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Probing strong-field scalar-tensor gravity with gravitational wave asteroseismology
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We present an alternative way of tracing the existence of a scalar field based on the analysis of the
gravitational wave spectrum of a vibrating neutron star. Scalar-tensor theories in strong-field gravity
can potentially introduce much greater differences in the parameters of a neutron star than the
uncertainties introduced by the various equations of state. The detection of gravitational waves from
neutron stars can set constraints on the existence and the strength of scalar fields. We show that the
oscillation spectrum is dramatically affected by the presence of a scalar field, and can provide unique
confirmation of its existence.
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I. INTRODUCTION

A natural alternative/generalization to general relativ-
ity is the scalar-tensor theory in which gravity is medi-
ated by long-range scalar fields in addition to the usual
tensor field present in Einstein’s theory [1–6]. Scalar-
tensor theories of gravity can be obtained from the low-
energy limit of string theory or/and other gauge theories.
The existence of scalar fields is crucial in explaining the
accelerated expansion phases of the universe, e.g., infla-
tion and quintessence. They are viable theories of gravity
for a specific range of the function that couples the scalar
field to gravity. Still, it is not clear how the scalar fields
couple to gravity [7,8]. A basic assumption is that the
scalar and gravitational fields ’ and g�� are coupled to
matter via an ‘‘effective metric’’ ~g�� � A2�’�g��. The
existence of the scalar field has not yet been verified while
a number of experiments in the weak-field limit of gen-
eral relativity disproved or set severe limits in the exis-
tence and the strength of the scalar fields [6,9].

The Fierz-Jordan-Brans-Dicke [1–3] theory assumes
that the ‘‘coupling function’’ has the form A�’� � �0’,
i.e., it is characterized by a unique free parameter �2

0 �
�2!BD � 3��1 and all its predictions differ from those of
general relativity by quantities of order �2

0 [10]. Solar
system experiments set strict limits in the value of the
Brans-Dicke parameter !BD, i.e., !BD * 40000 which
suggests a very small �2

0 < 10�5 (see [9,11–13]).
Damour and Esposito-Farese [10,14] showed that the
predictions of scalar-tensor theories in the strong-field
might be drastically different from those of general rela-
tivity. By studying neutron star models in a simplified
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version of scalar-tensor theory where A�’� � �0’�
	’2=2 they found that for certain values of the coupling
parameter 	, the stellar models develop some strong-field
effects which induce significant deviations from general
relativity. Their claim was based on the difference that
one can observe in the properties of neutron stars by the
introduction of a scalar field (even if the coupling con-
stant �0 is very small). Damour and Esposito-Farese
described the sudden deviation from general relativity
for specific values of the coupling constants as ‘‘sponta-
neous scalarization.’’ Harada [15] studied in more detail
the stability of nonrotating neutron stars in the frame-
work of the scalar-tensor theory and reported that ‘‘spon-
taneous scalarization’’ is possible for	 & �4:35. In other
words the ‘‘spontaneous scalarization’’ of Damour and
Esposito-Farese suggests that weak-field experiments
cannot constrain the effect of the scalar fields for the
strong-field regime and prompts for alternative measure-
ments. Such measurements can be based, for example, on
accurate estimation of the orbital decay of binary systems
[14,16], in the accurate monitoring of gravitational wave-
forms from neutron stars spiralling into massive black
holes [17], or by direct observation of monopolar gravi-
tational radiation during the collapse of compact objects.
Collapse simulations have shown that indeed a scalar field
can be observed by LIGO/EGO for the specific range of
values of 	 if the event takes place in our Galaxy [18–
23], while the space gravitational wave detector LISA can
also provide constraints in the existence of scalar field
[17,24].

Recently, DeDeo and Psaltis [25] suggested that the
effects of the scalar fields might be apparent in the
observed redshifted lines of the X-rays and �-rays ob-
served by Chandra and XMM-Newton. Testing strong
gravity via electromagnetic observations is a really novel
26-1  2004 The American Physical Society
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idea, which has been recently extended by the same
authors [26] in suggesting tests via the quasiperiodic
oscillations (QPOs).

In this paper we examine whether gravitational wave
observations of the oscillation spectra of neutron stars
can provide an alternative way of testing scalar-tensor
theories. The aforementioned results [10,15,25] show that
for a specific range of values of the coupling constant 	,
which are not constrained by the current experimental
limits in the weak-field regime, neutron stars can have
significantly larger masses and radii. This immediately
suggests that the natural oscillation frequencies of the
neutron stars will be altered accordingly and a possible
detection of gravitational waves from such oscillations
will not only probe the existence of the scalar field but
might provide a way of estimating its strength.

The estimation of the stellar parameters (mass, radius
and equation of state) via their oscillation properties is not
a new idea. Helioseismology and asteroseismology are
established fields in astronomy, and there is already a
wealth of information about the interior of our sun and
the stars via this approach. In the late ’90s it was sug-
gested [27,28] that the oscillation spectra of neutron stars
can reveal in a unique way their properties. The radius,
the mass and the equation of state can be easily deduced
by an analysis of the oscillation spectrum of the f, p and
w-modes [29]. Moreover, the rotation period of a neutron
star can be revealed by the r-mode oscillations since their
frequency is proportional to the rotation rate (!r-mode �
4�=3). Features such as superfluidity [30] or magnetic
fields [31] can reveal their presence via detailed analysis
of the gravitational and electromagnetic spectra.
Recently, it has been suggested that compact stars with
exotic equations of state, such as strange stars, have a
spectrum which carries in a unique way their signature
[32,33].

The oscillations of a neutron star in the scalar-tensor
theory will produce not only gravitational but also scalar
waves [5]. Detectable scalar waves will be a unique probe
for the theory, but this might not be the case if the
radiated energy is small. Still, we show that there is no
need for direct observation of scalar waves—the presence
of the scalar field will be apparent in the gravitational
wave spectrum, since the spectra will be shifted accord-
ing to the strength of the scalar field.

The paper is organized as follows. In the next section
we present the basic equations for the construction of the
unperturbed spherically symmetric stellar models. We
also show the effect of the scalar field on the stellar
structure. In Sec. III we derive the perturbation equations
which will be used for the numerical estimation of the
oscillation frequencies. Finally, in Sec. IV we discuss the
results in connection to gravitational wave asteroseismol-
ogy. Note that the present study will be based on two
equations of state, which have been used earlier [10,15].
084026
Our aim is to demonstrate the effect of the scalar field in
the neutron star oscillation spectra, while more detailed
analysis for a wide range of EOS is underway.
II. STELLAR MODELS IN SCALAR-TENSOR
THEORIES OF GRAVITY

In this section we will study neutron star models in
scalar-tensor theory of gravity with one scalar field. This
is a natural extension of Einstein’s theory, in which grav-
ity is mediated not only by a second rank tensor (the
metric tensor g��), but also by a massless long-range
scalar field ’. The action is given by [4]

S �
1

16�G�

Z ����������
�g�

p
�R� � 2g��� ’;�’;��d4x

�Sm	�m; A2�’�g���
; (1)

where all quantities with asterisks are related to the
‘‘Einstein metric’’ g���, then R� is the curvature scalar
for this metric and G� is the bare gravitational coupling
constant. �m represents collectively all matter fields, and
Sm denotes the action of the matter represented by �m,
which is coupled to the ‘‘Jordan-Fierz metric tensor’’
~g��. The field equations formulated better in the
‘‘Einstein metric,’’ but all nongravitational experiments
measure the ‘‘Jordan-Fierz’’ or ‘‘physical metric.’’ The
‘‘Jordan-Fierz metric’’ is related to the ‘‘Einstein metric’’
via the conformal transformation,

~g �� � A2�’�g���: (2)

Hereafter, we relate all tilded quantities with ‘‘physical
frame’’ and those with asterisk with the ‘‘Einstein
frame.’’ From the variation of the action S, we get the
field equations in the Einstein frame

G��� � 8�G�T��� � 2
�
’;�’;� �

1

2
g���g

�	
� ’;�’;	

�
;

(3)

��’ � �4�G���’�T�; (4)

where T��� is the energy-momentum tensor in the Einstein
frame which is related to the physical energy-momentum
tensor ~T�� as follows:

T��� �
2����������
�g�

p
�Sm
�g���

� A6�’� ~T��: (5)

The scalar quantities T� and ��’� are defined as

T� � T��� � T��� g���; (6)

��’� �
d lnA�’�
d’

: (7)

It is apparent that ��’� is the only field-dependent func-
-2
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tion which couples the scalar field with matter, for
��’� � 0 the theory reduces to general relativity.

Finally, the law for energy-momentum conservation
~r�

~T�� � 0 is transformed into

r��T��� � ��’�T�r��’; (8)

and we set ’0 as the cosmological value of the scalar field
at infinity. In this paper, for simplicity, we adopt the same
form of conformal factor A�’� as in Damour and
Esposito-Farèse [10], which is

A�’� � e
1
2	’

2
; (9)

i.e., ��’� � 	’ where 	 is a real number. In the case for
	 � 0, the scalar-tensor theory reduces to general rela-
tivity, while the ‘‘spontaneous scalarization’’ occurs for
	 
 �4:35 [15].

We will model the neutron stars as self-gravitating
perfect fluids, made out of degenerate matter at equilib-
rium and admitting cold equation of state. Then the
metric describing an unperturbed, nonrotating, spheri-
cally symmetric neutron star can be written as

ds2� � g���dx�dx�

� �e2�dt2 � e2�dr2 � r2�d�2 � sin2�d�2�; (10)

where

e�2� � 1�
2��r�
r

; (11)

while the ‘‘potential’’ function ��r� will be calculated
later. The stellar matter is assumed to be a perfect fluid

~T �� � �~ � ~P� ~U�
~U� � ~P~g��; (12)

where ~U� is the four-velocity of the fluid, ~ is the total
energy density in the fluid frame, and ~p is the pressure.

Spherical symmetry simplifies significantly the proce-
dure of constructing stellar models. Using Eqs. (3), (4)
and (8), we can obtain the following set of equations for
the background configuration [10,15]:

d�
dr

� 4�G�r2A4 ~ �
1

2
r�r� 2���2; (13)

d�
dr

� 4�G�

r2A4 ~P
r� 2�

�
1

2
r�2 �

�
r�r� 2��

; (14)

d’
dr

� �; (15)

d�
dr

� 4�G�

rA4

r� 2�
	��~ � 3 ~P� � r�~ � ~P��


�
2�r���
r�r� 2��

�; (16)
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d ~P
dr

� ��~ � ~P�
�
d�
dr

� ��
�

� ��~ � ~P�
�
4�G�

r2A4 ~P
r� 2�

�
1

2
r�2 �

�
r�r� 2��

���
�
: (17)

Near the center, the background quantities ’, �, �, ~P,
and � can be expanded as:

’�r� � ’c �
1

2
’2r2 �O�r4�; (18)

��r� � ’0 � ’2r�O�r3�; (19)

��r� � �c �
1

2
�2r

2 �O�r4�; (20)

~P�r� � ~Pc �
1

2
~P2r

2 �O�r4�; (21)

��r� � O�r3�; (22)

where the expansion coefficients are given by

�2 � 4�G�A
4
c
~Pc; (23)

’2 �
4�
3
G�A

4
c�c�~ c � 3 ~Pc�; (24)

~P 2 � ��~ c � ~Pc���2 � �c’2�; (25)

where Ac � A�’c� and �c � ��’c�.
Outside the star, the metric is assumed to be static and

spherically symmetric, and since we deal with only one
scalar field, it gets the form [4]

ds2� � �e�dt2 � e��d �r2 � e���%�d�2 � sin2�d�2�;

(26)

e� �
�
1�

a
�r

�
b=a
; e% � �r��r� a�; (27)

where �r is a radial coordinate, given by the following
relation

r2 � �r2
�
1�

a
�r

�
1�b=a

: (28)

Moreover, in the above metric (27), a and b are some
constants, which are connected with the total scalar
charge!A and the total ADM massMADM, i.e., a2 � b2 �
4!2

A and b � 2MADM. Finally, the asymptotic form, at
spatial infinity, for the metric and scalar field will be
given as functions of the total ADM mass and the total
scalar charge
-3
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g��� � )�� �
2MADM

r
��� �O

�
1

r2

�
; (29)

’ � ’0 �
!A

r
�O

�
1

r2

�
; (30)

where )�� is the Minkowskian metric.
By matching this exterior solution and the interior

metric, one gets the following relations [10]:

MADM �
R2�0

s

G�

�
1�

2�s

R

�
1=2

� exp

"
�

�0
s������������������������

��0
s�

2 ��2
s

p arctanh

 ������������������������
��0

s�
2 ��2

s

p
�0
s� 1=R

!#
;

(31)

’0 � ’s �
�s�������������������������

��0
s�

2 ��2
s

p arctanh

" �������������������������
��0

s�
2 ��2

s

p
�0
s � 1=R

#
; (32)

�0
s �

1

2
R�2

s �
�s

R�R� 2�s�
; (33)

where the functions with the subscript s correspond to
their actual values at the stellar surface and the prime
denotes the derivative with respect to r. A more general
scheme for fixing the asymptotic value of $0 can be
derived using the cosmological model of Damour and
Nordtvedt [34], (see, for example, [35]). Still, this ap-
proach has been applied for 	> 0, which is not the
subject of our present study.

In order to determine the stellar properties, an addi-
tional equation is needed, i.e., the equation of state (EOS).
Here we will use a polytropic one given by

~P � Kn0mb
~n
n0
; (34)

~ � ~nmb �
~P

#� 1
; (35)

mb � 1:66� 10�24 g; (36)

n0 � 0:1 fm�3: (37)

We have selected # � 2:46 and K � 0:00936 in agree-
ment with a fitting to tabulated data for EOS A [36], and
# � 2:34 and K � 0:0195 to fit EOS II [37]. In other
words the parameters # and K are adjusted to fit the
tabulated data from these two realistic equations of state
which have been used in earlier studies of the problem
[10,15]. The present study will be constrained to these two
EOS since our aim is to demonstrate the effect of the
scalar field in the neutron star oscillation spectra while
084026
more detailed analysis for a wide range of EOS is
underway.

A. Neutron Star Models

Here we present some typical stellar models for the two
equations of state under discussion, i.e., EOS A and EOS
II. For the construction of the stellar models, there exist
three freely specifiable parameters. These are: the con-
stant 	 of the conformal factor, the value ’0 of the scalar
field ’ at infinity, and the central density ~ c. We will also
consider positive values of ’0, because the basic
Eqs. (13)–(17) are symmetric under the reflection ’!
�’. Also, we will only consider stellar models with 	 �
�6 and 	 � �8; for these range of values, the effect of
the scalar field is more pronounced. Binary pulsar data
already suggest larger values for 	, i.e., 	 * �4:5, but
this work is based on a different framework and the
results can be used as an alternative way of constraining
the appearance of ‘‘spontaneous scalarization’’ in neutron
stars.

In Fig. 1 we show stellar models with 	 � �6. In the
left column we plot models for the EOS A, and in the
right column, models for the EOS II. In the two upper
panels we plot the ADM mass MADM as functions of the
central density; in the two middle panels we plot the value
of the scalar field in the center of the star, ’c as functions
of the central density. It is apparent that the effect of the
scalar field is pronounced for central densities higher than
5� 1014 gr=cm3; for lower densities there is no way that
one can trace the existence of a scalar field. The lower
panel is a ‘‘typical’’ mass-radius relation where one can
observe the dramatic effect of the scalar field in the
stellar structure. For comparison in every panel the gen-
eral relativistic stellar models are shown by a solid line
(GR)

In Fig. 2 we present stellar models for 	 � �8, the
ordering of the graphs is as in Fig. 1. Now the effect of the
scalar field is more pronounced than before. Its presence
can be traced for even lower densities while for higher
densities the stellar models divert considerably from
those of GR. The effects on the mass and radius are
even more dramatic in the mass-radius diagrams in the
lower panels.

Finally, in order to stress the effect of the scalar field on
the maximum mass of neutron stars, we show in two
tables the relevant parameters for each EOS. The maxi-
mum masses are well beyond the observed values of
neutron star. This is also true for the observed redshifts.
It is worth mentioning that the redshift of the maximum
mass models is quite unaffected by the changes in the
central density and the scalar field parameter. Although
for these maximum mass models the redshift is unusually
large, for the typical models that we will use, the surface
redshift z is below the maximum observed redshift,
which is z � 0:35 [38]. This means that neutron stars of
-4



FIG. 1. Stellar models with 	 � �6 are shown. The left column corresponds to models for
the EOS A while in the right to models for EOS II. In the upper panels the ADM mass MADM

and the value of the scalar field in the center of the star, ’c are plotted as functions of the
central density. The effect of the scalar field is apparent for  c � 5� 1014 gr=cm3. The lower
panel is a mass-radius diagram where the dramatic effect of the scalar field can be observed. In
every panel, the general relativistic stellar models are shown by a solid line (GR)
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the scalar-tensor theories cannot be excluded by the
present electromagnetic observations.

III. PERTURBATION EQUATIONS IN THE
COWLING APPROXIMATION

In this section we present the perturbation equations
for nonradial oscillations of spherically symmetric neu-
084026
tron stars in scalar-tensor theory.We derive the equations,
describe the numerical method for getting the spectra,
and finally we present results for a few characteristic
values of the scalar field 	. The presentation in this
section is quite extended; we have chosen to show all
the details of the calculation since this is the first article
dealing with the stellar perturbations in scalar-tensor
-5



FIG. 2. Stellar models with 	 � �8 are shown. The left column corresponds to models for
the EOS A and the right to models for EOS II. In the upper panels the ADM mass MADM and
the value of the scalar field in the center of the star ’c are plotted as functions of the central
density. The effect of the scalar field is apparent for  c � 3� 1014 gr=cm3. The lower panel is
a mass-radius diagram where the dramatic effect of the scalar field can be observed. In every
panel, the general relativistic stellar models are shown by a solid line (GR)
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theory and there is a wealth of new functions and nota-
tions. We will also keep arbitrary the functional form of
the scalar function ��’� which will be fixed only later
during the numerical calculations. In this first investiga-
tion we will not consider the full problem but instead will
restrict it to the so called ‘‘Cowling approximation.’’ This
means that the fluid is perturbed on a fixed background. In
084026
this way we freeze the spacetime and scalar field pertur-
bations, i.e., �~g�� � 0 and �’ � 0. The Cowling ap-
proximation limits our study to the modes which are
directly related to the fluid perturbations, i.e, the f, p
and g-modes, while we cannot study the emission of
gravitational and scalar waves, neither the families of
the spacetime [39] and scalar modes.
-6
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The fluid perturbations will be described by the
Lagrangian displacement vector

~/ i � �~/r; ~/�; ~/��

�

�
e��W;�V

@
@�

;�
1

sin2�
V
@
@�

�
1

r2
Ylm; (38)

where W and V are functions with of t and r. The
unperturbed 4-velocity ~U�B�� is

~U �B�� �

�
1

A�’�e�
; 0; 0; 0

�
; (39)

hereafter, an index ‘‘�B�’’ will denote the unperturbed
quantities. The perturbed 4-velocity � ~U� has the form

� ~U� �

�
0; e�� @W

@t
;�

@V
@t

@
@�

;�
1

sin2�

@V
@t

@
@�

�
�

1

A�’�r2
e��Ylm: (40)

The perturbed energy-momentum tensor � ~T�� in the
Cowling approximation gets the form

� ~T�� � ��~ � � ~P�~g�B��	
~U�B�	 ~U�B�� � �~ �B�

� ~P�B��~g�B��	�
~U�B�	� ~U� � � ~U	 ~U�B��� � � ~P���:

(41)

The Lagrangian variation of the baryon number density
(~n is

(~n
~n

� �~r�3�
k

~/k �
�~g

2~g�B�
; (42)

where ~r�3�
k denotes the covariant derivative in a 3-

dimensional with metric ~g�� and ( the Lagrangian
variation. In this equation, the first term of the right
hand side expresses the 3-dimensional divergence of the
fluid, and the second term is the amount of the volume
change due to the metric perturbation, but because we use
the Cowling approximation we neglect this second term.
By employing the above perturbation variables, Eq. (42)
for the Lagrangian variation of the baryon number den-
sity will be written as

(~n
~n

� �

�
1

r2
e�� @W

@r
�
l�l� 1�V

r2
� 3��e��W

r2

�
Ylm:

(43)

For adiabatic perturbations, using the first law of thermo-
084026
dynamics, we can get the following relation between the
change of the baryon number density and the pressure

(~ �
~ � ~P

~n
(~n: (44)

Therefore we can express the Eulerian density variation
�~ as,

�~ � �~ �B� � ~P�B��
(~n
~n

�
@~ �B�

@r
e��W

r2
Ylm: (45)

Here we have used the relation between the Lagrangian
perturbation ( and Eulerian perturbation �

(~ �t; r� � ~ �t; r� ~/r� � ~ �B��t; r� ’ �~ �
@~ �B�

@r
~/r:

(46)

From the definition of the adiabatic constant

� �

�
@ ln ~P
@ ln~n

�
s
�

~n(~P
~P(~n

; (47)

we can derive the form of the Eulerian variation of the
pressure

� ~P � � ~P�B� (~n
~n

�
@ ~P�B�

@r
e��W

r2
Ylm: (48)

Finally, the combination of Eqs. (44) and (47), provides
the standard form of the adiabatic constant

� �
~ � ~P

~P

�
@ ~P
@~ 

�
s
: (49)

By taking a variation of the equation for the conser-
vation of energy-momentum ~r�

~T�� � 0, we can get the
equation describing the perturbations of the fluid in the
Cowling approximation:

� ~T��;� � #����� ~T�� � #����� ~T�� � �’;�� ~T���

4�’;�� ~T�� � 0: (50)

The analytic form of the above equation for the values of
the index � � 1; 2 is
-7
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~r�� ~T�1 � 0

, �~ � ~P�
1

r2
e��2� @

2W

@t2
�

@
@r

�
� ~P

�
1

r2
e�� @W

@r
�
l�l� 1�V

r2
� 3��e��W

r2


�
�

@
@r

�
e�� d ~P

dr
W

r2

�
�

d ~P
dr

�
1

r2
e�� @W

@r
�
l�l� 1�V

r2
� 3��e��W

r2

�
�

�
d�
dr

� ��
�
e�� d~ 

dr
W

r2
�
d ~P
dr

d ~P
d~ 

�
1

r2
e�� @W

@r
�

l�l� 1�V

r2
� 3��e��W

r2

�
�

�
d�
dr

� ��
�
e�� d ~P

dr
W

r2
� 0: (51)

~r �� ~T�2 � 0 , �~ � ~P�e�2� @
2V

@t2
� � ~P

�
1

r2
e�� @W

@r
�
l�l� 1�V

r2
� 3��e��W

r2

�
� e�� d ~P

dr
W

r2
� 0: (52)

By assuming a harmonic dependence on time, the perturbation functions will be written as W�t; r� � W�r�ei!t and
V � V�t; r� � V�r�ei!t, and the above system of equations gets the form

!2�~ � ~P�e��2�W

r2
�

d
dr

�
� ~P

�
1

r2
e�� dW

dr
�
l�l� 1�V

r2
� 3��e��W

r2


�
�

d
dr

�
e�� d ~P

dr
W

r2

�
�

d ~P
dr

�
1

r2
e�� dW

dr
�
l�l� 1�V

r2
� 3��e��W

r2

�
�

�
d�
dr

� ��
�
e�� d~ 

dr
W

r2
�
d ~P
dr

d ~P
d~ 

�
1

r2
e�� dW

dr
�

l�l� 1�V

r2
� 3��e��W

r2

�
�

�
d�
dr

� ��
�
e�� d ~P

dr
W

r2
� 0; (53)

�!2e�2��~ � ~P�V �
� ~P

r2

�
e�� dW

dr
� l�l� 1�V � 3��e��W

�
� e�� d ~P

dr
W

r2
� 0: (54)

A further simplification can be achieved for the first of the above equations by using an appropriate combination of the
form d(54)/dr�(53), this leads to the equation

�!2 d
dr

	e�2��~ � ~P�V
 �!2�~ � ~P�e��2�W

r2
�
d ~P
dr

�
1

r2
e�� @W

@r
�
l�l� 1�V

r2
� 3��e��W

r2

�
�

�
d�
dr

� ��
�
e�� d~ 

dr
W

r2
�
d ~P
dr

d ~P
d~ 

�
1

r2
e�� @W

@r
�
l�l� 1�V

r2
� 3��e��W

r2

�
�

�
d�
dr

� ��
�
e�� d ~P

dr
W

r2
� 0; (55)
which can be further simplified by proper substitutions of
d ~P=dr and dW=dr from Eqs. (17) and (54):

dV
dr

� 2
d�
dr

V � e�
W

r2
: (56)

Thus from Eqs. (54) and (56), we get the following simple
system of couple ODEs

dW
dr

�
d~ 

d ~P

�
!2r2e��2�V �

�
d�
dr

� ��
�
W
�

�l�l� 1�e�V � 3��W; (57)

dV
dr

� 2
d�
dr

V � e�
W

r2
; (58)

which, together with the appropriate boundary conditions
at the center and at the surface, constitute an eigenvalue
problem for the parameter ! (the eigenfrequency).

The above system of perturbation Eqs. (57) and (58)
near the stellar center gets the following simple form:
084026
dW
dr

� l�l� 1�V � 0; (59)

dV
dr

�
W

r2
� 0; (60)

with the following set of approximate normal solutions

W�r� � Brl�1 � � � � ; (61)

V�r� � �
B
l
rl � � � � ; (62)

where B is an arbitrary constant. The two approximate
solutions near the center, Eq. (61) and (62), suggest the
introduction of two new perturbation functions, W�r� �
�W�r�rl�1 and V�r� � �V�r�rl. After this change, the ap-

proximate solutions near the center become

�W�r� � �Wc �
1

2
�W2r

2 � � � � ; (63)
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FIG. 3. The normalized eigenvalues ! for the first few modes
(f, p1, p2, p3, and p4) are shown as functions the parameter 	
for the equations of state EOS A (solid line) and EOS II
(dashed line). The effect of the ‘‘spontaneous scalarization’’
is more pronounced for the higher modes. The asymptotic
values of the scalar field and of ADM mass are fixed to the
values ’0 � 0:0 and MADM � 1:4M�.
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�V�r� � �Vc �
1

2
�V2r2 � � � � ; (64)

where �Wc � B, �Vc � �B=l, and the coefficients �W2 and
�V2 of the second order terms are

�V2 �
1

2l� 3

�
3�c’2

�Wc � 2�l� 3��2
�Vc

�
~ 2

~P2

f!2e�2�c �Vc � ��2 � �c’2� �Wcg

�
; (65)

�W 2 � 4�2
�Vc � �l� 2� �V2: (66)

At the surface, the boundary condition is the vanishing
of the Lagrangian perturbation of the pressure (~P � 0.
The Lagrangian perturbation of the pressure is described
by (~P � � ~P(~n=~n, and thus making use of Eq. (47), we
get the following boundary condition at r � R

�~ � ~P�
�
!2e�2�V � e��

�
d�
dr

� ��
�
W

r2

�
� 0: (67)

For this new function the system of perturbation equa-
tions becomes

d �W
dr

�
d~ 

d ~P

�
!2e��2�r �V �

�
d�
dr

� ��
�
�W
�

�
l�l� 1�

r
e� �V �

�
l� 1

r
� 3��

�
�W; (68)

d �V
dr

�

�
2
d�
dr

�
l
r

�
�V � e�

�W
r
; (69)

with following boundary conditions at the center and the
surface

�W � �l �V �at r � 0�; (70)

!2e�2�r �V � e��

�
d�
dr

� ��
�
�W � 0 �at r � R�:

(71)

Equations (68), (69), (70), and (71) form a well posed
eigenvalue problem for the real eigenfrequency!2. Using
shooting method we can get in a quite simple way the
eigenvalues, i.e., the characteristic frequencies of the
oscillations. It should be noticed that the above system
of perturbation equations and boundary conditions has
been derived for an arbitrary form of the scalar function
��’�; later in the numerical calculations we will fix its
functional form to the one of equation ��’�.

A. The Oscillation Spectra

The spectrum of an oscillating neutron star is directly
related to its parameters, mass, radius, and EOS [28]. As
we have seen in Sec. II, the presence of the scalar field on
the background star is influencing both the mass and the
084026
radius, while in the way that it enters in the equilibrium
equations it has a role of an extra pressure term, i.e., it
seems to alter the actual EOS. As before, we will restrict
our study only two equations of state, i.e., EOS A and
EOS II, and we will use models from those described in
Sec. IIA.

First, we will examine the effect of the scalar factor 	
on the frequency and especially whether the ‘‘spontane-
ous scalarization’’ can be traced in the spectrum. A
discontinuous change in a system, as one varies its pa-
rameters, signals a catastrophic behavior and the so called
‘‘spontaneous scalarization’’[10] is related to it. Harada
[15] showed that in the scalar-tensor theory the value
	 � �4:35 is the critical one for the ‘‘spontaneous sca-
larization’’. DeDeo and Psaltis [25] verified that the ef-
fects of the scalar field on the line redshifts of neutron
stars become pronounced for values 	 & �4:35.We show
here that the spontaneous scalarization is also present in
the oscillation spectra of neutron stars. In order to study
this effect, we fixed the asymptotic value of the scalar
field to ’0 � 0:0 and we constructed a sequence of stellar
models with M � 1:4M� by varying 	. In Fig. 3, the
effect of varying 	 on the frequencies of the fluid be-
comes immediately apparent. For values 	 & �4:35 the
frequency gets a sharp change and increases linearly with
decreasing 	 signaling the ‘‘spontaneous scalarization.’’
The effect becomes more pronounced for the higher
p-modes as @!=@��	� increases with the order of the
mode showing the dramatic impact of the ‘‘spontaneous
-9



FIG. 4. The frequency of the f-mode as function of the
averaged density �MADM=R

3�1=2 of the star (notice that ff �
!f=2�). The thick solid line corresponds to the values of the
mode for 	 � 0:0 (GR) while we also show the effect of the
scalar field for three values of the scalar parameter 	 ( �
8:0;�7:0, and �6:0). Here we have assumed that ’0 � 0:0. The
left panel corresponds to EOS A and the right panel to EOS II.
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scalarization’’ on the spectrum. By studying the first 30
modes for each equation of state we have actually found
that

@!n

@��	�
�
n
4

for 	 & �4:35; (72)

where !n is the frequency of the nth mode. This relation
seems to be independent of the equation of state and
suggests that a possible tracing (via electromagnetic or
gravitational observations) of the higher p-modes will
signal the existence of a scalar field even for small devia-
tions from general relativity.

The idea of a gravitational wave asteroseismology
[28,29] was based on empirical relations that can be
drawn for the relation of the stellar parameters to the
eigenfrequencies of an oscillating neutron star. These
empirical relations were derived by taking into account
data for a dozen or more EOS, and it was shown that
through these relations, one can extract the stellar pa-
rameters by analyzing the gravitational wave signal of an
oscillating neutron star. The easiest relation to be under-
stood on intuitive physical grounds is the one between the
fundamental oscillation mode, the f-mode, and the aver-
age density. This relation emerges naturally by combining
the time that a perturbation needs to propagate across the
star and the sound speed; this boils down to a linear
relation between the period of oscillation and the average
density or the star or better !2 �M=R3. This was the
reason that we have normalized the frequencies in Fig. 3
with the average density. According to [28], the empirical
relation between the f-mode frequency and the average
density of typical neutron stars is

ff-mode�kHz� � 0:78� 1:63
�

M
1:4M�

�
1=2
�

R
10km

�
�3=2

:

(73)

Almost all EOS follow this empirical relation (includ-
ing the two EOS used in this article). This observation
suggests a unique way in estimating the average density
of a star via its f-mode frequency, and it can be a very
good observational test for the neutron stars in scalar-
tensor theories. In Fig. 4, we draw the frequency as
function of the averaged density. The actual relations of
the frequency of the f-mode as functions of the average
density for general relativistic neutron stars are shown as
thick solid lines in both panels of Fig. 4. Both solid lines
correspond to normal neutron stars with 	 � 0 and fol-
low the empirical relation (73) with quite small error. The
introduction of a scalar field even in moderate central
densities alters completely the behavior of the f-mode for
both EOS. The frequencies grow considerably faster as
functions of the average density, for 	 & �4:35, and the
three examples that we have chosen (	 � �6:0;�7:0 and
�8:0) show exactly this behavior. The change is quite
dramatic even for typical neutron stars with average
084026
density. Depending on the value of the parameter 	,
they become 30-50% larger than those of a general rela-
tivistic neutron star. This can be an observable effect,
since the detection of frequencies which are higher than
-10



FIG. 5. The normalized frequencies of the first four fluid modes f (upper-left panel), p1

(upper-right panel, p2 (lower-left panel), and p3 (lower right panel) are plotted as functions of
the ADM mass. The results of the two EOS are shown for three values of the scalar parameter
	 (0, �6 and �8). The asymptotic value of the scalar field is ’0 � 0.
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those expected from a typical neutron star would signal
in a unique way the presence of a scalar field.

A careful study of Fig. 4 suggests that the observed
higher frequencies predicted by scalar-tensor gravity
might be attributed to a denser neutron star. This possi-
bility cannot be ruled out if only one mode is observed,
but as one can easily find out from Figs. 3 and 5, the effect
of the scalar field on the higher fluid modes, e.g., p1, p2,
etc., are more dramatic, and a synchronous observation of
a few modes will not only probe the presence of a scalar
field but it might provide a direct estimation of its
strength. Concluding the discussion related to Fig. 4, we
should admit that there is no apparent explanation why
the f-mode frequencies after reaching a maximum either
TABLE I. The stellar parameters for models with maximum
ADM mass (EOS A).

	 ’0 MADM=M� ~ c (g/cm3) R (km) ’c MADM=R z

0.00 — 1.655 3:742� 1015 8.56 — 0.285 0.527
�6:00 0.00 2.054 3:048� 1015 11.64 0.2676 0.261 0.445
�6:00 0.03 2.462 3:199� 1015 13.67 0.3269 0.266 0.462
�8:00 0.00 3.010 3:294� 1015 16.49 0.3338 0.2695 0.473
�8:00 0.03 3.792 3:317� 1015 20.61 0.3755 0.2717 0.480

084026
do not increase as the density increases (	 � �6) or even
move towards lower frequencies (	 � �7:0 and �8:0).

In the two preceding Figs. 3 and 4, we have shown the
effect of the varying scalar factor 	 on the frequency of
the modes. In Fig. 3, the ADM mass and the asymptotic
value of ’0 were fixed, while in Fig. 4, we have studied
only one mode (the f-mode) for fixed ’0. The next figures
show the effect of the scalar field on the frequencies of the
f, p1, p2, and p3 modes for varying ADM mass or/and
the asymptotic value of ’0. In Fig. 5, we plot the value of
the normalized frequency of the mode as function of the
ADM mass. One can easily observe that the differences
due to the presence of the scalar field are really impres-
sive. The models have been chosen to span a range of
TABLE II. The stellar parameters for models with maximum
ADM mass (EOS II).

	 ’0 MADM=M� ~ c (g/cm3) R (km) ’c MADM=R z

0.00 — 1.946 2:543� 1015 10.90 — 0.264 0.454
�6:00 0.00 2.423 2:282� 1015 14.00 0.2724 0.256 0.430
�6:00 0.03 2.896 2:423� 1015 16.32 0.3307 0.262 0.450
�8:00 0.00 3.529 2:523� 1015 19.54 0.3366 0.267 0.464
�8:00 0.03 4.442 2:543� 1015 24.42 0.3792 0.269 0.470
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FIG. 7. The dependence of eigenfrequencies on the value of
’0, where it is fixed 	 � �6 for EOS A. The range of ADM
mass is from 1:0M� to maximum ADM mass for each ’0. The
open circles, squares, and triangles represent the f, p1 and p2

modes, respectively.

FIG. 6. The frequency of the f-mode as function of the
averaged density �MADM=R

3�1=2 of the star (notice that ff �
!f=2�). The thick solid line corresponds to the values of the
mode for 	 � 0:0 (GR); the thinner continuous and dashed
lines show the effect of the asymptotic value of the scalar field
’0 for a fixed value of the scalar parameter 	 � �6:0. The left
panel corresponds to EOS A and the right panel to EOS II.
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masses from 1M� up to the maximum allowed mass from
each theory. The normalized frequencies in these dia-
grams show that the imprint of the scalar field is not
only apparent, but it can influence the spectrum in a
084026
dramatic way. For example, for all four oscillation modes
(f, p1, p2, and p3) the normalized frequency of the
maximum mass model in GR is half of the corresponding
frequency to an equal mass model with 	 � �8 or about
40% smaller for 	 � �7. A very interesting observation
is that in contrast to the redshift of the atomic lines[25]
which for the maximum mass models is typically smaller
than 10% (see Tables I and II) the difference in the
frequencies between the models with	 � 0(GR) and	 �
�8 is larger than 50%. This figure suggests that a possible
observation of more than one mode can clearly signal the
existence of the scalar field.

In all previous discussion about the effect of the scalar
field on the eigenmode frequencies of the star we have
shown results for stellar models for which the asymptotic
value of the scalar field was assumed zero. It is still an
important question whether the asymptotic value of
’ can be traced via the neutron star asteroseismology.
The results of a varying ’0 are shown in Figs. 6 and 7.
Figure 6 is similar to Fig. 4 but here we have fixed the
scalar factor to 	 � �6 and we vary ’0. In Fig. 7, we
show the dependence of f, p1, and p2 modes for varying
’0 for the EOS A; the results for EOS II are similar. The
last two figures show that the imprint of an asymptoti-
cally nonvanishing scalar field can be observed, while it
becomes more pronounced for the higher modes. Varying
’0 from 0 to 0.03, we observe frequency variations larger
than 10-20%; variations of this order can provide addi-
tional constraints on the asymptotic value of the scalar
field.
-12
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IV. CONCLUSIONS

In this paper we have discussed the effect of the scalar-
tensor theories on the oscillation spectra of neutron stars.
Scalar-tensor theories of gravity are generalizations of
general relativity and provide a natural connection to
superstring theories [8,40], as well as to inflation [41].
The presence of a scalar field in the strong-field regime
has already been constrained by weak-field experiments
and here we provide an additional way of testing/con-
straining their existence via the gravitational wave
asteroseismology.

We show that the oscillation frequencies of neutron
stars carry very ‘‘clean’’ imprints of the presence of the
scalar field. An observation of the neutron star oscillation
spectrum via gravitational waves or via electromagnetic
signals emanating from or around the surface of a neutron
star will not only probe the existence of the scalar field,
but might also provide a measurement of its asymptotic
value.

In this study we have used the Cowling approximation
which, although a restricted way of studying stellar os-
cillation, has proven to be a very accurate and useful tool
in asteroseismology. Still, more detailed study is needed
084026
for proper modeling of the effect. The inclusion of metric
and scalar field perturbations will result to additional
information in the gravitational wave spectrum. The
combination of this extra information should provide
more accurate constraints on the existence of the scalar
field.
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