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We show that previously known non-asymptotically flat static black hole solutions of Einstein-
Maxwell-dilaton theory may be obtained as near-horizon limits of asymptotically flat black holes.
Specializing to the case of the dilaton coupling constant �2 � 3, we generate from the non-
asymptotically flat magnetostatic or electrostatic black holes two classes of rotating dyonic black
hole solutions. The rotating dyonic black holes of the magnetic class are dimensional reductions of the
five-dimensional Myers-Perry black holes relative to one of the azimuthal angles, while those of the
electric class are twisted dimensional reductions of rotating dyonic Rasheed black strings. We compute
the quasilocal mass and angular momentum of our rotating dyonic black holes and show that they
satisfy the first law of black hole thermodynamics, as well as a generalized Smarr formula. We also
discuss the construction of non-asymptotically flat multi-extreme black hole configurations.
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I. INTRODUCTION

The investigation of black hole properties in general
relativity has long been restricted to the case of asymp-
totically flat or asymptotically (anti-)de Sitter ((A)dS)
black holes. To our knowledge, non-asymptotically
flat, non-AdS black holes in four (and higher) dimen-
sions were first found in [1] as spherically symmetric
solutions to Einstein-Maxwell-dilaton theory. The prop-
erties of such non-asymptotically flat solutions to
Einstein-Maxwell-dilaton-axion theory in four dimen-
sions were extensively studied in [2]. Similar non-
asymptotically flat topological black holes in four
dimensions were found in [3] and extended to higher
dimensions in [4]. The aim of the present work is first,
to reinvestigate four-dimensional non-asymptotically
flat, spherically symmetric dilaton black holes for general
dilatonic coupling and second, to analyze in more de-
tail the special case with dilaton coupling constant
�2 � 3.

A motivation to investigate non-asymptotically flat,
non-AdS black holes is that these might lead to possible
extensions of anti-de Sitter/conformal field theory (AdS/
CFT) correspondence. Indeed, it has been speculated that
the linear dilaton spacetimes, which arise as near-horizon
limits of dilatonic black holes, might exhibit holography
[5]. Another motivation is that such solutions may be used
to extend the range of validity of methods and tools
originally developed for, and tested in the case of, asymp-
totically flat or asymptotically AdS black holes.
Specifically, we shall show that the quasilocal energy
approach [6–9] may be applied successfully to the com-
putation of the mass and angular momentum of non-
asymptotically flat rotating black holes. We shall also
show that such black holes follow the first law of black
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hole thermodynamics, originally formulated in the case
of asymptotically flat black holes [10].

In the next section we recover the non-asymptotically
flat (NAF) static black hole solutions of Einstein-
Maxwell-dilaton (EMD) theory as near-horizon, near-
extreme limits of asymptotically flat black holes, and we
discuss briefly their properties. Section III is devoted to
multicenter solutions of EMD; these are found to fall in
two classes, one of which includes both asymptotically
flat and NAF multi-extreme black holes. The computation
of the quasilocal mass of the NAF static black holes is
recalled in Sec. IV.

The case with dilaton coupling constant �2 � 1 has
been considered in more detail in [2], where the NAF
static black holes have been extended to rotating black
hole solutions of Einstein-Maxwell-dilaton-axion grav-
ity. Here we shall consider the case �2 � 3, which is a
dimensional reduction of five-dimensional Kaluza-Klein
theory. Unlike the case of four-dimensional general rela-
tivity, the five-dimensional vacuum Einstein equations
admit solutions with event horizons of various topologies
[11]: the static Gibbons-Wiltshire black string (topology
S2 � R) family [12], extended to rotating black strings by
Rasheed [13]; the static Tangherlini black hole (topology
S3) [14], extended to rotating black holes by Myers and
Perry [15]; and the Emparan-Reall rotating black rings
(topology S2 � S1) [16]. These are all asymptotically flat
in five-dimensions. The NAF (�2 � 3) EMD static black
holes and their rotating and dyonic generalizations will
turn out to correspond to special dimensional reductions
of these asymptotically flat five-dimensional black holes.

In Sec. V, we use the group SL�3; R� of invariance
transformations of the stationary sector of (�2 � 3)
EMD to generate NAF rotating magnetic black holes.
We find that these are a dimensional reduction of a sub-
class of Myers-Perry black holes. Conversely, we find in
Sec. VI that the dimensional reduction of the generic
Myers-Perry black hole depending on three parameters
18-1  2004 The American Physical Society
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(mass and two angular momenta) leads to a wider class of
NAF rotating dyonic black holes. In the extreme case,
these may be further generalized to regular multicenter
configurations. We then compute the quasilocal mass and
angular momentum of our rotating dyonic black holes,
and check the validity of the generalized first law of
thermodynamics [13]. Finally, we use in Sec. VII electro-
magnetic duality to generate from this ‘‘magnetic’’ fam-
ily a dual ‘‘electric’’ sector of NAF rotating dyonic black
holes, which are found to correspond to a twisted dimen-
sional reduction of Rasheed rotating dyonic black strings
with a Newman-Tamburino-Unti (NUT) charge balanc-
ing the magnetic charge. We conclude in Sec. VIII.
II. STATIC NAF DILATON BLACK HOLES

Consider EMD theory, defined by the action

S �
1

16�

Z
d4x

������
jgj

q
fR� 2@��@��� e�2��F��F��g;

(2.1)

where F � dA, and � is the dilaton coupling constant.
Special values of� are� � 0, corresponding to Einstein-
Maxwell theory � � 1, which is a truncation of the
bosonic sector of D � 4;N � 4 supergravity, and � ����
3

p
, which corresponds to a dimensional reduction of five-

dimensional Einstein gravity with a spacelike Killing
vector (Kaluza-Klein theory). The static, spherically
symmetric, asymptotically flat black hole solutions of
EMD were found in [17] and rediscovered in [18]. They
exist in two versions, electrostatic or magnetostatic, re-
lated to each other by the electromagnetic duality trans-
formation

��;F� ! ��̂ � ��; F̂ � �e�2�� ~F�; (2.2)

with1 ~F�� � 1
2E

����F��. The electric black hole solu-
tions are

ds2 � �
�r� r����r� r��

r1��
dt2 �

r1��

�r� r����r� r��

�
dr2 � �r� r���r� r��d�
2�; (2.3)

F �
Qe2��1

r2
dr ^ dt; e2�����1� � �1�

r�
r
�1��;

with

� �
1� �2

1� �2
: (2.4)

The black hole parameters r� (the location of the event
horizon) and r� (for � � 0, the spacelike singularity, 0<
r� < r�) are related to the physical parameters M (mass)
1Here E���� � jgj�1=2"����, with "1234 � �1, where x4 � t
is the time coordinate.
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and Q (electric charge) by

M �
r� � �r�

2
; Q � e���1

�������������
1� �
2

s �����������
r�r�

p
:

(2.5)

The solutions (2.3) have been proved to be the only
electrostatic, asymptotically flat regular black hole solu-
tions for � � 1 [19] and, more recently, for arbitrary �
[20]. However, this proof leaves open the possibility, for
� � 0, of NAF electrostatic black holes, generalizing the
� � 1 linear dilaton black holes [2,21]. These have pre-
viously been found by a direct solution of the field equa-
tions of EMD [1] (see also [22,23]). Here we shall recover
these non-asymptotically flat black holes by taking the
near-extreme, near-horizon limit of the asymptotically
flat solutions (2.3). Define three new black hole parame-
ters r0, b and � by

r� � ���
2
r0; r� � ���

2
r0 � �b;

�1 � ��1 ln�� � ln�;
(2.6)

where the dimensionless parameter � shall eventually be
taken to zero, and transform the �t; r� coordinates to

t � ��1 �t; r � ���
2
r0 � ��r: (2.7)

Finally take the limit �! 0 and relabel �t! t, �r! r,
which yields

ds2 � �
r��r� b�

r1��0

dt2 �
r1��0

r��r� b�

dr2 � r�r� b�d�2�;

(2.8)

F �

�������������
1� �
2

s
�
r0
dr ^ dt; e2�� � �2

�
r
r0

�
1��

: (2.9)

The magnetic dual version also exists, with the same
metric supported by the magnetic and dilaton fields

F �

�������������
1� �
2

s
r0
�
sin�d� ^ d’; e2�� � ��2

�
r
r0

�
��1

:

(2.10)

These NAF solutions of EMD depend on three parame-
ters, � which accounts for the invariance under dilaton
rescalings �! � � constant, r0 > 0 which sets the
overall scale and is related to the electric charge Q
according to

Q �
1

4�

Z
e�2��F0r

������
jgj

q
d� �

�������������
1� �
2

s
r0
�
; (2.11)

and the horizon radius b, which we expect to be propor-
tional to the black hole mass M, the exact computation
(recalled in Sec. IV) giving [1]
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FIG. 2. Penrose diagrams of (2.8) for � � 1 with b < 0, b �
0, and b > 0.
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M �
�1� ��b

4
: (2.12)

For �2 � 0 (� � 1), the family of solutions (2.8), (2.9),
and (2.10) depending on b correspond to different
parametrizations of the Bertotti-Robinson spacetime
AdS2 � S2 generated by a homogeneous electric or
magnetic field. Being related to the b � 0 solution
by global coordinate transformations, these solutions
are not black holes, and accordingly their mass vanishes.
For �2 ! 1 (� � �1), the dilaton and electromagnetic
fields decouple and the solutions (2.8) reduce to the
Schwarzschild black holes with the appropriate mass
M � b=2. Thus, this family of non-asymptotically flat
black hole solutions interpolate continuously between the
Bertotti-Robinson and Schwarzschild solutions.

The Penrose diagrams corresponding to the different
values of b (b < 0, b � 0 and b > 0) are shown in Fig. 1
for 0<�2 < 1 (0< �< 1), Fig. 2 for �2 � 1 (� � 0),
and Fig. 3 for �2 > 1 (� < 0). The Ricci scalar

R � �
1� �2

2

�r� b�r��2

r1��0

(2.13)

vanishes at spatial infinity r! 1 and on the horizon,
and is singular for r � 0. For �2 < 1, spatial infinity
is conformally timelike, as in the AdS case, leading
to a Penrose diagram for the black hole case b > 0
which is similar to that of the three-dimensional
Bañados-Teitelboim-Zanelli static black hole [24].
For �2 � 1, spatial infinity is conformally null, with
a Schwarzschild-like Penrose diagram in the black hole
case. The extreme black holes (b � 0) are all singular, the
singularity being null for�2 � 1 and timelike for �2 > 1.
III. EXTREME CASE: MULTICENTER
SOLUTIONS

As in the special case b � 0 of the linear dilaton [2],
the extreme b � 0 solutions have a conformally flat spa-
tial metric, which suggests that they can be linearly
superposed to yield multicenter solutions. To show this,
let us follow the reduction of the electrostatic sector of
EMD to a three-dimensional self-gravitating ! model
carried out in [25]. The dimensional reduction, achieved
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FIG. 1. Penrose diagrams of (2.8) for 0<�< 1 with b < 0,
b � 0, and b > 0.
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by

ds2 � �fdt2 � f�1�ijdx
idxj; Fi0 �

1���
2

p @iv; (3.1)

reduces the original four-dimensional EMD equations to
a three-dimensional problem deriving from the gravity
coupled ! model action

S3 �
Z
d3x

����
�

p
fR� �GAB�X�@iX

A@jX
B�ijg; (3.2)

where R� is the Ricci scalar constructed from the three-
dimensional metric �ij, and GAB�X� is the target space
metric

dS2 � GABdX
AdXB �

df2

2f2
�
1

f
e�2��dv2 � 2d�2:

(3.3)

In the case where the potentials f, v and � depend on a
single scalar potential !, this potential can always
[26,27] be chosen to be harmonic (r2�! � 0). The point
(f, v, �) then follows a geodesic in target space, null
geodesics leading to a Ricci-flat, hence flat, reduced
three-space of metric �ij [28–30]. The geodesics for the
metric (3.3) are obtained by solving the system

f �f� _f2 � fe�2�� _v2; (3.4)

�f�1e�2�� _v�_� 0; (3.5)

2f �� � �e�2�� _v2: (3.6)

It is straightforward to show that, for the choice �ij �
*ij, there are two kinds of null geodesics.
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Null geodesics of the first, generic kind lead (up to a
linear transformation on !) to the two-parameter (c; k)
family of singular solutions

f �

�
ck�

2
e�!

sin!

�
1��

; (3.7)

v � c
�������������
1� �

p
cot!; (3.8)

e 2�� �

�
c

k sin!

�
1��
e��1����!: (3.9)

For � � 1, these correspond to the electrostatic sector
(- � u � / � 0) of the type two (nondegenerate) solu-
tions found in [30] [for instance, the solution (6.17) of
[30] corresponds to c � 1=

���
2

p
; k � e�3�=4]. For � �

���
3

p
,

the lift to five dimensions according to the Kaluza-Klein
ansatz recalled in Sec. V leads to the metric

ds25 � ke!=
��
3

p


�c sin!dt2 � 2 cos!dtdx5

�c�1 sin!�dx5�2� � k�2e�2!=
��
3

p

dx2; (3.10)

which belongs to the electrostatic sector of the class (a) of
solutions found in [28] [Eq. (25)]. Let us recall that the
corresponding multicenter five-dimensional metric gen-
erated by the linear superposition

! � !1 ��i�ci=ri�; (3.11)

is geodesically complete if all the ci are negative. Finally,
for � � 0, the dilaton field does not decouple, so that the
multicenter configurations (3.7) lead to the family of
singular solutions of Einstein-Maxwell-massless scalar
field theory:

f �
c2

sin2!
; v � c

���
2

p
cot!; � � �!: (3.12)

Null geodesics of the second, special kind lead (again
up to a linear transformation on !) to the one-parameter
family of solutions

ds2 � �!�1��dt2 � !1��dx2; (3.13)

A � �

�������������
1� �
2

s
!�1dt; e2�� � �2!��1; (3.14)

where the harmonic function ! may for instance be
chosen in the multicenter form (3.11). As discussed in
[31], for !1 � 0 these are Bogomolnyi-Prasad-
Sommerfield (supersymmetric) asymptotically flat solu-
tions generalizing the extreme (r� � r�) asymptotically
flat black holes (2.3), while for !1 � 0 these multicenter
solutions, which generalize (2.8) and (2.9) for b � 0, are
NAF. While the proof of supersymmetry given in [31]
invokes asymptotic flatness, we conjecture that (as in the
special case � � 1 [2,32]), these last NAF multicenter
solutions are supersymmetric for all �. By electromag-
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netic duality one may derive from these electrostatic
solutions the corresponding multicenter magnetostatic
solutions.
IV. QUASILOCAL MASS

The mass of the static NAF self-gravitating configura-
tions (2.8) and (2.9) was previously computed in [1]. For
the sake of completeness, and to pave the way for a
similar computation of the mass and spin of rotating
NAF solutions in the next two sections, we outline this
computation here. It employs the quasilocal energy ap-
proach developed among others by Brown and York [6]
and put on a firm canonical basis by Hawking and
Horowitz [7] (see also [8,9] and references therein).
Consider a spacetime region M bounded by initial and
final spacelike surfaces �t1 and �t2 , and a timelike sur-
face �r (not necessarily at spatial infinity), which we
assume to be orthogonal to the �t. In the canonical 1�
3 Arnowitt-Deser-Misner decomposition [33], the metric
and electromagnetic potential on M are written as

ds2 � �N2dt2 � hij�dxi � Nidt��dxj � Njdt�;

A � A0dt� Aidxi;
(4.1)

where hij is the induced metric on �t. The three-surfaces
�t and �r intersect on a two-surface Srt , with induced
metric !�� � h�� � n�n�, where ni is the unit normal to
�r. In the present case Srt is a two-sphere of radius r, with

!abdxadxb � r1��0 r1��d�2; nr � N �

��������������������
r��r� b�

r1��0

vuut :

(4.2)

The action (2.1) in the region M, supplemented by bound-
ary terms necessary to correctly account for Dirichlet
boundary conditions on @M, can be rearranged after
integration by parts as

S �
Z
dt
�Z

�t

�pij _hij � pi _Ai � p _�� NH � NiH i

� A0H A� �
I
Srt

�N�� 2Ni�ijnj � A0�r�



;

(4.3)

where pij, pi, and p are the canonical momenta conjugate
to hij, Ai, and �, and H , H i, and H A are the
Hamiltonian momentum and Coulomb constraints con-
jugate to the nondynamical variables N, Ni and A0. These
constraints vanish on shell, the Hamiltonian then reduc-
ing to the surface term

H �
I
Srt

�N�� 2Ni�ijn
j � A0�

r�; (4.4)

where
-4
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� �
1

8�
k

�������
j!j

p
; (4.5)

k being the trace of the extrinsic curvature of Srt in �t,

k � �!��D�n� (4.6)

(with D� the covariant derivative on �t), the reduced

momenta �ij � �
�������
j!j

p
=

������
jhj

p
�pij are related to the extrin-

sic curvature of �t,

Kij � �
1

2N

 _hij � 2D�iNj��; (4.7)

by

�ij �
1

16�

�������
j!j

p
�Khij � Kij�; (4.8)

and

�r �
1

4�
N

������
jhj

p
e�2��Frt: (4.9)

The value of the Hamiltonian (4.4) generically di-
verges when the radius r of the two-sphere Srt is taken
to infinity. The quasilocal energy or mass is the difference
between the value of this Hamiltonian and that for a
suitable reference background or ‘‘vacuum’’ evaluated
with the same boundary data for the fields j!j, N, and
A0. Here, the area 4�j!j of a sphere of given radius r
depends only on the charge parameter r0, hence the
natural choice for the vacuum in a given charge sector
(r0 fixed) is the extreme black hole solution with b � 0.
As the electric potential and dilaton field also depend
only on r0 (or vanish in the magnetic case), it follows that
the electric contribution to the energy cancels between the
black hole and background, leaving only the gravitostatic
contribution given by the first term of (4.4) minus the
corresponding background contribution. The computation
of the extrinsic curvature of Srt gives

k � ��1� ��

�������������������
r� b

r1��0 r2��

s
; (4.10)

leading, after substraction, to the value for the mass

M �
�1� ��b

4
: (4.11)

quoted in Sec. II.
Now we check agreement with the first law of black

hole thermodynamics

dM � TdS� VhdQ: (4.12)

The Hawking temperature T is given by the surface
gravity divided by 2�,

T �
1

2�
ni@iNjh � b�=4�r1��0 ; (4.13)

while the black hole entropy is given by a quarter of the
084018
horizon area

S � Ah=4 � �r1��0 b1��: (4.14)

A straightforward computation gives

dM� TdS �
1� �
4

b
dr0
r0
: (4.15)

In the magnetostatic case, the electric charge Q is
identically zero, so that the first law holds provided the
scale parameter r0 is held fixed during the variation. This
makes sense because we have defined the mass of a given
black hole as the difference between its energy and the
energy of the extreme black hole with the same value of
r0.

In the electrostatic case, the electric charge being pro-
portional to r0=�, the first law again holds if the metric
scale r0 and dilaton scale � are both held fixed. There is,
however, another intriguing possibility. The electric po-
tential associated with (2.9),

V � �A0 � ��

�������������
1� �
2

s
�r� b�
r0

� C; (4.16)

is defined only up to an additive (gauge) constantC. In the
case of, say, the Reissner-Nordström solution, the poten-
tial goes to a constant at spatial infinity, and there is a
preferred gauge in which the potential vanishes at infinity
and the first law (4.12) is valid. In the present case, the
potential (4.16) diverges at spatial infinity, so that there is
a priori no preferred gauge. It is, however, possible (just
as in the case of charged black holes in 2� 1 gravity [34])
to choose the gauge C such that the first law holds when
both the parameters b and r0 are varied (with � held
fixed). Interestingly enough, with this choice

C �

�������������
1� �
2

s
b�
2r0

; (4.17)

both the static versions of the differential first law (4.12)
and of the Smarr formula

M � 2TS� VhQ; (4.18)

are satisfied. We suggest that a more careful thermody-
namical treatment of these NAF charged black holes
might explain the success of this apparently ad hoc
procedure.
V. CASE �2 � 3: ROTATING MAGNETIC BLACK
HOLES

Can these static non-asymptotically flat black holes be
extended to rotating black holes? Such an extension was
carried out in [2] for the special case �2 � 1, by taking
advantage of the fact that EMD can be embedded in
Einstein-Maxwell-dilaton-axion gravity whose station-
ary sector can be reduced to a three-dimensional self-
-5
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gravitating Sp�4; R�=U�2� ! model [35]. The strategy
used was, first, to find the Sp�4; R� group transformation
U generating the linear dilaton black hole from the
Schwarzschild solution, then to apply the same trans-
formation to the corresponding Kerr family of solutions
to generate a family of rotating linear dilaton black holes.

The symmetries of the target space of pure stationary
EMD with general�were studied in [25,36], where it was
shown that this target space has a symmetric Riemannian
space (or! model) structure only in the two cases�2 � 0
(Einstein-Maxwell theory with the target space
SU�2; 1�=S
U�1� � U�2�� and �2 � 3 (dimensionally re-
duced Kaluza-Klein theory with the target space
SL�3; R�=SO�3�). In the first case, the static solutions
(2.8) and (2.9) or (2.10) all correspond to Bertotti-
Robinson spacetime viewed by different uniformly accel-
erating observers. As shown in [37], the rotating solutions
generated from these by the !model procedure described
above again correspond to the same Bertotti-Robinson
spacetime viewed by uniformly rotating observers.
Conversely, this means that the Kerr solution can be
generated from the Schwarzschild solution by a combi-
nation of SU�2; 1� group transformations and uniform
frame rotations, which can more generally be used to
generate asymptotically dipole solutions of Einstein-
Maxwell theory from asymptotically monopole solutions
[38]. We shall focus here on the other case �2 � 3, cor-
responding to � � �1=2.

It is well known that EMD theory with �2 � 3 is a
dimensional reduction of five-dimensional sourceless
Kaluza-Klein theory, i.e., five-dimensional vacuum
Einstein gravity

S �
1

16�

Z
d5x

��������
jg5j

q
R5; (5.1)

together with the assumption of a spacelike Killing vec-
tor @=@x5. Indeed, making the standard Kaluza-Klein
ansatz

ds25 � e2�=
��
3

p

ds24 � e�4�=
��
3

p

�dx5 � 2A�dx��2; (5.2)

and integrating out the cyclic coordinate x5 reduces the
action (5.1) to the EMD action (2.1) with � �

���
3

p
. It

follows that the stationary solutions (i.e., solutions with
a timelike Killing vector @t) of �2 � 3 EMD are dimen-
sional reductions of solutions of 5D vacuum gravity with
two Killing vectors. As shown by Maison [39], this two-
stationary sector of Kaluza-Klein theory may be reduced
to a three-dimensional self-gravitating SL�3; R�=SO�3� !
model. The metric ansatz appropriate for this five-to-
three-dimensional reduction is

ds25 � �ab�dx
a � Aa

i dx
i��dxb � Ab

j dx
j� � ��1�ijdx

idxj;

(5.3)

where i � 1; :::; 3, a � 4; 5 (x4 � t), � � jdet���j, and the
various fields depend only on the coordinates xi. Using
084018
the five-dimensional Einstein equations, the magnetic-
like vector potentials Aa

i may be dualized to the scalar
twist potentials Va according to

Va;i � j�j�1=2��ab�il�jklAb
j;k: (5.4)

The remaining Einstein equations may then be written in
the three-dimensional self-gravitating !-model form

�-�1-;i�;i � 0; Rij �
1

4
Tr�-�1-;i-�1-;j�; (5.5)

where the 3-metric is �ij, and - is the unimodular sym-
metric 3� 3 matrix-valued field

- �
�ab � ��1VaVb ���1Va

���1Vb ���1

� �
: (5.6)

These equations are clearly invariant under SL�3; R�
transformations

-! UT-U; (5.7)

which therefore transform a stationary solution of (�2 �
3) EMD into another solution with the same reduced 3-
metric �ij.

We first consider the magnetic NAF black hole solution
(2.8) and (2.10) with � �

���
3

p
(where we have chosen

without loss of generality � � 1) which leads according
to (5.2) to the five-dimensional metric

ds25 � �
r� b
r

dt2 �
r
r0
�dx5 � r0 cos�d’�

2

�
r0

r� b

dr2 � r�r� b�d�2�: (5.8)

The resulting representative matrix

-m �

� r�b
r 0 0
0 � br

r0�r�b�
r

r�b

0 r
r�b � r0

r�b

0B@
1CA; (5.9)

is a target space geodesic [28]

- � >eA!; (5.10)

with the harmonic potential

! � �
r0
b
lnj
r� b
r

j; (5.11)

and the constant matrices > and A

>m �

�1 0 0
0 � b

r0
1

0 1 0

0@ 1A; Am �

� b
r0

0 0

0 b
r0

�1
0 0 0

0B@
1CA:

(5.12)

The metric (5.8) is regular on the axis sin� � 0 pro-
vided x5 is periodic with period 4�r0 [40]. Making the
coordinate transformation
-6
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r �
x2

4r0
; x5 � r0>; (5.13)

where > is an angle, the metric (5.8) can be rearranged to

ds25 � �

�
1�

�

x2

�
dt2 �

�
1�

�

x2

�
�1
dx2 � x2d�2

3;

(5.14)

where

d�2
3 �

1

4

d�2 � sin2�d’2 � �d>� cos�d’�2�; (5.15)

is the metric of the three-sphere. We recognize in (5.14)
the static, spherically symmetric (in the four spatial
dimensions) Tangherlini-Myers-Perry (TMP) five-
dimensional black hole [14,15] with mass parameter

� � 4r0b: (5.16)

So the static NAF magnetic black holes of (�2 � 3) EMD
are simply the dimensional reduction of the asymptoti-
cally flat TMP black holes relative to one of the azimuthal
angles. Correspondingly, the NAF extreme (b � 0) mag-
netic black holes of (�2 � 3) EMD are simply the dimen-
sional reduction of five-dimensional Minkowski
spacetime, their timelike singularity r � 0 arising from
the dimensional reduction of the (spurious if x5 is peri-
odic with period 4�r0) Dirac string singularity of (5.8).

The reduced 3-metric �ij of (5.8) coincides with that of
the four-dimensional Schwarzschild solution with mass
M � b=2. It follows that there is an SL�3; R� transforma-
tion USm which transforms the five-dimensional trivially
embedded Schwarzschild solution, i.e., the direct product
of the four-dimensional Schwarzschild solution with the
line (or the circle), with representative matrix

-S �
� r�b

r 0 0
0 1 0
0 0 � r

r�b

0B@
1CA; (5.17)

NON-ASYMPTOTICALLY FLAT, NON-AdS DILATON. . .
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into the TMP black hole, written in the form (5.8), with
representative -m:

-m � UmS-SUSm; USm �

1 0 0

0 0
����
r0
b

q
0 �

����
b
r0

q ����
r0
b

q
0BB@

1CCA;
(5.18)

(with UmS � UT
Sm).

As explained above, this transformation acting on the
trivially embedded Kerr solution will generate rotating
NAF magnetic black holes according to

-mK � UmS-KUSm: (5.19)

The trivially embedded Kerr solution with mass M0 �
b=2 and rotation parameter a0 is (in Boyer-Lindquist
coordinates)

ds25 � �

�
'0
�0

�
�dt�!0d’�

2

��0

�
dr2

(0
� d�2 �

(0sin
2�

'0
d’2

�
� �dx5�2; (5.20)

with

(0 � r2 � br� a20; �0 � r2 � a20cos
2�; (5.21)

'0 � (0 � a20sin
2�; !0 � �

a0brsin
2�

'0
: (5.22)

Acting on its representative matrix

-K �
1

'0

��r� b�2 � a20cos
2� 0 a0b cos�

0 '0 0
a0b cos� 0 ��0

0B@
1CA;

(5.23)

with the transformation (5.19), we obtain
-mK �
1

'0

��r� b�2 � a20cos
2� �a0b

����
b
r0

q
cos� a0

��������
br0

p
cos�

�a0b
����
b
r0

q
cos� � b

r0
�0 �0

a0
��������
br0

p
cos� �0 �r0r

0BBBBB@

1CCCCCA: (5.24)
The resulting five-dimensional metric is

ds25 � �

�
1�

b
r

�
 2 �

a0
��������
br0

p
cos�

r
2 A�

r0�0
r

A2

�
r0r
'0

�
'0
(0
dr2 � '0d�2 � (0sin

2�d’2
�
; (5.25)

with
 � dt�
a0

��������
br0

p
rsin2�

'0
d’; A � d>�

(0 cos�
'0

d’;

(5.26)

where as before we have put x5 � r0>. Not surprisingly,
this turns out to coincide with a subclass of rotating
Myers-Perry black holes [15]. The general rotating
Myers-Perry (MP) black hole in five-dimensions depends
on two angular momentum parameters a� and a� and is
-7
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given by

ds25 � �dt2 �
�

B2

dt� a�sin2 ��d’� � a�cos2 ��d’��

2

�B2d ��2 � �x2 � a2��sin
2 ��d’2�

��x2 � a2��cos
2 ��d’2� �

B2x2

)
dx2: (5.27)

with

B2 � x2 � a2�cos
2 ��� a2�sin2 ��;

) � �x2 � a2���x
2 � a2�� ��x2:

(5.28)

After transforming the spatial coordinates to

�� � �=2; ’� � �’� >�=2; x2 � 4r0r� �a2;

(5.29)

the metric (5.25) is found to go over into the MP metric
with two equal angular momentum parameters, the iden-
tification being

� � 4r0b; a� � a� � �a � �
4r0a0����
�

p : (5.30)

The Kaluza-Klein dimensional reduction of (5.25)
leads to the rotating NAF magnetic black hole solution

ds24 � �
'0�������������
r0r�0

p �
dt�

��������
br0

p
a0rsin

2�
'0

d’
�
2

�
�������������
r0r�0

q �
dr2

(0
� d�2 �

(0sin
2�

'0
d’2

�
; (5.31)

A � �
r2 � a20
�0

r0
2
cos�

�
d’�

a0
���
b

p

�����
r0

p
�r2 � a20�

dt
�
;

(5.32)

e 2�=
��
3

p

�

�������
r0r
�0

s
: (5.33)

Similarly to the Kerr spacetime, the rotating spacetime
(5.31) possesses two horizons at r � r�, with

r� �
1

2

�
b�

�������������������
b2 � 4a20

q �
; (5.34)

r � r� corresponding to the event horizon. However, to
the difference of the Kerr black hole, but similarly to the
case of rotating linear dilaton black holes (� � 1) [2], the
metric (5.31) [as well as the five-dimensional metric
(5.25)] is singular on the timelike line r � 0.
Accordingly, the Penrose diagrams along the symmetry
axis of these NAF rotating black holes are, for the three
cases b2 > 4a20, b

2 � 4a20, and b2 < 4a20, identical to those
of the Reissner-Nordström spacetime, with the charge
replaced by the angular momentum parameter a0.
According to (5.32), this metric supports a rotating
084018
monopole magnetic field with magnetic charge

P �
1

4�

Z
F�’d�d’ �

1

2
A’



��0

���
� �

r0
2
; (5.35)

as in the static case. The quasilocal computation of the
mass M and angular momentum J of these black holes,
discussed in the next section, gives

M �
3b
8
; J �

a0
2

��������
br0

p
: (5.36)

In the massless case M0 � b=2 � 0, we know that the
Kerr spacetime reduces to Minkowski spacetime.
Therefore the spatial part of the five-dimensional met-
ric (5.20) is a (spheroidal coordinate) parametrization of
flat three-space. This means that the solutions (5.31),
(5.32), and (5.33) with b � 0 can be linearly superposed
to give multicenter solutions similar to the Israel-Wilson-
Perjès [41] (IWP) solutions of Einstein-Maxwell theory.
For b � 0, the matrix Am of (5.12) is such that A2 � 0, so
that the target space geodesic (5.10) is null [28,29]. The
corresponding five-dimensional metric

ds25 � �dt2 � dx2 � !�1�dx5 � A5
i dx

i�2; (5.37)

with

r^ A � r!; (5.38)

reduces to the magnetic equivalent of the four-
dimensional solution (3.13) and (3.14) with � �

���
3

p
(� �

�1=2). For the choice of the harmonic function

! �
r0r

r2 � a20cos
2�
; (5.39)

this coincides with the singular solution (5.31), (5.32), and
(5.33) with b � 0. As we have seen, for a0 � 0 the
corresponding five-dimensional metric reduces to five-
dimensional Minkowski if x5 is periodic with period
4�r0. Accordingly, the static multicenter harmonic func-
tion (3.11) with !1 � 0 will lead to five-dimensional
spacetimes with Dirac string singularities originating
from the centers, unless all the residues ci are equal, in
which case (5.37) will reduce again to five-dimensional
Minkowski spacetime.

VI. CASE �2 � 3: DYONIC BLACK HOLES
(MAGNETIC SECTOR)

We have seen that the static NAF magnetic black holes
of (�2 � 3) EMD are a dimensional reduction of the five-
dimensional TMP black holes, while their rotating gen-
eralizations (5.31), (5.32), and (5.33) are a dimensional
reduction of the MP black holes with two equal angular
momentum parameters. One may surmise that the more
general MP black holes (5.27) with two unequal angular
momentum parameters should lead, by an appropriate
dimensional reduction, to generalized four-dimensional
NAF magnetic black holes with two extra quantum num-
-8
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bers, which as we will now show can be identified as four-
dimensional angular momentum and electric charge as-
sociated with rotating dyonic black holes. Putting

a� � E� *; (6.1)

transforming as before the spatial coordinates to

�� � �=2; ’� � �’� >�=2;

x2 � 4r0r� �E2 � *2�;
(6.2)

carrying out the dimensional reduction (5.2) of (5.27)
relative to @5 � r�10 @>, and putting � � 4r0b, we obtain

ds24 � �
'��������
�A

p �dt� �!d’�2 �
��������
�A

p

�

�
dr2

(
� d�2 �

(sin2�
'

d’2
�
; (6.3)

A � �
r0
2A

��
�(� br� cos��

bE*
2r0

�
E*
2r0

�r� b=2�

�sin2�


d’�

b
2r0

�*� E cos��dt


; (6.4)

e 2�=
��
3

p

�

�����
�

A

s
; (6.5)

with

( � �r� b=2�2 �
�E2 �*2

4r20
; ' � (�

E2 �*2

4r20
sin2�;

A � r2 �
b
4r0

�*� E cos��2 �
E2*2

4r20
cos2�;

� � r0r�
E*
2
cos�; �! �

Eb�r� *2=2r0�
2'

sin2�;

� �E2 � br0 � E2; �*2 � br0 � *2�: (6.6)

We see that the reduced spatial metric in (6.3) coincides
with that of the Kerr metric with parameters M2 �
b �*2=4r0, a2 � E2 �*2=4r20, meaning that the solutions
(6.3), (6.4), and (6.5) also can be generated from the
trivially embedded Kerr metric, or from the rotating
magnetic solutions (5.31), (5.32), and (5.33), by a suitably
chosen SL�3; R� transformation.

The spacetimes (6.3) have two horizons r � r�, with

r� �
1

2

�
b�

�E �*
r0

�
; (6.7)

if either E2 < br0 and *2 < br0, or E2 > br0 and *2 >
br0. However, as discussed in [15], this second possibility
does not lead to regular black holes. The values of A’ on
the Dirac strings � � 0 and � � � are unchanged from
their static (E � 0) values, so that the magnetic charge is
again given by (5.35),
084018
P � �
r0
2
: (6.8)

In order to compute the electric charge, we evaluate

�r �
1

4�

������
jgj

q
e�2

��
3

p
�Frt

�
sin�
8�

br0
�2

�
�*� E cos��r2 �

E*
4r0


E�1� cos2��

�2* cos��r�
E2*3

8r20
sin2�



; (6.9)

leading after integration to

Q � �
b*
2r0

: (6.10)

So the difference * between the two angular momentum
parameters of the original MP black hole (5.27) leads,
after dimensional reduction, to a four-dimensional elec-
tric charge, while the sum E leads to a four-dimensional
angular momentum, which shall be computed below.

For * � 0 (a� � a�), we recover the rotating mag-
netic black holes of the previous section, with

a0 � �
����������
b=r0

q
E=2: (6.11)

For E � 0 (a� � �a�), the solution takes the form

ds24 � �
�r� b=2�2 � b �*2=4r0��������������������������������������
r0r�r

2 � b*2=4r0�
p dt2

�
��������������������������������������
r0r�r2 � b*2=4r0�

q
�

�
dr2

�r� b=2�2 � b �*2=4r0
� d�2



; (6.12)

A � �
r0
2
cos�d’�

b*

4�r2 � b*2=4r0�
dt; (6.13)

e 2�=
��
3

p

�

����������������������������
r0r

r2 � b*2=4r0

s
; (6.14)

corresponding to static NAF dyonic black holes. Finally,
for b � 0 we recover the magnetostatic IWP solutions
discussed at the end of the previous section.

The NAF black holes (6.3) become extreme for �E � 0
(E2 � br0) or �* � 0 (*2 � br0), In this last case ( �* � 0)
it follows from (6.6) that ( � ' � �r� b=2�2, so that the
solutions (6.3) have conformally flat spatial sections.
Again, this means that these solutions can be linearly
superposed to give multicenter solutions. We only discuss
here the static case (E � 0, *2 � br0, i.e., a� � �a� ����������
�=4

p
). In this case the solution (6.12), (6.13), and (6.14)

is of the form (5.10), with the matrix > given in (5.12),
-9
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A �

�1 �
����
b
r0

q
0

0 1 � r0
b����

b
r0

q
b
r0

0

0BBB@
1CCCA; (6.15)

and ! � b=�r� b=2�. This matrix A is such that A2 � 0,
A3 � 0. The corresponding multicenter solution thus be-
longs to the class (b) discussed in [28] and is given by

ds24 � �fdt2 � f�1dx2;

f �

�����
b
r0

s ����������������������������������������������������������
!�1� !=2��1� !� !2=2�

q
;

(6.16)

A �
r0
2b

Aidx
i �

�����
r0
b

r
!2

4�1� !� !2=2�
dt; (6.17)

e 2�=
��
3

p

�

�����
r0
b

r ������������������������������
!�1� !=2�

1� !� !2=2

s
; (6.18)

with

! � �i�ci=ri�; r^ A � r!: (6.19)

Now we compute the mass and angular momentum of
the four-dimensional � �

���
3

p
rotating dyonic NAF black

holes. The mass is again given by the limit r! 1 of the
difference between the values of the quasilocal
Hamiltonian (4.4) for the rotating (r0, b, E, *) black
hole and for the (r0, 0, 0, 0) background. The Arnowitt-
Deser-Misner form of the metric (6.3) is

ds2 � �

��������
�A

p
(

�
dt2 �

��������
�A

p �
dr2

(
� d�2

�
�

�A
sin2�

�
d’�

Eb�r� *2=2r0�
2�

dt
�
2


; (6.20)

with

� � �(� br0�r2 � E2*2=4r20�: (6.21)

Keeping only the leading asymptotic (r! 1) monopole
and dipole contributions, we obtain

!abdxadxb ’ r
�����
�

p
d�2; nr ’ N ’

������������
r� b

p

�1=4
;

N’ ’
Eb

2r0r
2 ; (6.22)

leading to the asymptotic extrinsic curvature

k ’ �
3

2
r�1=40 r�3=4

�
1�

b
2r

�
7

24

E*
r0r

cos�
�
: (6.23)

So the value of the first term N� of the integrand of (4.4)
differs from the magnetostatic (E � * � 0) value only by
a term in sin� cos� which disappears after integration
over the sphere. The second term of the integrand behaves
asymptotically as the product of N’, in r�2, with
084018
�’rn
r ’

bE
32�

sin3�; (6.24)

so that its contribution to the quasilocal mass vanishes
when the radius of the sphere Str is taken to infinity.
Finally, the third term of the integrand behaves asymp-
totically as the product of

A0 ’
b

4r0r
2 �*� E cos��; (6.25)

with

�r ’
b sin�
8�r0

�*� E cos��; (6.26)

and again goes to zero when r! 1. It follows that the
mass of the rotating dyonic black hole is unchanged from
its magnetostatic value,

M �
3b
8
: (6.27)

The quasilocal momenta are obtained from the
Hamiltonian by carrying out an infinitesimal gauge
transformation *xi � *Ait and evaluating the response
Pi � *H=*Ai. For the angular momentum J � P’, one
obtains [42]

J � �
I
Srt

�2�’rn
r � A’�

r�; (6.28)

(the static background does not contribute). From the
preceding evaluations and

A’ ’ �
r0
2
cos�; (6.29)

one obtains asymptotically

A’�
r ’ �

b sin�
16�

�* cos�� Ecos2��: (6.30)

The first term disappears after integration over the
sphere, while the second term combines with the gravi-
tational contribution (6.24) to yield

J � �
bE
4
: (6.31)

It is remarkable that, as in the case of the linear dilaton
black holes [2], the (often ignored) electromagnetic con-
tribution to the angular momentum is of the same order as
the purely gravitational contribution.

There is a simple relation between these values of the
mass and angular momentum for the four-dimensional
NAF black holes (6.3), (6.4), and (6.5) and the values of
the corresponding quantities [15] for the five-
dimensional Myers-Perry black holes (5.27)

M5 �
3�
8
�; J5� �

2

3
M5a�; (6.32)

which may be understood in terms of the dimensional
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reduction procedure. This amounts to integrating out the
cyclic coordinate x5 � r0> from the five-dimensional
action. The perimeter

H
dx5 may be evaluated by comput-

ing the area (A3 � 2�2) of the three-sphere from (5.15),

A3 �
�
1

4

�
3=2
A2

I
d>: (6.33)

Using the relations (5.16) and (6.1), we then check that the
ratio between the four- and five-dimensional parameters
is equal to the perimeter of the cyclic dimension:

M5

M4
� �

J5� � J5�
2J4

�
J5� � J5�
2QP

�
I
dx5 � 4�r0:

(6.34)

We now check that these values of the black hole mass
and angular momentum, together with the other physical
parameters of the rotating black holes (6.3), (6.4), and
(6.5), satisfy the generalized first law of thermodynamics
for dyonic, rotating black holes [13],

dM � TdS��hdJ � VhdQ�WhdP: (6.35)

In (6.35), the Hawking temperature and entropy are

T �
�E �*

2�br0� �E� �*�
; S �

�b
2

� �E� �*�: (6.36)

�h is the horizon angular velocity

�h � �N’jh � �
E �*

br0� �E� �*�
: (6.37)

Vh is the proper horizon electric potential, i.e., the electric
potential in the horizon rest frame, 2 evaluated on the
horizon r � r�,

Vh � ��A0 � N’A’�h � �
* �E

2b� �E� �*�
; (6.38)

while Wh is the proper horizon magnetic potential, which
(in the absence of a better definition) we shall define by
duality as the proper horizon electric potential of the
dyonic black hole of the electric type (see Sec. VII)
with electric charge P, magnetic charge Q, and angular
momentum �J [13], given in (7.37). A straightforward
computation then shows that when the three parameters b,
�E, �* are varied independently, the generalized first law

(6.35) is satisfied identically, provided the scale parame-
ter r0 is held fixed.

One also easily checks that the rotating dyonic black
holes satisfy the Smarr-like formula

M �
3

4
�2TS� 2�hJ� VhQ�WhP�; (6.39)

similar to the Smarr formula for the asymptotically flat
2The electric potential in (6.4) is uniquely defined by the
condition that it vanish at spatial infinity.
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dyonic black holes of Kaluza-Klein theory [13], except
for the anomalous factor 3=4. This factor may be under-
stood by comparing (6.39) [where VhQ�WhP � 2VhQ
on account of (7.38)] with the five-dimensional Myers-
Perry Smarr formula [15]

M5 �
3

4
�2TS5 � 2��J� � 2��J��; (6.40)

where the five-dimensional entropy (the quarter of the
five-dimensional horizon area) is S5 � 4�r0S4, and ��

are the two horizon angular velocities.
VII. CASE �2 � 3: DYONIC BLACK HOLES
(ELECTRIC SECTOR)

From these NAF rotating dyonic black holes of the
magnetic type, one can construct a dual sector of NAF
rotating dyonic black holes of the electric type by the
electromagnetic duality transformation (2.2). Before
doing this, it is instructive to first consider the purely
electrostatic NAF black holes and their rotating counter-
parts. For � �

���
3

p
, we obtain for our electric NAF black

hole solution (2.8) and (2.9)

e 2�=
��
3

p

�

�
r
r0

�
1=2
; A0 �

r� b
2r0

; (7.1)

leading for the five-dimensional metric (5.2) to

ds25 � �
r� b
r0

dt2 �
r0
r

�
dx5 �

r� b
r0

dt
�
2

�
r

r� b

dr2 � r�r� b�d�2�: (7.2)

The corresponding representative matrix -e

-e �
� b�r�b�

r0r
r�b
r 0

r�b
r

r0
r 0

0 0 � r
r�b

0B@
1CA; (7.3)

is of the form (5.10) with the harmonic potential (5.11)
and the constant matrices

>e �
� b

r0
1 0

1 0 0
0 0 �1

0B@
1CA; Ae �

� b
r0

1 0
0 0 0
0 0 b

r0

0B@
1CA:
(7.4)

Again, the reduced 3-metric �ij in (7.2) coincides with
that of the Schwarzschild solution with mass M � b=2,
meaning that the matrix -e is an SL�3; R� transform of
the matrix (5.17) for the trivially embedded
Schwarzschild solution,

-e � UeS-SUSe; USe �

����
b
r0

q
�

����
r0
b

q
0

0
����
r0
b

q
0

0 0 1

0BBB@
1CCCA: (7.5)
-11
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Equivalently, one can simply note that the five-
dimensional metric (7.2) can be rearranged as

ds25 � �
b
r0

�
1�

b
r

��
dt�

r0
b
dx5

�
2
�

r
r� b

dr2

�r2d�2 �
r0
b
�dx5�2; (7.6)

which is clearly the product of the Schwarzschild solution
for an observer with time

t0 �

�����
b
r0

s
�t�

r0
b
x5�; (7.7)

with the line or the circle. So the NAF electric black hole
solution (2.8) and (2.9) with � �

���
3

p
is simply a twisted

dimensional reduction of the trivial five-dimensional
embedding of the Schwarzschild solution with respect
to the Killing vector

@05 �
�����
r0
b

r
�@5 � @t�: (7.8)

Note that the ‘‘twist’’3 in the relation (7.7) between the 2
times is not innocent in the traditional Kaluza-Klein
interpretation, where the fifth coordinate x5 varies on
the so-called Klein circle so that, assuming the domain
of the time t to be the real axis, the corresponding
Schwarzschild time t0 must be periodically identified.4

Let us recall that the well-known asymptotically flat
electrically charged Kaluza-Klein black holes, given by
(2.3) with � �

���
3

p
, may also be obtained from the trivi-

ally embedded Schwarzschild solution by a twisted di-
mensional reduction, this time with respect to the
boosted Killing vector

@005 � coshA@5 � sinhA@t (7.9)

[the SL�3; R� transformations preserving staticity and
asymptotic flatness belong to the subgroup SO�1; 1� of
Lorentz boosts in the 2-space �t; x5�]. The product of this
boost with the transformation (7.8) —an infinite boost
together with an unessential rescaling—being again a
rescaled infinite boost, it follows that the twisted dimen-
sional reduction with respect to (7.8) of the asymptoti-
cally flat (AF) electrostatic Kaluza-Klein black holes will
also lead to essentially the same (up to a rescaling of r0)
NAF electrostatic black hole.5

We are now in a position to generate the rotating
electric NAF black hole solutions of (�2 � 3) EMD. We
3This term is used here in a different sense from that used in
(5.4).

4A similar phenomenon occurs for the spinning point parti-
cle solution of 2� 1 gravity [43] which is obtained from the
nonspinning solution ds23 � �dt2 � dr2 � �2r2d�2 by the re-
placement t! t�!� (�, ! constant).

5In this case there is no simple relation between the electric
charge of the AF black hole and that of the NAF black hole.
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have noted that the transformation from the
Schwarzschild solution of (�2 � 3) EMD to the static
solution (2.8) and (2.9) boils down in this case to the
‘‘twist in time’’ (7.7). Therefore the rotating solutions
are simply the twisted dimensional reduction of the trivi-
ally embedded Kerr solutions with mass b=2 and rotation
parameter a0, i.e., their five-dimensional metric is (in
Boyer-Lindquist coordinates)

ds25 � �
b
r0

�
'0
�0

��
dt�

�����
r0
b

r
!0d’�

r0
b
dx5

�
2

��0

�
dr2

(0
� d�2 �

(0sin
2�

'0
d’2

�
�
r0
b
�dx5�2:

(7.10)

Reversing the steps which led from the static solu-
tions (2.8) and (2.9) with � �

���
3

p
to (7.6), we obtain

the rotating NAF electric black holes of (�2 � 3)
EMD

ds24 � �
'0�������������
r0r�0

p �
dt�

��������
br0

p
a0rsin

2�
'0

d’
�
2

�
�������������
r0r�0

q �
dr2

(0
� d�2 �

(0sin
2�

'0
d’2

�
; (7.11)

A �
1

2r0r

�
'0dt�

��������
br0

p
a0rsin2�d’

�
; (7.12)

e 2�=
��
3

p

�

�������
�0
r0r

s
: (7.13)

The corresponding electric field

F �
r2 � a20cos

2�

2r0r
2 dr ^ dt�

�����
b
r0

s
a0 cos� sin�d�^

�

�
d’�

a0��������
br0

p
r
dt
�
; (7.14)

leads again to the electric charge (2.11),

Q �
r0
2
: (7.15)

As in the magnetic case, for b � 0 the reduced three-
dimensional metric in (7.11) is flat, so that the solution
(7.11), (7.12), and (7.13) with b � 0 can be generalized to
multicenter solutions. Using the null geodesic construc-
tion with (7.4) for b � 0 as input, it is easy to show that
the corresponding five-dimensional metric is [44]

ds25 � 2dtdx5 � !�dx5�2 � dx2; (7.16)

in accordance with (3.13) and (3.14) for � �
���
3

p
. The

solution (7.11), (7.12), and (7.13) with b � 0 is recovered
for the choice (5.39) of the harmonic function !.
-12
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Clearly, the rotating electric solutions (7.11), (7.12),
and (7.13) are dual to the rotating magnetic solutions
(5.31), (5.32), and (5.33). More generally, acting on the
rotating dyonic solutions of the magnetic type (6.3), (6.4),
and (6.5) with the duality transformation (2.2) with the
lower sign, we obtain the new sector of NAF rotating
dyonic black hole solutions:

ds24 � �
'��������
�A

p �dt� �!d’�2 �
��������
�A

p

�

�
dr2

(
� d�2 �

(sin2�
'

d’2
�
; (7.17)

A �
1

2�
�
A� b�r� *2=2r0��dt�

b
r0

�
*�cos��
Er0
2

�r� *2=2r0�sin2��d’�; (7.18)

e 2�=
��
3

p

�

�����
A
�

s
; (7.19)

[the functions (, ', A, �, �! are given in (6.6)] with
electric and magnetic charges

Q �
r0
2
; P � �

b*
2r0

: (7.20)

Lifting these solutions to five-dimensions according to
084018
(5.2), and carrying out the inverse twist transformation

t �
�����
r0
b

r
�t0 � x05�; x5 �

�����
b
r0

s
x05; (7.21)

we arrive after some calculations to the asymptotically
flat five-dimensional metric

ds25 � �
'

B
�dt0 �!d’�2 � A

�
dr2

(
� d�2 �

(sin2�
'

d’2
�

�
B
A
�dx05 � 2Â�dx

0��2; (7.22)

with

B �

�
r�

*2

2r0

�
2
�

�*2

4r20
�*� E cos��2; (7.23)

! � �

�����
b
r0

s
*(cos�� �E �*2=2r0�rsin

2�
'

; (7.24)

Â 0 � �
*
2r0

*�r� b=2� � �E �*2=2r0� cos�
B

; (7.25)
Â’ � �
*
2

�����
b
r0

s

r2 � �br0*2 � E2 �*2�=4r20� cos�� �E*=2r0��r� b=2�sin2�

B
: (7.26)
The asymptotically flat metric (7.22) describes rotating
dyonic black holes with NUT charge, generalizing the
five-dimensional rotating dyonic black holes given by
Rasheed [13]. The corresponding mass, scalar charge,
NUT charge, electric charge, magnetic charge, and an-
gular momentum are given by

MAF �
b
2
�
*2

4r0
; �AF � �

*2
���
3

p

4r0
; NAF �

*
2

�����
b
r0

s
;

QAF � �
*2

2r0
; PAF � �

*
2

�����
b
r0

s
; JAF �

E �*2

4r0

�����
b
r0

s
:

(7.27)

There is no simple relation between these and the corre-
sponding charges for the NAF dyonic black hole solutions
(7.17), (7.18), and (7.19). The appearance here of an
AF NUT charge equal in magnitude to the AF magnetic
charge is easy to understand. Generically, the twist trans-
formation (7.8) acting on a magnetized AF solution
will generate a NUTted NAF solution, the NAF NUT
charge vanishing only if NAF � PAF � 0. Recalling that
the combination of any SO�1; 1� boost (7.9) with the twist
acting on an AF Kaluza-Klein black hole will lead
to essentially the same A � 0 NAF black hole solution,
we conclude that the twist transformation acting on
any NUTted dyonic AF black hole with NAF � PAF � 0
will generate a NUTless dyonic NAF black hole of
the electric type (7.17), (7.18), and (7.19), which as
we have seen is equivalent by electromagnetic duality to
the dimensional reduction of a Myers-Perry black hole
(5.27) relative to @> � @’�

� @’�
. More generally, we

conjecture that the twist transformation acting on a ge-
neric NUTted dyonic AF black hole will generate a
NUTted dyonic NAF black hole, equivalent by electro-
magnetic duality to the dimensional reduction of a
twisted Myers-Perry black hole (5.27). This conjecture
is proven in the Appendix in the case where the original
five-dimensional solution is the trivially embedded Taub-
NUT solution.
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Again, as in the magnetic case, for �* � 0 (*2 � br0)
these dyonic black hole solutions become extreme and
can be linearly superposed to give multicenter IWP solu-
tions. Remarkably, the twisted asymptotically flat met-
ric (7.22) reduces in this case to the static, pure NUT form

ds25 � ��dt0 � b cos�d’�2 �
A

�r� b=2�2

dr2

��r� b=2�2d�2� �
�r� b=2�2

A
�dx05 � 2Â�dx0��2;

(7.28)

with JAF � 0, so that the parameter E seems to be irrele-
vant. In the case E � 0, the solution (7.28) is of the
form (5.10) with > � diag. ( � 1; 1;�1),

A �

0 1 1
�1 �1 �1
1 1 1

0@ 1A; (7.29)

and ! � b=�r� b=2�. Again, this matrix A is such that
A2 � 0, A3 � 0. After carrying out the twist transforma-
tion, we arrive at the NAF multi-extreme black hole
solution given by (6.16) and

A �
b
2r0

1� !2=2
!�1� !=2�

dt�
1

2

�����
b
r0

s
Aidx

i; (7.30)

e 2�=
��
3

p

�

�����
b
r0

s ������������������������������
1� !� !2=2
!�1� !=2�

s
; (7.31)

where ! and A are given by (6.19).
Let us now compute the quasilocal mass and angular

momentum of the electric dyonic black holes (7.17),
(7.18), and (7.19). The spacetime metric is the same as
for the magnetic dyonic black holes, so that the gravita-
tional contributions to the quasilocal energy and angular
momentum are the same. To compute the electromagnetic
contributions, we evaluate the asymptotic behavior of the
electric field density

�r
�e� �

1

4�

������
jgj

q
e�2

��
3

p
�Frt � �

1

4�
F�m��’

’ �
1

8�
�r0 sin�� E* sin� cos��; (7.32)

where Fm is the dual electromagnetic field derived from
(6.4). The electromagnetic contribution to the quasilocal
mass is the integral over a large sphere of the product of

A0 ’
r
2r0

; (7.33)

(a fixed boundary data) with the substracted electric field
density

�r ��rj0 ’ �
E*
8�r

sin� cos�; (7.34)
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[where the index 0 stands for the static background (b �
E � * � 0)]. This product goes to the finite value
��E*=16�r0� sin� cos�, which however averages to
zero after integration over the sphere, so that the mass
is the same as in the magnetic case. The electromagnetic
contribution to the quasilocal angular momentum is the
integral of

A’�r ’
b sin�
16�

�* cos�� Esin2��; (7.35)

[compare with (6.30)]. Again the first term disappears
after averaging over the sphere, while the integral of
the second term is the same as in the magnetic case. So
the mass and angular momentum of these electric dyonic
black holes are, not surprisingly, the same as those of
their dual magnetic counterparts

M �
3b
8
; J � �

bE
4
: (7.36)

Finally we return to the question of the validity of the
generalized first law (6.35) for rotating dyonic black
holes. For a black hole of the magnetic sector [index
�m�], the potential W�m�h is the proper horizon electric
potential for the dyonic black hole of the electric sector
[index �e�] with electric and magnetic charges exchanged,
and opposite angular momentum, i.e., [compare (6.8),
(6.10), and (6.31) on the one hand, and (7.20) and (7.36)
on the other hand] the charge and parity conjugate (A0 !
�A0, N’ ! �N’) of the dyonic black hole (7.17), (7.18),
and (7.19) . We obtain for this quantity the value

W�m�h � �V�e�h � 
A�e�0 � N’
�e�A�e�’�h � �

*2 �E

2r20� �E� �*�
;

(7.37)

which was used in Sec. VI to check the generalized first
law (6.35) in the magnetic sector. Symmetrically, it fol-
lows from this definition of the proper horizon magnetic
potential that W�e�h � V�m�h, leading to the conclusion
that the generalized first law is also satisfied (as it should
by duality) in the electric sector. Another noteworthy
consequence of (7.37) is that the electric and magnetic
contributions to the generalized dyonic Smarr for-
mula (6.39) are equal, i.e., for dyons of either sector

QVh � PWh �
*2 �E

4r0� �E� �*�
: (7.38)
VIII. CONCLUSION

We have shown that the non-asymptotically flat static
black hole solutions of EMD theory may be obtained as
near-horizon limits of asymptotically flat black holes,
and recalled how their mass and angular momentum
may be computed unambiguously in the quasilocal en-
ergy framework.
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We have then concentrated on the special case with
dilaton coupling constant �2 � 3, which is a dimensional
reduction of five-dimensional Kaluza-Klein theory.
We have shown that in this case the action of the group
SL�3; R� of invariance transformations may be used
to generate from the NAF magnetostatic or electrostatic
black hole solutions two classes of NAF rotating dyonic
black hole solutions. The NAF black holes of the
magnetic class turn out to be simply dimensional reduc-
tions of the AF five-dimensional Myers-Perry black holes
relative to one of the azimuthal angles, and their four-
dimensional quasilocal mass, quasilocal angular momen-
tum, and ‘‘dyonic momentum’’ (the product of their
electric and magnetic charges) may be obtained from
the mass and the two angular momenta of the parent
five-dimensional black hole by dimensional reduction.
We view this as a quite nontrivial success of the quasilo-
cal energy approach, insofar as the computation of the
quasilocal mass and angular momentum is rather
involved.

On the other hand, the black holes of the electric class
are unusual, twisted dimensional reductions of the AF
five-dimensional Rasheed black holes with a NUT charge
balancing the magnetic charge. It is important to note that
the extension of the local twist coordinate transformation
to a global coordinate transformation introduces a peri-
odicity in time if the fifth dimension is compactified on
the Klein circle, so that the NAF black holes of the
electric sector are only locally, not globally, equivalent
to AF Rasheed black holes. A by-product of this analysis
is that, by electromagnetic duality, there is a one-to-one
local correspondence between the Myers-Perry and
Rasheed classes of AF five-dimensional black holes.

We have also shown that the first law of black hole
thermodynamics, as generalized to dyonic black holes by
Rasheed, is satisfied by both classes of NAF rotating
dyonic black holes, provided the overall scale parameter
r0 is not varied. Again, this validity of the first law under
variation of three independent parameters is by no means
trivial and constitutes another test of the validity of our
quasilocal energy computations. The NAF dyonic black
holes are also found to obey a generalized Smarr-like
formula, Eq. (6.39).

Finally, we have discussed the construction of NAF
multi-extreme black hole solutions. In the static case with
generic �, these are actually singular multicenter solu-
tions. In the case �2 � 3, we have shown that, besides
these, there are also two classes (magnetic and electric) of
regular, intrinsically dyonic multi-extreme black hole
solutions given by (6.16) and either (6.17) and (6.18) or
(7.30) and (7.31).

It may be expected that higher-dimensional general-
izations of these NAF black holes to NAF static black
brane solutions to the Einstein-p-form-dilaton theory
also exist, as well as NAF rotating and dyonic black
084018
branes for special values of the dilaton coupling constant.
We intend to address this question in a future publication
[45].
APPENDIX A

Here we derive from the trivially embedded Taub-NUT
solution a NUTted NAF black hole of the electric sector,
and show that its magnetic dual is a twisted dimensional
reduction of the Myers-Perry black hole with two equal
angular momenta. The trivial five-dimensional embed-
ding of the Taub-NUT metric is

ds25 � �
(

�
�dt0 � 2l cos�d’�2

�
�

(
�dr2 � (d�2

2� � �dx05�2; (A1)

with

( � r2 � 2mr� l2; � � r2 � l2: (A2)

The twist

t0 � ��1�t� �2x5�; x05 � �x5; (A3)

leads to the five-dimensional metric

ds25 � �
(

�
�dt� 2�l cos�d’�2 �

�

(
�dr2 �(d�2

2�

�
�

�
�dx5 �

(

�

dt� 2�l cos�d’��2; (A4)

with

� � 2�2�mr� l2�: (A5)

After dimensional reduction, this leads to the four-
dimensional NAF electric solution

ds24 � �
(���������
��

p �dt� 2�l cos�d’�2 �
���������
��

p �
dr2

(
� d�2

2

�
;

(A6)
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A �
(

2�
�dt� 2�l cos�d’�; (A7)

e 2�=
��
3

p

�

�����
�

�

s
: (A8)

The four-dimensional magnetic dual solution has the
same four-dimensional metric with electromagnetic and
dilaton fields

A � �
�
�

l�r�m�dt�

�m-
'

cos�d’�; (A9)

e 2�=
��
3

p

�

�����
�

�

s
; �- � r2 � 2l2r=m� l2�: (A10)

The corresponding five-dimensional lift

ds25 � �
(

'
�dt� 2�l cos�d’�2 �

�

(
�dr2 �(d�2

2� �
�

�

�

�
dx5 � 2

�
�

�
l�r�m�dt�

�m-
'

cos�d’

�

2
;

(A11)
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may be rearranged as

ds25 � ��dt� �ad>�2 �
�

B2

dt� �ad>

�
�a
2
�d>� cos�d’��2 �

B4

B4 ��B2 �� �a2
dB2

�
B2

4
�d�2 � d’2 � d>2 � 2 cos�d’d>�; (A12)

with

B2 � 8�2�mr� l2�; > �
1

2m�2
x5;

� � 16�2�l2 �m2�; �a � 2�l:
(A13)

After carrying out the inverse twist

t � t0 � �a>; (A14)

we recognize in (A12) another form of the Myers-Perry
metric with two equal angular momenta, Eq. (5.27) with
a� � a� � �a.
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