radial and tangential pressures) and showed that high
density contrasts increase the radial velocity of collapse.
They also proved that the local anisotropy of the pressure
might have the same effect suggesting that this might
lead to naked singularities (depending on some inequal-
ities between radial and tangential pressures).

More recently, Joshi, Dadhich and Maartens [18] have
also considered this question in the special case of mar-
ginally bounded Lemaitre-Tolman-Bondi (LTB) collapse
and found that the shear associated with the initial dis-
tribution of matter fully determines the final outcome of
collapse in these settings. In particular, they have found
that the stronger the shear near the singularity the more
likely it is to have a naked singularity. Soon after, Chan
et al. [19] found a self-similar solution with heat –flow
which was shear-free and, nevertheless, exhibited naked
singularities.

Here, motivated by these previous results, we make a
detailed study of the relation between the nature of the
end-state of LTB collapse with anisotropy and inhomo-
geneity, by considering more general settings. We study
how the choices of shear and density contrast functions
can influence the nature of the gravitational singularities.
In particular, we consider the behavior of the shear func-
tion initially, asymptotically (near the singularity) as
well as at intermediate times and study the effects of
each on determining the end-state of gravitational
collapse.

The structure of the paper is as follows: In section II we
give a brief description of the spherical dust models. In
Sections III, IV, and V we consider the effects of the shear
30-1  2004 The American Physical Society
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on the end-state of collapse. In section VI we consider in
turn the density contrast. Section VII contains some re-
marks about space-time extensions after shell-crossing
and initial data sets. Finally, we conclude in Section VIII .
II. SPHERICALLY SYMMETRIC DUST
SPACE-TIMES

The inhomogeneous spherically symmetric dust space-
time can be represented by the LTB line element [20–22]

ds2 � �dt2 �
R02

1� E
dr2 � R2�d�2 � sin2�d	2�; (1)

where r; �; 	 are comoving coordinates. The dot and
prime denote differentiation with respect to t and r
respectively and R � R�r; t� and E � E�r� are C2 real
functions such that R�r; t� � 0 and E�r�>�1. The
matter-density is given by

�t; r� �
m0

R2R0
(2)

where m � m�r� is another C2 real function such that
m�r�> 0. The evolution equation for the case of _R< 0
(corresponding to gravitational collapse) takes the form

_R � �

��������������
m
R
� E

r
; (3)

and can be solved for different values of E in the follow-
ing parametric forms:

For E< 0:

R �
m

2��E�
�1� cos����� sin�� �

2��E�3=2

m
�tc � t�

(4)

where 0<�< 2� and tc � tc�r� is a third C2 real func-
tion that corresponds to the time of arrival of each shell r
to the central singularity. Note that here and below, t �
tc�r� corresponds to � � 0.

For E> 0:

R �
m
2E

�cosh�� 1�; �sinh�� �� �
2E3=2

m
�tc � t� (5)

where �> 0.
For E � 0:

R �

�
9m
4

�
1=3

�tc � t�2=3: (6)

In what follows we find it also useful to work with the
compact form for the solution to Eq. (3);

tc � t �

������
R3

m

s
G
�
�
ER
m

�
; (7)

where G is a positive real function given by
084030
G�x� �
arccos�

���
x

p
�

x3=2
�

������������
1� x

p

x
; for 1 � x > 0

G�x� �
2

3
; for x � 0

G�x� �
� arcsinh�

�������
�x

p
�

��x�3=2
�

������������
1� x

p

x
;

for 0> x>�1:

(8)

Using the coordinate freedom to rescale

R�0; r� � r; (9)

at an initial time t � 0, Eq. (7) gives

tc�r� �
r3=2G�p�����

m
p ; (10)

where p � �rE=m. So, the initial data set is given by
I � fm�r�; E�r�g.

We note that the metric (1) can be matched at a bound-
ary, say r � rd � const:, to the Schwarzschild metric in
the exterior region. Thus the scenario here is that of a
collapsing compact matter region matched to an exterior
Schwarzschild space-time.

We shall refer to a singularity as naked if there is a
family of future directed nonspacelike geodesics which
terminate at the singularity in the past. In spherical
symmetry, if there are no radial-null geodesics emerging
from a central singularity then the singularity is neces-
sarily censored [23]. Therefore we shall only be con-
cerned with outgoing radial-null geodesics which, as
can be seen from (1), correspond to the solution of the
differential equation

dt
dr

�
R0�������������
1� E

p : (11)

One can rewrite this equation as (see [6])

dR
du

�
1

u0

�
R0 � _R

dt
dr

�
�

�
1�

��������������������
E��=X
1� E

s �
H�X; u�;

(12)

where

H�X; u� � ��u � �u�X�

�
�u �

�
�u �

3

2
�u

�

�X3=2G��PX�
� ��������������
P�

1

X

s
(13)

and
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X �
R
u
; � � r

m0

m
; �u � �

u
ru0

; � � r
E0

E
;

�u � �
u
ru0

; P �
uE
m
; p � �r

E
m
;

�u � �

���
r

p���
u

p
u0
; � �

m
u
;

� �

����
m

p ���
r

p t0c�r� �
1� �� ��������������

1� p
p � ���

3

2
��G�p�;

(14)

with the positive real function u � u�r� being monotoni-
cally increasing and such that u�0� � 0. Later on we will
specify u�r� � r3. In the cases where E�r� � 0 we will
take ��r� � 0. Following [6], we use the algebraic equa-
tion in X0 (obtained from (12))

�
1�

��������������������������
E0 ��0=X0

1� E0

s �
H�X0; 0� � X0 � 0; (15)

where the subscript ‘0‘ denotes the limit of the associated
functions as r! 0 (respectively u! 0) along the geode-
sic, in order to demonstrate the existence of radial-null
geodesics emanating from the singularity in spherical
symmetric dust collapse.

An important outcome of past studies (e.g., [6]) is that
the occurrence of black holes or naked singularities as
final outcomes of collapse depend on the choice of initial
data fm�r�; E�r�g. This initial data set has to satisfy cer-
tain regularity conditions namely:
(1) t
here are no trapped surfaces initially, i.e.,
R�0; r�>m�r�, for r > 0.
(2) t
here is no shell-crossing during collapse, i.e.,
R0�t; r� � 0, for r > 0.
(3) t
he initial matter-density �0; r� is nonzero at the
center r � 0.
III. DEPENDENCE OF THE NATURE OF THE
SINGULARITY ON SHEAR ��T;R�

In this section we study the shear ��t; r� and its effects
on the nature of the singularity.

For the LTB metric the shear function (relative to the
fluid congruence given by the 4� velocity vector field) is
given by

��t; r� �

���
3

p

3

� _R
R
�

_R0

R0

�
: (16)

If ��t; r� is fully known (i.e. as a function of both t and r),
then its time-derivative may be calculated:

_��t; r� �

���
3

p

3

� �R
R
�

� _R
R

�
2
�

�R0

R0
�

� _R0

R0

�
2
�
: (17)

We start by recalling the following well-known result
(see, e.g., [7]):
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Result 1: Consider a dust spherically symmetric col-
lapsing space-time satisfying the regularity conditions. If
��t; r� � 0 then the final state of collapse is a covered
singularity.

The field equation

_R � �u; u �

��������������
E�

m
R

r
;

and its time-derivative

�R � �
m

2R2 ;

can be used to simplify the expressions for � and _�. Now
define two functions s1�r�: � ��0; r� and s2�r�: � _��0; r�.

Equation (16) can be written as

u0 �
u
r
�

���
3

p
s1�r�; (18)

which has the solution

u�r� �
���
3

p
r
Z r

0

s1�s�
s

ds: (19)

This solution incorporates the boundary condition u�0� �
0, which is one of the standard regularity conditions. It
also requires s1�r� � O�r�, r! 0.

Equation (17) can be written

m0 � 3
m
r
� s3�r�;

where

s3�r� � 2
���
3

p
r2s2�r� � 6r2s21 � 4

���
3

p
rs1u:

Solving for m gives

m�r� � r3
Z r

0

s3�s�

s3
ds: (20)

Again m�0� � 0 is implied by this solution. We must
impose the boundary condition s2 � O�r�, r! 0 in order
for the integral to exist and as above, this translates into
the standard boundary conditions on m, E. Clearly, m;E
are uniquely determined by the expressions (19) and (20).
We can then write down this result:

Result 2: Consider a dust spherically symmetric col-
lapsing space-time satisfying the regularity conditions. If
��t; r� is known and the initial functions s1: � ��0; r�,
s2: � _��0; r� satisfy the conditions

s1�r� � O�r�; s2�r� � O�r�; r! 0;

then E;m are uniquely determined and satisfy E � O�r2�,
m � O�r3� as r! 0. Thus the shear completely deter-
mines the space-time, and consequently, the nature of
the singularity.

Note that the result only requires knowledge of s1
and s2, and so could be trivially strengthened. Note
also that there does not seem to be any obvious way
that some measure of shear could be found with ‘‘strong
-3
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shear’’ corresponding to one outcome and ‘‘weak shear’’
to another.

IV. DEPENDENCE OF THE NATURE OF THE
SINGULARITY ON THE ASYMPTOTIC SHEAR

�̂�T;R�

Of more direct physical interest is the behavior of the
shear in the approach to the singularity. Does this com-
pletely determine the nature of the singularity (as has
been claimed in [18])?

To proceed, we shall use the parametric solutions of the
evolution equation to calculate _R=R and _R0=R0 in cases
E< 0 and E> 0. The case E � 0 has already been con-
sidered in [18].

A. Case E < 0

In this case we have

_R �
��������
�E

p sin�
cos�� 1

; (21)

together with

R0 �

�
m

2��E�

�
0
�1� cos�� �

m
2��E�

sin�
@�
@r

(22)

and

_R 0 � �
��������
�E

p
�0

sin�
cos�� 1

�
��������
�E

p 1

cos�� 1

@�
@r
; (23)

where @�
@r is given in the Appendix. We can then write

��t; r� �

���
3

p

3

�
2��E�3=2

m

��
� sin�

�cos�� 1�2

�
E0

2E sin�� @�
@r

�E
0

E � m0

m��cos�� 1�2 � sin��cos�� 1� @�@r

�
:

(24)

Since we are mainly interested in the behavior of ��t; r�
around the singularity we use an expansion around � � 0
to obtain

��t; r� � �
2

���
3

p
��E�3=2

3m

�
6

�3 �
1

2�

�
�2�AB�0 � 2

3AB
0 � BA0

AB2t0c
�

7

120
�
�
�O��2�;

(25)

where A � m
2��E� and B � 2��E�3=2

m . It can be seen that
asymptotically ��t; r� is invariant under the transforma-
tion

�a:I ! I (26)

�m;E� � �a3=2m; aE�; (27)

for an arbitrary free parameter a > 0. That is, if we
084030
introduce what we will call the ‘‘asymptotic shear’’

�̂�t; r�: � �
2

���
3

p
jEj3=2

3m

�
6

�3

�
; (28)

then the initial data �m;E� and �a3=2m; aE� produce the
same �̂ for any a > 0. Note that tc�r� does change under
this transformation, and so it is a nontrivial mapping on
I , i.e., it leads to a different LTB space-time. So, the same
asymptotic shear function �̂�t; r� can correspond to dif-
ferent initial data functions m and E.

B. Case E > 0

In this case, we have

_R �
����
E

p sinh�
1� cosh�

; (29)

together with

R0 �

�
m
2E

�
0
�cosh�� 1� �

m
2E

sinh�
@�
@r
; (30)

and

_R 0 � �
����
E

p
�0

sinh�
1� cosh�

�
����
E

p 1

1� cosh�
@�
@r
; (31)

where @�
@r is given in the Appendix. We can then write

���;r� �

���
3

p

3

�
2E3=2

m

��
�sinh�

�cosh�� 1�2

�
E0

2E sinh�� @�
@r

�E
0

E �
m0

m��1� cosh��2� sinh��1� cosh�� @�@r

�
:

(32)

We use the above expressions and their expansions around
� � 0 to get

��t; r� � �
2

���
3

p
E3=2

3m

�
6

�3 �
1

2�
�

�2�AB�0 � BA0

AB2t0c

�
7�
120

�
�O��2�; (33)

where A � m
2E and B � 2E3=2

m . We note again that the
asymptotic shear �̂�t; r� is invariant under the transfor-
mation �a�m;E� � �a3=2m; aE�, for an arbitrary free pa-
rameter a > 0. As a result, the same asymptotic shear
function �̂�t; r� can correspond to different initial data
functions m and E.

C. Discussion

The above results show that asymptotically (near the
singularity) the shear ��t; r� for both E> 0 and E< 0
cases is invariant under the transformation �a�m;E� �
�a3=2m; aE�, with a > 0. This is not true for �u. The fact
that �u is not invariant under �a has the important
consequence of allowing the same shear function to
-4
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produce both naked singularities and black holes. As a
simple example we take m�r� � m3r

3 �m6r
6 and E�r� �

E2r2 � E5r5. In this case, letting u � r3 we obtain from
(15) the quartic equation

2X4
0 �

������
m3

p
X3
0 � 3�uX0 � 3

������
m3

p
�u � 0; (34)

with

�u0 �
E5=E2 �m6=m3���������������

1� p0

p �

�
m6

m3
�

3

2

E5

E2

�
G�p0�: (35)

Taking m3 � 0:1; m6 � �0:9; E2 � �0:05; E5 � 1 we
obtain positive roots for (34) which correspond to naked
singularities. Applying �a with a � 0:61 to the previous
initial data, we get black hole solutions instead and yet
the same asymptotic shear function �̂�t; r�. Thus asymp-
totic shear �̂�t; r� does not uniquely determine the final
outcome of collapse.

We can now study the shear strength in the approach to
the singularity depending upon the values of jEj3=2=m as
well as the relationship between jEj3=2=m and the time of
horizon formation tH. The surface t � tH�r� is defined by
R � m. Using (7), this gives

tH � tc �mG��E�: (36)

Using the expression (10) for tc, we have

@tH
@m

� �
1

2

r3

m3=2
�G�p� � 2pG0�p�� �G��E�; (37)

where p � �rE=m. Now G is positive, and it turns out
that G�p� � 2pG0�p� is also positive, and so

@tH
@m

< 0: (38)

Thus for fixed E, regardless of sign, tH does increase with
decreasing m.

It is known that delays in the time of horizon formation
can be associated with the increased likelihood of finding
naked solutions. From (38) we find that smaller m pro-
duces delays in tH. Since smaller m also induces stronger
shear around the singularity (see Eq. (28)) one may be
tempted to relate stronger shears with delays in tH and
consequently with increased likelihood of finding naked
solutions, as was done in [18] for E � 0. However, for
E � 0, this is not necessarily true since in general one
needs both m and E to decide whether a solution is naked
or not.

Now recall that for LTB, given an initial function m
one can always find a function E such that a naked
singularity solution exists [6,24]. So we may ask whether
smaller m values make it easier to find E functions which
give rise to naked singularities. In order to answer this
question we also note that the part of the singularity
surface tc�r� which can produce naked singularities is
tc�0�, so we are mainly interested in the behavior of
��t; r� around r � 0.
084030
We take C1 functions m and E and integers N >
2;M > 3 so that we can always write m�r� �

PN
i�3mir

i,
with m3 � 0 and E�r� �

PM
j�2 Ejr

j, with E2 � 0. In this
case, we get around r � 0

��t; r� � �

���
3

p

3

2jE2j
3=2

m3

�
6

�3

�
�O���1�; (39)

and we find naked singularity solutions from Eq. (15) if
and only if (see e.g. [6,7])

�u0 2 I

��0; m3=2
3

�
13

3
�

5
���
3

p

2

�
�[�m3=2

3

�
13

3
�

5
���
3

p

2

�
;�1�:

(40)

Now a measure for the interval R�nI is

5
���
3

p
m3=2

3 :

It is then clear that the smaller m3 the smaller will be the
measure of R�nI and consequently, there might exist
examples where it is easier to find functions E so that
�u0 2 I. In fact this is the case for a number of known
examples (see, e.g., [7] for a graphic illustration).
However, this phenomena is not general. The problem
arises from the fact that �u0 depends not only on m3

and E2 but also on the higher order coefficients mi and
Ej which although do not appear in the asymptotic (r!
0) expression for ��t; r�, can nevertheless be crucial to
determine whether �u0 2 I. This then tells us that the
information in the vicinity of the singularity given by
E2; m3, which determines the shear rate in (39), is not
enough to determine the nature of the singularity. It is
therefore crucial to be sufficiently far from the singular
region in order to pick up information about higher order
‘‘inhomogeneous’’ coefficients which characterize the
initial data.

We note that Joshi et al. [18] have calculated��t; r� and
��0; r� for the case E � 0 and concluded that in approach
to the singularity these two quantities change with the
same rate in r. For the case E � 0, however, one cannot
obtain expressions for��t; r� which explicitly depend on r
and t so one cannot compare analytically the rates of
change of ��t; r� and ��0; r� in the approach to the singu-
larity (as was done for E � 0). Nevertheless, we prove in
the next section that the conclusions for E � 0 do not
necessarily carry over to the general (E � 0) case.

We also note that although the function R has the same
asymptotic behavior in the approach to the singularity for
all E, the shear function ��t; r� does not, since the depen-
dence of ��t; r� on the function E persists all the way
down to the singularity for the cases where E � 0.
Furthermore, although R ‘‘forgets’’ the E dependence in
the approach to the singularity, the geodesic equations do
not and this is crucial in the study of the nature of the
singularities.
-5
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To summarize, in this section we have proved that
(i) the asymptotic shear �̂�t; r� is invariant under the
linear transformations �a, (ii) ��t; r� diverges in the
approach to the singularity at a rate depending on
jEj3=2=m and (iii) �̂�t; r� does not uniquely specify the
nature of the singularity. We have also compared our
results for E � 0 to the ones obtained for E � 0 by
Joshi et al. [18].

V. DEPENDENCE OF THE NATURE OF THE
SINGULARITY ON INITIAL SHEAR ��0; R�

In this section, we study the initial shear ��0; r� as well
as its possible influence on the nature of the singularities.
For t � 0, given R�0; r� � r, one can derive

��0; r� �

���
3

p

3

�
E�

m
r

�
�1=2

�
E0

2
�
E
r
�

3m

2r2
�
m0

2r

�
: (41)

The initial radial velocity of collapse is vi � _R�0; r�. So,
one can write

��0; r� �

���
3

p

3

�
vi
r
� v0i

�
; (42)

which implies that ��0; r� increases with vi. This con-
firms, for the case of dust, the results of [17] according to
which local anisotropy increases the radial velocity of
collapse. Now, for _R�t; r� � 0, we have that ��0; r� � 0 if
and only if

1

2
E0 �

E
r
�

3

2

m

r2
�

1

2

m0

r
� 0: (43)

Result 3: Consider a dust spherically symmetric space-
time �M;g� with ��0; r� � 0. Then the following are
equivalent:
(1) �
_ �0; r� � 0.

(2) �
M;g� is spatially homogeneous and isotropic.

(3) �
�t; r� � 0, for all t > 0.
Proof: Using (17) for ��0; r� � 0 we obtain

_��t; r� �

���
3

p

3

� �R
R
�

�R0

R0

�
(44)

which gives

_��0; r� �

���
3

p

6

�
m0

r2
�

3m

r3

�
: (45)

Note that this does not depend on E. The condition
_��0; r� � 0 implies m�r� � m3r3, which in turn from
��0; r� � 0 implies E�r� � E2r2. These correspond to
spatially homogeneous initial data (see, e.g., [7]). On the
other hand, spatial homogeneity implies _��t; r� � 0 �.
Result 3 indicates that, as expected in general, even if we
start with zero initial shear in an inhomogeneous space-
time, shear will be generated after evolution starts. This
can also be seen from the relationship between _��0; r� and
�0; r�:
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_��0; r� �

���
3

p

6

�
�0; r� �

3m

r3

�
: (46)

This, however, is not the case for E � 0:
Result 4: Consider a dust spherically symmetric space-

time with E � 0. If ��0; r� � 0 then ��t; r� � 0.
Proof: For E � 0, if ��0; r� � 0 then one must have

m � m3r
3 which gives _��0; r� � 0. Now apply Result 3 �

For the case of E � 0, since shear depends only on m
there is a unique correspondence between m and ��0; r�
and one can therefore substitute the initial free functionm
by ��0; r�. One can then study how the initial shear
influences the final outcome of collapse, as in [18]. In
particular, if ��0; r� � 0 the final outcome of collapse is
necessarily a black hole. An interesting question is
whether this result necessarily holds for E � 0.

The situation is in fact more complicated in the case
E � 0, where as we shall show the same initial shear can
give rise to different outcomes. Before doing so we note
that one can fine tune the initial data so that ��0; r� � 0
and _��0; r� � 0.

Result 5: Consider a dust spherically symmetric col-
lapsing space-time with m�r� � r3g�r� and
E�r� � r2Q�r�, such that g and Q are C2 real functions
in �0; rd� with g�0� � 0 andQ�0� � 0. Then ��0; r� � 0 if
and only if Q0 � g0 � 0.

Proof: Follows directly from expression (41) �
Therefore there can exist situations where the initial

shear is zero and nevertheless a naked singularity will be
formed. Consider, for example, an initial data set I given
by the functions m�r� � m3r

3 �m6r
6 and E�r� � E2r

2 �
E5r

5. Taking the initial coefficients to be E2 � m3 � 0:1
and E5 � �m6 � 1 we ensure that ��0; r� � 0 and
_��0; r� � 0 (this initial data also satisfies the regularity

conditions). Solving (34) for these values one finds a
positive root X0 which therefore corresponds to a naked
singularity.

Taking the same initial data except for the value of
m3 � 0:2 we find a black hole, while we still have
��0; r� � 0 and _��0; r� � 0. One can also find examples
for E2 < 0 such as E2 � �0:05; m3 � 0:1; E5 � �m6 �
1 giving a naked singularity and E2 � �0:05; m3 �
1; E5 � �m6 � 1 giving a black hole, both initial sets
with ��0; r� � 0 and _��0; r� � 0.

Furthermore one can find open intervals in the coef-
ficients of m and E such that the initial shear is zero and
yet naked singularities form as in the next example:
Taking m�r� � m3r

3 �m6r
6 and E�r� � E2r

2 � E5r
5

with m6 � E5 � 0, then from (35) we obtain

�u0 �
E5

E2

� ���������������
1� p0

p
�

�
p0 �

3

2

�
G�p0�

�
; (47)

with p0 � �E2=m3. Taking the elliptic case for which
0<p0 � 1, i.e.,

E2 2 ��m3; 0�; (48)
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and consequently 2=3<G�p0� � �=2. In this case���������������
1� p0

p
� �p0 � 3=2�G�p0� is always bounded and nega-

tive. So, in order to have �u0 > 0 and therefore avoid
shell-crossing we take E5 > 0. Furthermore in order to
ensure that �u0 falls in one of the intervals given by (40),

e.g., �u0 >m2=3
3 �133 � 5

��
3

p

2 �, we impose

E5 2

� E2m
2=3
3 �133 � 5

��
3

p

2 ����������������
1� p0

p
� �p0 � 3=2�G�p0�

; �1

�
: (49)

So, ��0; r� � 0 and naked singularities as final state
of collapse can be achieved for open subsets (in the sense
made precise above) of the initial data. The possibility
of having the same initial shear with different end states
for the collapse can also be found for nonzero initial
shear. This can be shown by generalizing Result 5:

Result 6: Consider a dust spherically symmetric col-
lapsing space-time with initial data as given in Result 5.
Then two different sets of initial data fm�1�; E�1�g and
fm�2�; E�2�g have the same initial shear function ��0; r�
if and only if h�1�

0
�Q�1�0 � h�2�

0
�Q�2�0 .

An example of this is the naked singularity solution
obtained for i � 6 and j � 5 with m3 � 0:1; E2 �
�0:05; m6 � �0:9; E5 � 1, and the black hole solution
m3 � 1; E2 � �0:95; m6 � �0:9; E5 � 1 both having
the same nonzero initial shear profile. Again one can
find open subsets of the initial data which have the
same nonzero initial shear and yet different outcomes.

To summarize, in this section we have proved that
(i) the same initial shear can result in two different out-
comes black holes and naked singularities depending on
fm;Eg, so initial shear does not uniquely determine the
final state of collapse; (ii) it is possible to have zero initial
shear and a naked singularity end-state, and (iii) these
results can be obtained for open sets of initial data.
VI. DEPENDENCE OF THE NATURE OF THE
SINGULARITY ON INHOMOGENEITY

The studies of the previous sections for the shear can
now be repeated for inhomogeneity measures. In this
section, we study the influence of the density contrast
on the nature of the singular endstates. We shall use the
pointwise density contrast measure

0�t; r� �
m00

R0R2 �
m0R00

R2�R0�2
�

2m0

R3 ; (50)

and start by recalling the following well-known result:
Result 7 Consider a dust spherically symmetric col-

lapsing space–time satisfying the regularity conditions.
If 0�t; r� � 0 then the final state of collapse is a black
hole.

We shall therefore consider the cases where 0�t; r� �

0. We consider first the case where this function (and
hence its time-derivative) is known for all times.
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Result 8: Consider a dust spherically symmetric col-
lapsing space-time satisfying the regularity conditions.
Suppose that 0�t; r� is known as a function of t and r.
Then we may define the functions h1�r� � 0�0; r� and
h2�r� � _0�0; r� and the constants c1 � �0; 0�; c2 �
_�0; 0�. If h1 and h2 are integrable on an interval of the

form �0; a�, then E�r� and m�r� are uniquely determined
on this interval. Hence the space-time, and the nature of
the singularity, are uniquely determined.

Proof: From the definitions of our hypotheses and the
Eq. (50), we can write down

m�r� �
Z r

0
s2�c1 �

Z s

0
h1�u�du�ds; (51)

which satisfies m � O�r3�, r! 0. Similarly, our hypoth-
eses and the time-derivative of (50) can be used to write�

E�
m
r

�
1=2

�
1

r

Z r

0

s3

m0�s�

�
c2 �

Z s

0
h2�u�du

�
ds: (52)

Clearly, (51) and (52) uniquely determine E and m. The
asymptotic behavior of m given by (51) can be then used
to show that E � O�r2�, as r! 0 �

We now turn to the asymptotic behavior of the density
contrast. If we now use the formulae in the Appendix and
substitute for R;R0 and R00 in Eq. (50) we obtain, after
expanding around � � 0,

0�t; r� � �

�
4jEj
m

�
3 m0

�6
�O���3�: (53)

Thus as in the case of shear, the inhomogeneity measure
0�t; r� depends asymptotically on both E and m. In order
to prove that m0�4jEj=m�3 does not uniquely determine
the nature of the singularity we note that this quantity is
invariant under the linear transformation �a�m;E� �
�a3=2m; aE�, for an arbitrary free parameter a > 0.
Interestingly �a also leaves invariant the asymptotic
shear function �̂�t; r� and the examples of section IVC
can also be used here in order to show that the same
asymptotic function 0�t; r� can give rise to both naked
singularities and black holes.

We now study the initial density contrast function
0�0; r�. From (50) we obtain for t � 0 and R�0; r� � r

0�0; r� �
m00

r2
�

2m0

r3
; (54)

so 0�0; r� does not depend onE, which makes it clear that
a given 0�0; r� can correspond to both black holes and
naked singularities, depending on the choice of E (see,
e.g., [7]). So 0�0; r� cannot uniquely determine the final
outcome of collapse, except in the E � 0 case. An inter-
esting question is whether there are naked singularity
solutions for 0�0; r� � 0. In order to answer this question
we start by recalling a simple result:
-7



FILIPE C. MENA, BRIEN C. NOLAN, AND REZA TAVAKOL PHYSICAL REVIEW D 70 084030
Result 9: Consider a dust spherically symmetric space-
time with 0�0; r� � 0. Then the space-time is spatially
homogeneous and isotropic if and only if ��0; r� � 0.

Proof: If 0�0; r� � 0 then m � m3r3; m3 2 R n 0, in
which case ��0; r� � 0 if and only if E � E2r2� We
recall that in the E � 0 case the space-time is spatially
homogeneous and isotropic if and only if 0�0; r� � 0. We
shall then take the inhomogeneous E � 0 cases where it
might be possible, for��0; r� � 0, to find initial data such
that 0�0; r� � 0 and nevertheless have a naked solution.
As an example of this we take m�r� � m3r3; m3 2 R�,
and E�r� � E2r2 � E5r5 such that

�u0 �
E5

E2

�
1���������������

1� p0

p �
3

2
G�p0�

�
: (55)

By taking the elliptic case with E2 2 R� and

E5 2

�E2m
3=2
3 �133 � 5

��
3

p

2 �
1���������
1�p0

p � 3
2G�p0�

; 0
�

(56)

we ensure both that �u0 > 0 and that Eq. (15) has positive
roots corresponding to naked singularities.

To summarize, in this section we have shown that
(i) 0�t; r� diverges in the approach to the singularity at
a rate depending on m0�jEj=m�3, (ii) the asymptotic den-
sity inhomogeneity 0�t; r� is invariant under �a and does
not uniquely specify the nature of the singularity, (iii) the
same initial inhomogeneity function 0�0; r� can result in
two different outcomes black holes and naked singular-
ities depending on fm;Eg, so 0�0; r� does not uniquely
determine the final state of collapse and (iv) it is possible
to have zero initial density contrast and a naked singu-
larity end-state. These results can be obtained for open
sets of initial data.

VII. NON-UNIQUENESS, SHELL-CROSSING AND
THE INITIAL DATA SET

Finally, we consider two important issues in this sec-
tion: (I) Nonuniqueness of space-time extensions after
shell-crossing singularities and (II) Initial data sets based
on initial shear and initial density contrast functions.
(I) The theme of our discussion has been how certain
quantities which have been suspected of determining the
outcome (naked singularity or black hole) of spherical
dust collapse in fact fail to do so. We have emphasized the
significance of the well-known fact that one needs to
know both E and m in order to make this prediction.
However there is another situation in which even the
knowledge of both these functions is not enough to com-
pletely determine the space-time; that is when the initial
data are such that shell-crossing singularities can occur. It
has been shown recently how one can construct a dy-
namical extension—, i.e., one based on the field equa-
tions—through a shell-crossing singularity and obtain
global weak solutions of the field equations for R> 0; t >
084030
0 [25]. However these weak solutions are not unique to
the future of the shell-crossing. On the other hand, the
earliest point of the shell-crossing is always globally
naked, regardless of how the extension is constructed,
so the nonuniqueness is not so severe as to allow the same
initial data give rise to either a black hole or a naked
singularity. (II) As we have seen, neither ��0; r� nor
0�0; r� alone can uniquely determine the final outcome
of collapse. However, both functions might form a per-
fectly good initial data set. The question is how from a set
of observables J � f0�0; r�; ��0; r�g, given on the onset
of collapse, can one predict (uniquely) the final outcome
of collapse.

Now m�r� is uniquely determined by 0�0; r� through
the linear ODE (54):

m00 �
2

r
m0 � r20�0; r�; (57)

with initial conditions m�0� � m0�0� � 0. The shear
��0; r� can be written as a function of a new variable
w�r� � E�m=r:

��0; r� �

���
3

p

3
w�1=2

�
�
w
r
�

1

2
w0

�
; (58)

with initial conditions w�0� � w0�0� � 0. So, from
��0; r� one can determine w�r� by solving the linear ODE

y0 �
2

r
y �

���
3

p
��0; r�; (59)

where w � y2. So, using (57), we can get m�r� from
0�0; r�. Knowing m�r� and ��0; r� we can determine E
from (59). So, if we know both the density contrast
0�0; r� and the anisotropy measure��0; r�we can recover
both E and m, and so predict the outcome of collapse.
Since this process relies on solving linear ODEs, then one
can ensure that solutions exist and are unique, for the
given set of initial conditions.

VIII. CONCLUSIONS

We have considered LTB collapsing models in order to
study the influence of inhomogeneity and anisotropy in
the nature of the resulting singularities. We have studied
the shear and density contrast in three ways: (i) by con-
sidering the all time functions ��t; r� and 0�t; r�, (ii) by
considering the asymptotic functions ��t; r� and 0�t; r�
and (iii) by considering the initial functions ��0; r� and
0�0; r�.

We have found that asymptotically (near the singular-
ity) both shear ��t; r� and density contrast 0�t; r� are
invariant under a one parameter set of linear transforma-
tions acting on the initial data set fm;Eg. We have also
found that asymptotically one cannot establish, in gen-
eral, a direct link between the strength of shear (or
density contrast) and the nature of the singularities.
Finally we have found that the same initial shear (or
-8
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initial density contrast) can give rise to both naked sin-
gularities and black holes, depending on the choice of the
initial density contrast (or initial shear, respectively). In
particular this can happen for zero initial shear or zero
initial density contrast. These results were obtained for
open sets of initial data. We conclude that neither anisot-
ropy nor inhomogeneity features as given by the shear or
density contrast can alone uniquely specify the end-state
of collapse for E � 0, in contrast to the results established
for E � 0 in [18].

However, we have proved that if we know both the
initial shear ��0; r� and the initial density contrast
0�0; r� functions then, given the appropriate initial con-
ditions, we can determine uniquely the initial LTB data
functions fm;Eg and hence determine the nature of sin-
gularity. In this sense one needs information about both
the inhomogeneity and anisotropy at the initial hypersur-
face in order to predict the outcome of the collapse. This
is important for understanding the effects of the initial
physical state in determining the end-state of gravita-
tional collapse.
APPENDIX

A. E < 0

@�
@t

�
2��E�3=2

m
1

cos�� 1
< 0: (60)

@�
@r

�
1

1� cos�

�
m

2��E�
3
2

�
2��E�3=2

m

�
0

��� sin��

�
2��E�2=3

m
t0c

�
: (61)
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R00 �

�
m

2��E�

�
00

�1� cos�� � 2
�

m
2��E�

�
0

sin�
@�
@r

�
m

2��E�

�
cos�

@�
@r

� sin�
@2�

@r2

�
: (62)
B. E > 0

@�
@t

� �
2E3=2

m
1

cosh�� 1
< 0: (63)

@�
@r

�
1

cosh�� 1

�
m

2E3=2

�
2E3=2

m

�
0
�sinh�� ��

�
2E3=2

m
t0c

�
: (64)

R00 �

�
m
2E

�
00
�cosh�� 1� � 2

�
m
2E

�
0
sinh�

@�
@r

�
m
2E

�
cosh�

@�
@r

� sinh�
@2�

@r2

�
: (65)
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