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Fulling-Unruh effect in general stationary accelerated frames
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We study the generalized Unruh effect for accelerated reference frames that include rotation in
addition to acceleration. We focus particularly on the case where the motion is planar, with the presence
of a static limit in addition to the event horizon. Possible definitions of an accelerated vacuum state are
examined and the interpretation of the Minkowski vacuum state as a thermodynamic state is discussed.
Such a thermodynamic state is shown to depend on two parameters, the acceleration temperature and a
drift velocity, which are determined by the acceleration and angular velocity of the accelerated frame.
We relate the properties of the Minkowski vacuum in the accelerated frame to the excitation spectrum
of a detector that is stationary in this frame. The detector can be excited both by absorbing positive
energy quanta in the “hot” vacuum state and by emitting negative energy quanta into the “‘ergosphere”
between the horizon and the static limit. The effects are related to similar effects in the gravitational

field of a rotating black hole.
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L. INTRODUCTION

A radiation detector that is uniformly accelerated
through vacuum will be excited as if vacuum were hot,
with a temperature proportional to the acceleration [1].
The effect is small, but from a theoretical point of view
it is important and relates to interesting questions
concerning the definition of vacuum states and particle
excitations in curved space-time [2,3]. Indeed, the effect
is closely related to the Hawking effect [4,5] and is
equivalent to the temperature effect measured by a sta-
tionary detector close to the event horizon of a black hole,
in the limit where the mass of the black hole tends to
infinity [1].

Uniform linear acceleration corresponds to motion
along a hyperbolic space-time curve. A detector moving
along this curve will experience a time-independent
situation and hence settle in a stationary state. However,
there exist also other timelike curves with the same
property, where the spectrum of vacuum fluctuations is
independent of the detector’s proper time parameter and
where the detector therefore will settle into a stationary
state with a nontrivial distribution over excited states [6—
10]. In general these curves involve rotation in addition to
acceleration.

In the case of motion along stationary curves other
than those with uniform linear acceleration, the excita-
tion spectrum of the detector will not have a truly ther-
mal form [8]. However, even with rotation involved, for a
two-level system an effective temperature may be defined
which depends only weakly on the energy splitting and on
detector-dependent variables. The question of a “circular
Unruh effect” has been discussed in particular with
relation to polarization effects of electrons in storage
rings [11-14]. Also for electrons circulating in a cavity
the circular Unruh effect has been considered [15-17].
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The excitation spectrum of a detector coupled to a
scalar field was examined several years ago by Letaw
[8] for all types of stationary curves, and the possibility of
defining more general “accelerated vacua” and particle
states for observers traveling along all possible stationary
curves was subsequently discussed in an interesting paper
by Letaw and Pfautsch [9]. Their conclusion was that only
two distinct inequivalent vacuum states can be defined in
flat space-time, termed the Minkowski vacuum and the
Fulling vacuum, where the former seems to contain a
thermal spectrum of particles relative to the latter. They
pointed out however, that this definition does not seem to
agree with the excitation spectra of stationary particle
detectors whenever rotation is involved, since a particle
detector on a trajectory involving rotation will become
excited even when the vacuum state associated with that
trajectory is the Minkowski vacuum, and in general it
will not exhibit a purely thermal excitation spectrum for
trajectories corresponding to the Fulling vacuum state.

In this paper we follow up and extend the discussion of
Letaw and Pfautsch on the generalization of the Unruh
effect to general stationary timelike curves. We first focus
on the definition of the Hamiltonian for a quantum sys-
tem in the accelerated frame defined by a general sta-
tionary space-time curve. As a specific case we consider a
free Klein-Gordon field. Next we reconsider the case of
linear acceleration where we focus on the Boguliubov
transformation which relates the Minkowski vacuum
state to the Fulling vacuum. We further, in the central
part of the paper, examine the causal structure of space-
time as viewed in an accelerated frame with rotation and
discuss the implications of this for the definition of vac-
uum states and the interpretation of the Minkowski vac-
uum as a thermodynamic state.

When investigating the causal structure of space-time
and discussing the interpretation of the corresponding
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quantum effects, we employ coordinates in which the
constant-time hyperplanes are planes of simultaneity
for an observer following the accelerated trajectory.
This choice of coordinates makes it possible to give a
clearer picture of how the physical vacuum state is ac-
tually perceived by such an observer, and it contrasts the
discussion of earlier papers which is based on the use of
stationary coordinates that do not define planes of simul-
taneity for the observer [9,10].

For all types of stationary trajectories, the Hamil-
tonian is defined as the time evolution operator of the
corresponding accelerated coordinate frame. However, in
general this operator is not bounded from below and the
standard definition of the vacuum as the ground state of
the Hamiltonian is therefore not applicable. In a more
general definition, the vacuum is an eigenstate of the
Hamiltonian, which may allow radiation quanta with
both positive and negative energy. The Minkowski vac-
uum state is, in this sense, a vacuum state for all the
stationary accelerated frames, and the excitation of an
accelerated detector, in the same formulation, is due to
the emission of negative energy quanta. However, for
accelerated frames which possess an event horizon, alter-
native definitions are possible, due to a symmetry in the
energy spectrum related to PCT invariance [18—20]. A
specific case is given by the Fulling vacuum state, which
is based on a separation of the field modes associated with
the two sides of the horizon. For linear acceleration this
separation will also push the negative energy excitations
behind the event horizon and the Fulling vacuum be-
comes the true ground state of the system restricted to
one side of the horizon. For other types of motion this is
not the case. The field modes associated with the causally
disconnected region behind the horizon can be separated
from the field modes of the “physical” region, but the
presence of excitations with negative energy is no longer
avoided. This affects the excitation spectrum of an accel-
erated detector, which can gain energy by emitting nega-
tive energy quanta as well as absorbing positive energy
quanta.

The discussion of vacuum states and excitations in the
accelerated frames is supplemented by a calculation of the
effective temperature, for various degrees of rotation. It is
stressed that whereas the definition of nontrivial vacuum
states and interpretation of the Minkowski vacuum as a
thermodynamic state depends on the asymptotic proper-
ties of the stationary space-time curves (through the
existence of an event horizon), this is not so for the
excitation rates of a detector, which are determined only
by a limited part of the space-time curve. This explains
why the excitation spectrum changes smoothly with ro-
tation even when the angular velocity exceeds the proper
acceleration and the event horizon disappears.

Although most of the discussion in the paper is focused
on the case of planar motion, we include a brief section
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where we examine the general case where the space-time
curve cannot be restricted to two space dimensions. In
this case there is always an event horizon, and most of the
general discussions of planar curves with horizons also
apply to these cases.

The discussion of detector response for space-time
curves with rotation can be related to local effects in
the gravitational field of a rotating black hole, as sug-
gested in Ref. [10]. This relation is in fact not merely an
analogy. Thus, in the same way as the linearly accelerated
frame can be viewed as a stationary frame close to the
horizon of a nonrotating black hole in the limit where the
black hole mass tends to infinity, the accelerated frames
with rotation can be viewed as limiting cases of station-
ary frames close to a rotating black hole with large mass.
In the Appendix we demonstrate this by showing how the
flat space metric of the accelerated frame is recovered
from the Kerr metric in the limit where the mass tends to
infinity.

We shall in this paper use natural units, withi=c=1.

IL. REFERENCE FRAMES AND HAMILTONIANS

A timelike space-time curve C defines a natural “ac-
celerated coordinate system” in the following way. At an
arbitrary point on the curve an orthonormal reference
frame is defined with one of the unit vectors pointing
along the trajectory. This vector defines the local time
axis. The local frame is transported to any other point on
the curve by a “Fermi-Walker transport,” and each of
these frames can further be extended in the spacelike
directions to form a full rest frame at the given (proper)
time. Clearly such a coordinate system may have (coor-
dinate) singularities, but for a well-behaved space-time
curve there will always be a finite region around the curve
without singularities.

Let us consider a given space-time curve with its
associated accelerated (curvilinear) coordinate system.
A quantum system, and particularly a quantum field,
which in the standard Minkowski space formulation is
described by a Hamiltonian H, will in the accelerated
reference frame be described, in a natural way, by a time
evolution operator of the form

Ho=H—-a K- w- ], (1)

where K is the boost operator and J is the generator of
rotation in the Minkowski space description of the sys-
tem. This form for the time evolution operator follows
when the quantum state at a given proper time of the
accelerated frame is identified with the quantum state of
the corresponding inertial rest frame [11,20]. The Hamil-
tonian generates transformations between inertial rest
frames at different times and this transformation will,
due to the acceleration, involve Lorentz transformations
in addition to time translation. By use of the freedom of
choice for the definition of three space directions (x, y, z)
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the Hamiltonian can further be brought into the form
Ho=H—-aK, - w,J, — w,J, 2)

which is the general form we shall apply for the time
evolution operator in the accelerated frame. As a specific
example, we shall consider the case of a real Klein-
Gordon field ¢. The operators then are given by

Ho = [ il + (Vo) + o),
J= fd3xx X 7TV§Z'), (3)
K=- fd%c%x[w'z + (Vo)? + m?>¢?],

with 7 as the conjugate field momentum and m as the
mass of the Klein-Gordon particles.

The three parameters a, w,, and w, characterize the
motion of a reference particle following the space-time
curve C. Thus, a is the proper acceleration, while @, and
w, specify the angular velocity of the coordinate frame
of the trajectory, as viewed from the nonaccelerated
Minkowski frame. In geometrical terms the three pa-
rameters describe the curvature and torsion of the
space-time curve, as discussed by Letaw and Pfautsch.
In the following we will assume C to be a stationary
curve, and that means that all three parameters are inde-
pendent of the time coordinate along C. Because of
Lorentz invariance the accelerated Hamiltonian is then
a time-independent operator.

The different types of stationary curves C can be
characterized by the parameters a, w,, and w,, and fol-
lowing Letaw we distinguish between the following types
of curves which correspond to qualitatively different
types of motion (for simplicity we assume all parameters
to be positive):

(1) a = w, = w, = 0.—This corresponds to nonac-
celerated motion, i.e., a linear space-time curve,
and will not be discussed further.

(2) w,=w, =0, a #0—This describes a curve
with linear uniform acceleration, i.e., a hyperbolic
space-time curve, here restricted to the (z, x) plane.

3) w,=0, w,>a #0—This is a curve in the
three-dimensional (¢, x, y) hyperplane and can be
viewed as circular motion in a properly chosen
coordinate frame.

4) w, =0, w, =a # 0—This is also a curve in the
three-dimensional (7, x, y) hyperplane and can be
viewed as the limiting case of circular motion
where the speed tends to the speed of light. This
case is a limiting case between w, > a and w, < a.
As we will show, the transition between the two
regimes is smooth, so we will not treat the limiting
case separately.

(5) w,=0, w,<a#0—This is a curve in the
three-dimensional (z, x, y) hyperplane which can-
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not be viewed as circular motion. In a properly
chosen coordinate frame the (x, y) projection of
the curve is a hyperbolic cosine.

(6) w,, w, #0, a # 0.—This is a curve that is not

restricted to a hyperplane in Minkowski space. In
a properly chosen coordinate frame it can be
viewed as circular motion in the (y, z) plane super-
imposed on a linear acceleration in the x direction.

In the above we have focused on the properties of the
reference curve C. This curve we may associate with the
orbit of an accelerated physical system or an accelerated
“observer.”” More specifically we may view it as the
trajectory of a particle detector that probes the
(Minkowski) vacuum state in the accelerated frame. Al-
though the reference trajectory has no extension in the
spacelike directions the accelerated detector does not
need to be pointlike, but only small in order to avoid
complications due to the singularities of the accelerated
coordinate system.

One should note that any curve defined by fixed space
coordinates in the accelerated coordinate system is a sta-
tionary curve, not only the reference curve C. However,
only for C does the coordinate time coincide with the
proper time of the space-time curve, while for other
curves there is a constant scale factor relating the proper
time to the coordinate time. For other stationary curves
than C, one should also note that the time coordinate axis
is no longer orthogonal to the space axes, as a conse-
quence of the rotation. In fact for a reference curve with
rotation the stationary curves at sufficiently large dis-
tance from C may change from timelike to spacelike
due to the rotation.

The collection of all the stationary curves of the accel-
erated coordinate system can be viewed as defining a
vector field, a Killing vector field associated with a
one-parameter symmetry of the metric. The Hamil-
tonian (2), although primarily defined as the time evolu-
tion operator of the quantum system, can also be inter-
preted as the generator of this one-parameter set of space-
time transformations. Thus an explicit expression for the
vector field is given by the correspondences

0

- - ; 0
iK; o xte, +te;, =x'—+1t—,
ot ox'

_lH‘_’é)IZE,

i]i‘_'Eijkxjek = Eijkx]w. (4)

These expressions are useful for the further discussion of
the causal structure of space-time as seen in the accel-
erated frames. In the following sections we shall also
examine the definitions of vacuum states and particle
excitations in these frames. We will, in particular, focus
on the types of motion where an event horizon exists.
These are the cases 2, 5, and 6 in the list.
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IIL. LINEAR ACCELERATION AND THE UNRUH
EFFECT

A. Rindler coordinates

We will first consider the case of uniform acceleration
a with no rotation, w, = w, = 0. Although this is a well-
studied case, it gives the necessary background for the
discussion of the other types of motion where rotation is
involved.

We choose in this case, as in all other cases, the
Cartesian coordinate frame (x%; x!, x%, x*) = (£;x, y, z) of
Minkowski space to coincide with the instantaneous
(inertial) rest frame of the observer at proper time 7 =
0. The acceleration a points along the x axis. In this case
the vector field corresponding to the stationary curves of
the accelerated coordinate system (i.e., the integral curves
of the Killing vector field) is given by the correspondence

—iHy,— ¢, = (1 + ax)é, + até,. (5

We note that by a shift of origin of the x coordinate, x’ =
x + 1/a, which gives

é,=a(x'e, +te,) (6)
a simplification of the Hamiltonian is obtained,
Hp = —akKy (7)

with H absorbed into the boost generator.

The accelerated coordinate system, which coincides
with the Cartesian coordinate system at ¢ = 0, is given
by the hyperbolic cylindrical coordinates (7, &, y, z) with
7 and ¢ defined by

t = &sinhar, x = &coshar. ®)

These coordinates are often referred to as the Rindler
coordinates [21]. The reference curve C corresponds to
& = 1/a and has proper time equal to the coordinate time
7. For the case of linear acceleration, as for all other cases
to be discussed, the accelerated coordinate system is
defined so that the hyperplanes characterized by a con-
stant coordinate time 7 correspond to planes of simulta-
neity for an observer accelerated along C.

As is well known, the accelerated Rindler coordinate
system associated with uniform linear acceleration covers
only a part of the full Minkowski space. As shown in
Fig. 1 the part that is covered includes the “right Rindler
wedge” R, where 7 increases in the positive time direc-
tion, and the ‘“‘left Rindler wedge” L, where 7 runs back-
wards in time. The presence of ‘“backward running”
stationary curves in the Rindler coordinate system is
related to the presence of negative energy excitations in
the accelerated reference frame.

Viewed from an observer accelerated along the curve C
(or any other curve with constant £) in R, the region L is
causally disconnected, since no light signal emitted from
C can reach L and no light signal from L can reach C.
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FIG. 1. The Rindler coordinate system. Dotted lines are in-
tegral lines of é; and solid lines are integral curves of €. The
thick solid line is the stationary reference curve C or the world
line of the uniformly accelerated observer.

The limiting point (hypersurface) ¢ = 0 between R and
L defines an event horizon viewed from C. The regions D
and U, which are excluded from the Rindler coordinate
system are not causally disconnected, but viewed from C
the region D lies in the infinite past and U in the infinite
future. Thus, D may be viewed as being separated from R
by a past horizon and U by a future horizon. This causal
structure of the Rindler coordinate system is the under-
lying reason that a quantum field theory restricted to the
right Rindler wedge can be defined.

The boost operator, viewed as the Hamiltonian (7) of
the accelerated frame, is different from the original
Hamiltonian in one important aspect: It has a spectrum
that is not bounded from below. [That is true not only for
the special case of linear acceleration, but for the general
case of accelerated motion described by the Hamiltonian
(1).] The spectrum is in fact symmetric under change of
sign as follows from the anticommutation relation with
space inversion,

PK, = —K,P. )

As a result a vacuum state defined as the ground state of
the Hamiltonian (7) does not exist.

Even without a well-defined ground state the free field
Hamiltonian can be written in the conventional form

H, = Zeia;ra,- (10)

with a;r and a; as creation and annihilation operators, i.e.,
which satisfy the standard commutation relations

l[a,all=8,  [a.a]=[al.all=0. (1)

1.

The operators a; can be defined as a linear combination
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of the usual creation operators associated with free par-
ticles in Minkowski space (and a; as the corresponding
linear combination of annihilation operators). This fol-
lows from the fact that the (free field) expressions for the
generators of Lorentz transformations are bilinear in
creation and annihilation operators and can be diagonal-
ized without mixing these two types of operators.

With the Hamiltonian written in the form (10) a (gen-
eralized) vacuum state can be defined as the state anni-
hilated by the operators a;,

a;|0y =0, 12)

and the full space of states can be generated in the
standard way by repeated application of the creation
operators on the vacuum state. The operators a;f create
excitations (particles) with energy €; with reference to
the accelerated coordinate frame, and since |0) is not the
ground state of the Hamiltonian, excitations both with
positive and negative energy €; can be created from the
vacuum state |0). Note that when the operators a; are
defined as linear combinations of the standard
(Minkowski space) annihilation operators, the general-
ized vacuum of the accelerated frame is identical to the
ordinary Minkowski vacuum.

B. The transformed vacuum

In the above description of the field theory vacuum no
particles are present in the physical (Minkowski) space.
The Unruh effect in this picture is understood as due to
processes where the accelerated detector is excited by
emitting negative energy particles. However, the symme-
try of the spectrum of H, between positive and negative
values allows alternative definitions of the vacuum state
and the particle excitations. A particular choice gives rise
to the Fulling-Rindler vacuum, where all excitations
restricted to the right Rindler wedge R have positive
energy. In this picture the Minkowski vacuum state con-
tains particles relative to the accelerated vacuum state
and the Unruh effect is described as due to absorption of
such (positive energy) particles.

To discuss this point we focus on the field operator of
the (real) Klein-Gordon field. When expressed in terms of
the Rindler coordinates, it can be written as

$(& 3.2 1) = Yl fi(€y. a; + SfI(E y, D)af]

13)

with (€, , 2), a;, and f7(&,y, z) as stationary solutions
(with respect to 7) of the Klein-Gordon equation,

1
| et + 402+ (&~ ) |fEna =0, (14
To simplify the notation we have labeled the solutions f;
with a single (discrete) index i, which in reality should be
replaced by a set of (continuous) momentum-energy var-
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iables that specify the solution. The solutions can be
separated into those with positive norm and those with
negative norm with respect to the scalar product of the
(classical) Klein-Gordon field, which in Rindler coordi-
nates has the form

kY= i j a%[f*(f, 3 28, h(£, 7. 2)
— 3.1 (& y, Dh(E y, 2)]dédydz. (15)

Consistency between the requirement of standard com-
mutation relations for a; and a;f and canonical commuta-
tion rules for ¢ and its conjugate momentum implies that
in the expansion (13) the functions f; are positive norm
solutions and correspondingly f; are negative norm solu-
tions. Note that positive norm no longer corresponds to
positive frequency, as is the case for Minkowski space
quantization.

In the sum included in Eq. (13) the energies €; take
both positive and negative values. Because of the sym-
metry of the spectrum it can, however, be rewritten as a
sum only over positive energies in the following way:

Z {le7* 7 fi(& v, 2)a;

i(e;>0)
+ e+iEiTgi(§J A Z)bi] + [eieirf?('f’ Y, Z)a;'r
+ e igI(&, y, )bl T}

= > {efilé,y, 2a; + g](€, 7, 2)b]]

i(€;>0)
+ ST fH(E, v, 2)al + gi(€,y, )b}
(16)

D&y 2, 1)=

In this expression we have explicitly separated out the
negative energy solutions, which we refer to as g;, and
introduced the notations b; and b;r for the corresponding
annihilation and creation operators.

Since the operators a; and b;r have the same time-
dependent prefactor, a Bogoliubov transformation may
be performed,

a; = d;coshy; + l;;r sinhy;,
M i (17)
b} = d;sinhy; + b/ coshy;.

The transformed operators @; and 5; and their Hermitian
conjugates satisfy the same commutation relations as the
original creation and annihilation operators and the field
operator expressed in terms of the new ones has the same
form as before,

$&y. 5= {eFiE Y, Da + (€ ¥, Db

i(€;>0)
+ & FH(E v, DAl + gi(E v, Db T
(18)
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with transformed fields

Fi(& v, 2) = fi(& y, 2) coshy; + g5 (& y, 2) sinhy;,

gi(& v, 2) = fi(& y, 2)sinhy; + g,(& y, 2) coshy;. (19)

A new generalized vacuum state may be defined rela-
tive to the transformed operators,

aloy=0,  5l0)=0, (20)

and this is different from the Minkowski vacuum due to
the mixing of creation and annihilation operators. In fact
a continuum of different vacuum states can be defined in
this way, but like the Minkowski vacuum they generally
suffer from the defect that both positive and negative
energy excitations (of the accelerated Hamiltonian) may
be created from the state |0). The Minkowski vacuum will
now contain field quanta relative to the transformed vac-
uum and for a detector that is stationary in the accelerated
frame there will therefore be two sources for excitations.
The detector can either be excited by absorbing positive
energy quanta or by emitting negative energy quanta.

A particular transformation can be chosen where all
negative energy field quanta are located beyond the event
horizon, i.e., in the left Rindler wedge L (¢ <O0). This
gives rise to the Rindler or Fulling vacuum, which is a
true vacuum state in the sense that it is the ground state of
H, provided all states are restricted to the right Rindler
wedge R. This possibility can be viewed as due to the
symmetry of the theory under PCT, which gives rise to a
relation between the functions f; and g; on the two sides
of the horizon [18—20]. We will give a simple demonstra-
tion of this.

The PCT transformation 6 acts on the field operator in
the following way:

0¢(§r ¥, 3 7-)0_1 = d)-i-(_é:r - 3 T)~ (21)

Like the parity operator, # anticommutes with the boost
operator and therefore maps positive energy solutions into
negative energy solutions,

061,071 = bi’ Hblﬂfl = a,. (22)

Since 6 acts as an antilinear operator this gives the
following relation between the functions f; and g;:

gi(& y,2) = fi(=€ —y, —2). (23)

We further note that the definition of the Rindler
coordinates implies that the strong space-time reflection
PT can be performed either by an inversion & — —¢
(together with y — —y, z — —z) or by an analytic con-
tinuation 7 — 7 * 7ri/a. This is related to the fact that PT
can be viewed as a complex extension of the Lorentz
transformations (which here induce translations in 7)
[22]. As a result f;(—& —y, —z) can be related to
fi(&,y,z) by an analytic continuation of the full time-
dependent solution of the Klein-Gordon equation.
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Since the operators a; and b; have been introduced
without mixing the original Minkowski space annihila-
tion operators with creation operators, this means that the
corresponding functions f; and g; include only positive
frequency components with respect to Minkowski time.
We can therefore expand f; as follows:

eI = [ dpE(Ee o T,

= [ @pFipreiro e

X e*if(wp sinhat— p, coshar) (24)

with @, = y/p? + m*. A similar expression is valid for
g;. For a complex extension 7 — 7 + i1/a, the change of
the exponential factor is

e—if(w,, sinha7—p, coshar) _, e—i§ cosH(w ), sinhar—p, coshar)

X ef sim?((up coshat—p, sinhar) (25)

where the last factor determines whether the integral (24)
is convergent or divergent for large p. Since w, > p,
convergence implies that for positive ¢ the Rindler time
7 should be analytically continued in the lower complex
half plane, while for negative £ it should be continued in
the upper half plane. With this prescription for the ana-
lytic continuation of the solutions to the space-time in-
verted point we find

fi(_f’ - _Z) = e_é’w/afi(fy Y, Z),
gi(—=& —y, —2) = esg, (&, y, 2),

£>0,

£>0, (26)

which, together with (23), finally leads to the following
relations between f; and g; in the same Rindler wedge:

filé v, 2) = etamlagi(é, y,2), £€>0, N
fi(fr 2 Z) = e_Eiﬂ'/ug?('f’ Y, Z), §<0
Thus, if we define transformed fields as
- . €, -1/2
R I G
—e < m2g% (€, y, 2)],
(28)

- . €;m\"1/2
iy 2= smh( 2’a > [eteim/2ag,(& y,2)

—e ST (£, y, 7)],

corresponding to a transformation of the form (19) with

e+s,-77/2a e—s,-7r/2a
coshy; = ————, sinhy; = ————,
1/2 sinh(%7) 4/2 sinh(%7)

(29)

then the transformed field f; vanishes identically for £ <
0 and g; vanishes identically for & > 0. Thus, for this
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value for the transformation parameter y; the field modes

of the two sides of the horizon are completely decoupled.
In terms of the new creation and annihilation operators

Minkowski vacuum contains (particle) excitations,

¢eimla 1

2sinh(E0)  g2mela — 1
(30)

The expression corresponds to a thermal Bose-Einstein

distribution over the excited levels, with temperature
given by

<6~l;ra~i>M = Sinthi<bib,]L>M =

a
kgT, = — 31
Bta 2T ()

which is the Unruh temperature.

IV. PLANAR MOTION WITH ACCELERATION
AND ROTATION

We now consider motion along stationary world lines
where the acceleration is no longer linear. In these cases
the comoving, Fermi-Walker transported frame will be
rotating relative to an inertial rest frame. Thus, w # 0,
and the general Hamiltonian is given by (2). We restrict,
in this section, the motion to be planar, with the
Hamiltonian given by

Hy=H—aK, — /.. (32)

It is convenient to simplify the Hamiltonian by making a
boost in the y direction in addition to a shift of origin in
the x direction. With B as the velocity parameter the
transformation from the lab frame to the boosted coor-

dinates is
a
2 20

a
=z =y py)

Y=y -pB) X =x+

(33)

and the Hamiltonian expressed in terms of operators of
the transformed frame is

Hp = 7[— wc(;__jf)H' + “’6(1‘2‘ — Z))Z’B)Py/ —(a
— Bw)K, — (0 — Ba)JZ/} (34)

with Py as the translation operator in the y’ direction.

We note that when a > w the velocity parameter can be
chosen as B = w/a so that the coefficients of H, and J,
vanish. The Hamiltonian then simplifies to

w
HOZ_VCZZ_Q)ZKX/+—2 2Py/,
va: — w

a> w.

(35)

If instead a < w it can be chosen as 8 = a/w so that the
coefficients of K, and Py vanish. The form of the
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Hamiltonian then is

w
———H' —VJw? —dJ,
2_ 2 <
[ a

H, = a>w. (36)
We shall discuss these two cases separately. For simplicity
we suppress in this section the z coordinate, since the
motion is restricted to the (x, y) plane.

A. Accelerated coordinates for planar trajectories
with rotation

1. The case a > w

The stationary curves generated by the time evolution
operator (35) are described by the (tangent) vector field
éy (37

> - > @
é,=Va* - &*('é, +1é,)) - ——=¢,
[ —

which is here expressed in terms of the coordinates of the
boosted inertial frame. The expression shows that the
trajectory projected on the (¢, x') plane is the same as
for hyperbolic motion, i.e., for linear motion with con-
stant proper acceleration. In addition there is motion in
the y’ direction, and measured with the time coordinate 7
of the accelerated frame, this component of the motion
corresponds to a drift with constant velocity. However,
measured with the inertial time ¢ the velocity in the y’
direction will slow down with increasing || due to time
dilatation. This means that asymptotically (for #/ — *o0)
the motion will be dominated by the x' component.

It is interesting to note that there is no rotation involved
in the motion as seen from the boosted inertial frame. The
rotation of the curve, as measured in the local inertial rest
frame, can be seen as due to composition of boosts in two
different directions, in the x’ direction and in the y’
direction, when transforming to the rest frame of the
stationary curve.

The decomposition of the motion in the x’ and y’
directions motivates the introduction of a new set of
Rindler coordinates which are adjusted to the component
with linear acceleration in the x’ direction,

t = ¢ sinhva® — w?7, x' = & coshva?® — w7
(38)

In terms of these Rindler coordinates the vector field (37)
takes the form
¢, =@ — 0y iy (39)
a )

Since we now in reality are working with four different
coordinate systems, we make the following reminder:
The original inertial frame with coordinates (7, x, y) co-
incides with the inertial rest frame of the accelerated
world line at time ¢ = 0. If we denote by (7, & 1) the
accelerated coordinates, we may therefore identify & with
x and i with y at t = 7 = 0. The boosted inertial frame,
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with coordinates (¢, x/, y'), moves with constant velocity
along the y axis. This frame is useful since it decomposes
the motion in two independent components in the x’ and
y' directions. Finally the Rindler coordinate system, with
coordinates (7/, &, y'), is the rest frame of the x compo-
nent of the motion. It is not identical to the accelerated
frame of the stationary orbit, since it does not take into
account the motion in the y direction. We note that the z
coordinate is common for all coordinate systems since all
motion takes part in the x, y directions only.

The reference orbit C is defined as the stationary curve
where the coordinate time 7 coincides with the proper
time, i.e., é, - é, = — 1. From the expression (38), we find
the Rindler coordinates of this orbit to be, when expressed
with the proper time 7 as curve parameter,

dr=r )=t
a®— w

(40)
@

1) = — ———T,
y 2 — ol

z(7) = 0.

The £ coordinate is constant, but there is a constant drift
in the y’ direction.

The causal structure of space-time as seen from the
accelerated orbit is most easily discussed in the boosted
inertial frame. Since the asymptotic behavior of the sta-
tionary curve is dominated by the x component of the
motion, there are event horizons located in the same
positions as for linear accelerated motion. There is a
past horizon at x’ = —ct’, so that no light signal emitted
from the accelerated orbit can reach points with x' <
—c?', and there is a future horizon at x’ = c# so that no
light signal emitted from a point x’ < —c#' can reach the
accelerated orbit. The location of these horizons in the rest
frame of the accelerated orbit can be found by use of the
identification of space coordinates of this frame with
those of the (original) inertial frame at ¢t = (0. The
Lorentz transformation (33) gives the locations at

\/W<

n==+ §+a2f‘w2>, @1

where “+” gives the past horizon and “—" gives the
future horizon. Note that this expression is valid not
only for 7 =0, but for all 7, since the situation in the
accelerated frame is stationary. In the same way as for the
horizon of a linearly accelerated orbit the horizons here
correspond to singularities of the accelerated coordinate
system, where the time coordinate is ill defined.

Since the accelerated frame is rotating, there exists a
static limit in this coordinate system. This is the limit
where physical objects can be stationary with respect to
the coordinate system. Beyond the static limit the sta-
tionary curves become spacelike rather than timelike.
The location of the static limit can be found by consider-
ing the norm of the coordinate vector &, as a function of
the coordinates,
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57'27—:27—/'5714‘42 22/'5/
a” — w

2

w
— (a2 _ w2)(x'2 _ tIZ) - 5.
a— w

(42)
The norm changes from negative to positive at the static
limit. In order to find its location in terms of the coor-
dinates of the accelerated frame, we again make use of
the fact that the coordinates (&, ) coincide with (x, y) for
t = 0 (or equivalently for 7 = 0). By use of the Lorentz
transformation (33) we find for r = 0 [and with (x,y)

replaced by (&, 1)1,

612—(1)2

The scalar product vanishes for

(L e ) oo o

0]

This defines a hyperbola in the (& n) plane, with the
event horizons as asymptotes. Viewed from the stationary
orbit C, which is given by (&, ) = (0, 0), the event hori-
zons are located behind the static limit (see Fig. 2).

We note that when w — 0, where the case of the linear
acceleration is recovered, both the event horizons tend to
the same straight line £ — —1/a and the static limit
merges with the horizons.

When the rotation instead increases and w — a, the
distance to both horizons goes to infinity and they there-
fore disappear from the (&, ) plane. The static limit on
the other hand stays at a finite distance and changes to a
parabola.

2. The case a < w

In this case the (accelerated) time translation operator
is given by (36) and the corresponding vector field is

> w > > >
¢, =——=—=0¢y tVo? —d’(¥é, —y'é,). (45)
[0? — &2

This describes circular motion, as can be seen explicitly
by changing to cylindrical coordinates

x' = rcosé, y' = rsin6, (46)
which gives
> w > >
€r = F=>—=¢é + Vw? — d?é,. 47
w-—a

At 7 =0, the reference curve C is located at x' =
—a/(w* — a?), corresponding to r = a/(w? — a®) and
6 = . Expressed as a function of the proper time coor-
dinate 7, the trajectory is
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A"

past horizon

static [imit

/

future horizon

FIG. 2. Event horizons and static limit in the accelerated
frame. The stationary reference curve C corresponds to the
origin O. The two directions in the plane correspond to the two
spacelike directions where ¢ coincides with x of the fixed
inertial frame and 7 coincides with y for t = 0. The distances
to the horizon and to the static limit are determined by the two
parameters a and w.

0 =7+ Vo? — d’r. (48)

This space-time curve describes motion in a circle of
radius r = a/(w?> — a®) with angular velocity Q =
(w? — a?)/ w relative to the boosted inertial frame.

In this case there clearly is no event horizon since the
orbit is restricted to a bounded region of space, so that a
signal from an event anywhere in space will be able to
reach the space-time curve and any space-time point can
be reached by a light signal from a point on the curve.
However, also for circular motion there is a static limit
defined by the accelerated coordinate system. The norm of

the vector ¢, now is
w2

w2_a2

é.-¢é,= — rX(w? — d?), (49)
hence, é, becomes spacelike for r > w/(w? — a?), which
is the radius where the velocity of the rotating coordinate
system exceeds the velocity of light. The location of this
static limit in the accelerated coordinates can be found in
the same way as before, that is by performing a boost to
the inertial frame that coincides with the rotating frame
at t = 0 and by making the identification (x, y) — (&, 1)
for + = 0. The location is determined by

w
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FIG. 3. The static limit for different values of w/a as seen in
the accelerated coordinate frame. There is a continuous change
from w < a to w > a. From left to right the curves in the (&, 1)
plane correspond to w = 0 (straight line), @ = 0.3a (hyper-
bola), w = a (parabola), w = 1.2a, and w = 1.4a (both ellip-
ses). The coordinates are measured in units of 1/a.

which is the equation for an ellipse, with the major semi-
axis in the & direction and the minor semiaxis in the 7
direction. We can interpret this shape of the static limit, as
a deformation of a circle of radius w/(w? — a?) in the
(x/, ¥') plane. The deformation is due to the length con-
traction in the y’ (or n) direction introduced by the trans-
formation to the rest frame of the accelerated trajectory.

From the above discussion it follows that there is a
qualitative difference between the cases a > w and a <
. In the first case the (3-)space projection of the accel-
erated trajectory is unbounded in any inertial frame, and
the asymptotic behavior implies that event horizons exist.
In the latter case, the motion is bounded and can be
viewed as circular motion in a properly chosen inertial
frame. No event horizons exist in this case. The limiting
case a = w can be reached from both sides. Viewed as a
limiting case of circular motion it corresponds to the
ultrarelativistic limit where the velocity of circulation
tends to the velocity of light.

One should note, however, that this qualitative differ-
ence has mainly to do with the asymptotic form of the
space-time curves as viewed from an inertial frame. For a
finite time interval, or viewed in the comoving frame,
there is no singular behavior at the point a = w. This is
demonstrated in Fig. 3 where the static limit, as viewed in
the accelerated coordinate system, is shown for several
different values of w/a. The static limit changes contin-
uously from a hyperbola (with the event horizons as
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asymptotes) for a > w through a parabola for a = w to
an ellipse for a < w.

B. Vacuum states in the accelerated frame

We first consider the case a > w with the Hamiltonian
given by (35). We note that since K,» and P, commute, the
eigenstates of the Hamiltonian H can also be chosen as
eigenstates of the boost operator K, and the translation
operator Py. This means that the Hamiltonian can be
diagonalized in the same way as for linear acceleration.
Thus, also for w # 0 and @ > w there exists a continuum
of possible vacuum states that are connected by‘

A/sinh(7 Q) e*iﬂmﬂr’ei(k),/)"‘*'kzz)KiQ(Eé‘:/), &>0,Q0>0,

Fapale, €.,9 =25

]

where the index i here is specified as the set of eigenvalues
Q, ky, and k, of the operators K,;, Py, and P_, and the

parameter = is
E =K+ +m (52)

with m as the mass of the Klein-Gordon particles. The
function K;n, which is a solution of the Klein-Gordon
equation in Rindler coordinates (14), is a modified Bessel
function (a MacDonald function of imaginary order) [23].

Even if the wave functions are the same as for linear
acceleration one should note an important difference. For
linear acceleration the restriction of the wave functions to
the accessible side of the event horizon will at the same
time be a restriction of the energies to positive values.
Here this restriction means that ) > 0 for the relevant
eigenvalue of the boost operator. However, this eigenvalue
is no longer proportional to the energy eigenvalue, since
the energy also gets contribution from Py. The eigenval-
ues of H, are

e=Vad - 0?0+ -2k, (53)
a’ — w?

For sufficiently large negative k, the last term will domi-
nate the first term and give a negative energy eigenvalue.
It is of interest to note that these negative energy
solutions will essentially be located between the event
horizon and the static limit. To see this we first note that
the static limit of the accelerated coordinate system, as
well as the horizons and the reference curve C, has fixed
&' coordinates, even if the Rindler coordinate system does
not define a rest frame for the accelerated observer. Thus
both horizons have Rindler coordinate &,, = 0, the static
limit is located at £;;, = w/(a*> — w?), and the accelerated
observer is located at & = a/(a®> — w?). We next note that
the energy eigensolutions (51) have an oscillatory behav-
ior for small &' but are exponentially damped for large £&'.
As shown by the Klein-Gordon equation the transition
point between the two types of behavior is &, = Q/E.
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Bogoliubov transformations which mix creation and an-
nihilation operators. We focus again on the particular
transformation that separates the field modes on the two
sides of the horizons. The field modes f; corresponding to
negative eigenvalues of K are the relevant ones for the
reference curve C in the right Rindler wedge, since these
are the ones that have positive norm on that wedge. We
denote these eigenvalues by —(), with () > 0.

The field modes f; can be identified with the corre-
sponding modes previously discussed, except that they
are now functions of the new Rindler coordinates
(7, &, y', z). The explicit form is

(51)
£<0,0>0,

|
For negative energy states we have Q < |k,|w/(a*> — w?),

as follows from (53), which implies the inequality
Eho < &1y < &4 (54)

Thus, the negative energy solutions are mainly located
behind the static limit, but this is not fully so due to the
exponential tail of the wave functions, as illustrated in
Fig. 4. The penetration of the negative energy states into
the physical region of the accelerated frame is important
for excitations of an accelerated detector. The modes can
contribute to the excitations since negative energy quanta
can be emitted into the modes by the detector.

To summarize, for accelerated orbits which involve
rotation in addition to acceleration, event horizons exist
as long as a > w. In the same way as discussed for linear
acceleration the field modes can be defined so that they
are restricted to one side of the horizons. This will in-
volve a Bogoliubov transformation of the Minkowski
space creation and annihilation operators. The trans-

static limit observer

0.04
0.02
&I
2 04 06 038 1 1.2 14
-0.02
-0.04
FIG. 4. Stationary solution of the Klein-Gordon equation in

the Rindler coordinates. The figure shows a solution with
energy € = (0 for the Hamiltonian of the accelerated coordinate
system. For all negative values € < 0 the solutions have only
exponentially decaying tails on the physical side of the static
limit.
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formed vacuum state is then the Fulling-Rindler vacuum
associated with uniform acceleration of the x' component
of the space-time trajectory. However, the Fulling vac-
uum is not a true vacuum state since there now are
negative energy states present in the right Rindler wedge.
Thus, the negative energy states are no longer restricted to
the space-time region behind the horizons, as it is for
linear acceleration. On the other hand these states are
mainly located behind the static limit, but this region is
not causally disconnected from the reference curve C.
The presence of negative energy states implies that the
Hamiltonian does not have a well-defined ground state
even after separating the modes behind the horizons from
those in front of the horizons.

Even if the Fulling vacuum is no longer a true vacuum
it is convenient to refer to this state and the corresponding
excitations in the description of the (generalized) Unruh
effect, since the modes that are causally disconnected are
explicitly removed from the description. As already dis-
cussed there are now two sources for excitation of an
accelerated detector. The detector can be excited by ab-
sorbing positive energy excitations (which are present
when the Minkowski vacuum state is expressed in terms
of Rindler space excitations) and it can be excited by
emitting negative energy excitations. This situation is
quite analogous to the situation of a stationary detector
close to the static limit of a rotating black hole. In that
case the latter process, emission of negative energy ex-
citations has a classical analogy in the Penrose effect [24],
where a physical system can gain energy by placing an
object into one of the negative energy orbits between the
static limit and the horizon.

We now turn to the case w > a, which we will discuss
more briefly. The Hamiltonian of the accelerated frame
gets the simple form (36), which is composed by the
Minkowski space Hamiltonian H and the rotation gen-
erator J,. Since these two operators commute, due to
rotational invariance, the eigenstates of the accelerated
Hamiltonian H, are the same as those of the Minkowski
space Hamiltonian, when these are expressed as angular
momentum states. The energy eigenvalues have the form

€ = \/%E - \/Cl)2 - azmz, (55)

where E is the eigenvalue of H and m, the eigenvalue
of J,.

In this case there are negative energy solutions when m,
is sufficiently large compared to E. This means that
Minkowski space is no longer the ground state of the
Hamiltonian and there is no other true vacuum state.
For a < w there is no event horizon, as we have already
discussed, but there is a static limit, and again one can
show that the negative energy solutions have an oscilla-
tory behavior outside the static limit, but are exponen-
tially damped inside. Related to the disappearance of the
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event horizons there is a lack of symmetry between
positive and negative eigenvalues in the spectrum of H,
(55). Thus, there is no longer a freedom of mixing creation
and annihilation operators when the Hamiltonian is di-
agonalized. In this sense we are stuck with the standard
creation and annihilation operators. This means that
Minkowski space contains no excitations (relative to
these operators) and the excitation of a detector that is
accelerated in a circular orbit is therefore (as described in
the accelerated frame) only due to the emission of nega-
tive energy quanta.

We will however again stress that the qualitatively
different descriptions of the cases a > w and a < w are
due to the difference of asymptotic behavior of the accel-
erated orbits. In reality the excitation (and deexcitation)
of an accelerated detector reaches equilibrium in a finite
time determined by a and w, and the asymptotic form of
the curves is therefore less important. This means that the
excitation spectrum changes continuously when w is
changed through the value w = a, and we will show
this explicitly in the next section.

V. PARTICLE DETECTORS AND
THERMODYNAMICS

For linear acceleration the Minkowski vacuum state
has the form of a thermally excited state of temperature
T, = a/(2wkg), when the state is expressed in terms of
the Fulling field quanta. This representation of the
Minkowski vacuum, as a hot state, has relevance also
for (planar) accelerated motion with rotation, when a >
w and therefore event horizons exist.

To examine the interpretation of the Minkowski vac-
uum in the accelerated frame when w # 0, we return to
the Bogoliubov transformation (17) that relates the
Minkowski and Fulling field quanta. The corresponding
transformation between the vacuum states is

|OM> — :]Ce_zi tanh,y,-iz;rl;if |OF>’ KX = e—ziln(cosh,\/,-)’

(56)

where K is a normalization factor and |0,,) is the
Minkowski vacuum state. |0p) is the Fulling vacuum
state, which is the state annihilated by the operators d;
of the right Rindler wedge as well as the operators b; of
the left Rindler wedge. The corresponding field modes we
again label by the index i. With the parameter y; specified
by (29) the Minkowski vacuum state can be written as

10, = Ke~ 2 “"al5l|0,)
o] _l n; 5
= j(l_[ Z (=1 e*n,»ﬂ,vard;f”ib;fnil()I»

I’li!

i n;=0
= g(l_[ Z (=D)mie "%, ) ® |ngg), (57)
i n;=0

where 7; is the occupation number of the ith mode, either
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in the right Rindler wedge, denoted by R, or in the left
Rindler wedge, denoted by L. This expression for |0,,) is
valid for linear as well as for nonlinear acceleration (w #
0), since it is expressed in terms of the eigenvalues —(); of
the boost operator rather than the energy of the field
modes. The sum is only over the positive values of ().

When the Minkowski vacuum state is expressed only in
terms of the field modes of the right Rindler wedge,
which are the relevant ones for a detector following the
reference orbit C, it takes the form of a mixed state rather
than a pure state. In the expression above this follows
from the form of |0,,) as an entangled state between the
subsystems associated with the left and right Rindler
wedges. The corresponding reduced density operator,
where the states of the left Rindler wedge are traced
out, has the form

pr = Tr.[10y){0p]
=[] (1= e )e ™ ng)npgl. (58

i n;=0
For linear acceleration, with ); = €,;/a, where ¢; is the
energy of the ith mode, the density operator has the form
of a thermal distribution over energy eigenstates and is
consistent with the Bose-Einstein distribution discussed
earlier in the paper.

Our main object is now to discuss how this thermody-
namic interpretation is changed when @ # 0O and there-
fore the relation between the boost eigenvalues and the
energy eigenvalues is changed. There are two different
points of view we may take.

The first point of view is to describe the excitation
probabilities for an accelerated detector, in this case
too, as seen in the Rindler coordinate frame and not in
the rest frame of the detector. Compared with linear
acceleration the relation between (); and the energies of
the field quanta then is changed only by the substitution

2_ 2 2
a — u = p_, (59)

a a
where the last expression is the proper acceleration of the
projected orbit, which is restricted to the (x/,¢) plane.
Thus, in this picture the Minkowski vacuum state is a
thermal state, in the same way as for linear acceleration,
and all field excitations restricted to the right Rindler
wedge have positive energy. A detector accelerated along
the orbit C will be excited by the field quanta which are
present in this state, but the excitation spectrum will not
be thermal since the detector moves through the “gas” of
excitations. This motion is a constant drift in the y’
direction. This description fits the point of view of
Letaw and Pfautsch who refer to the vacuum state of all
planar orbits with @ > w as being identical to the Fulling

vacuum [8].

The second point of view is to describe the Minkowski
vacuum state in the accelerated frame, which at all times
is the rest frame of the stationary orbit C. When restricted
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to the space-time region outside the horizon, this state is
also now described by the reduced density matrix (58),
but the relation between the boost eigenvalues (); and the
energies €; of the Hamiltonian H, is

1 )

O =—¢€ — —ky; (60)
p p

where ky; is the eigenvalue of the translation operator P,

in the mode i. Expressed in terms of the variables of the

accelerated frame the density operator of the Minkowski

vacuum state is

o —Qa/pnle—(w/p)k,]
PR = |:K|21_[ Z € o P |n;gXnigl

i n;=0

— |Klze—(27T/p)[Ho—(w/p)Py/]’ (61)

where the operators H, and P, are restricted to the space
of states defined outside the horizons (on the right Rindler
wedge).

The trace of the reduced density operator may be in-
terpreted as the partition function for a statistical en-
semble, where the exponent of the expression (61)
specifies the thermodynamic potential. One notes that
the potential gets contribution not only from the energy
but also from the conserved momentum in the y’ direc-
tion. However, Py is not the momentum operator in an
instantaneous rest frame of the accelerated orbit.
Therefore it introduces translations not only in the space
direction of the accelerated frame, but also in the time
direction. For this reason it may be natural to replace it by
another symmetry operator 2 of the accelerated frame,
defined by

Py = 3(? - 3H0>. (62)
= p

This is a transformed symmetry operator related to the
momentum operator in the inertial rest frame (att = 7 =
0). Note however that the transformation (62) is not
identical to a Lorentz transformation to the rest frame,
since the accelerated Hamiltonian H, rather than the
Hamiltonian H of the inertial rest frame enters in the
expression. At the position of the accelerated observer P
coincides with the translation operator P, of the rest
frame, but P, is not a symmetry operator, and the full
expression involves also generators for rotations and
boosts,

0)2
P =P~ wK, ~ . (63)

Expressed in terms of the symmetry operator P the

density operator has the form

P = |:]<|26—(277a2/p3)[H0—(w/a)'P]_ (64)

This we may read as defining a thermodynamic state of a
gas with a nonvanishing temperature and drift velocity.
The coefficient of the thermodynamic potential deter-
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mines the (vacuum) temperature 7, as

3 3/2

p a w
kpT,, = =2 (1-2)"
Brao 5 ma? 27T< a)

This temperature is not identical to the temperature
p?/2ma of the (vacuum) gas as measured in the Rindler
coordinate system (i.e., on the projected, linearly accel-
erated orbit). There is a factor %, which we interpret as a

(65)

time dilatation factor. This factor is introduced by the
Lorentz transformation between the rest frame of the gas
and the rest frame of the accelerated orbit.

The coefficient of the conserved momentum P repre-
sents the velocity of the vacuum state relative to the
detector (in Ref. [25] referred to as a ‘“‘chemical poten-
tial”),

1)

(66)

Vi .
a
One should however note that the physical interpretation
of this term is somewhat ambiguous, since 2 is not a pure
translation operator, but involves also rotation and boost.
Thus, in the rest frame the motion of the ‘““hot vacuum
gas” is not simply a linear drift [26].

It is of interest to note that even if the two operators H,,
and P have spectra that are unbounded from below, the
specific combination that appears in the density operator
has a spectrum that is bounded from below. Thus, the
coefficient of P is not a parameter that can be changed
arbitrarily, since only for the value given in (66) will the
density operator be normalizable and therefore give a
well-defined thermodynamic state. One way to view
this is that when the drift velocity is introduced for the
thermal “vacuum gas,” in terms of a nonvanishing value
of w, this will change the thermodynamical potential not
only explicitly through a change in the coefficient of 2,
but also indirectly through the change in the Hamiltonian
H [27]. The prefactor that determines the temperature,

on the other hand, can be changed without a similar
\

Ol OO = ‘f(%)
-3 ]a(7)

where in the last line we have made use of the expression
(30) for the expectation value of the product of an anni-
hilation and a creation operator (with €;/a replaced by
;). The corresponding expression for the transition rate
is

2
(1 _ 672770,)71

re-2er 1)

X[a(gnm - ei)e_zﬂ—ﬂl + S(gnm + 61’)]' (70)
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consistency problem. In particular, if 7,, — 0 without
changing the operator H, — v,, P (i.e., neglecting the
true coupling between these variables), the thermody-
namic state (64) will continuously change from the
Minkowski vacuum state to the Fulling vacuum state
restricted to the right Rindler wedge.

We will now relate the discussion of the vacuum state
to the response of an accelerated detector. To this end, we
use a simple de Witt-type detector (see, e.g., [28]), which
has the following transition rate from an energy level £,
to another energy level &,,:

Lo = T [ dre 7Ol SN (IO,
(67)

where T, is the squared matrix element for the tran-
sition between the two levels, £, =&, — &, is the en-
ergy difference between the final and initial state, and
x(7) is the space-time position of the detector at
proper time 7. In the above expression we have used
time translation invariance of the vacuum correlation
function, G* (T, T+ 7)= (04| d(x(1)p(x(T + 7))|0y) =
(041 d(x(0)) p(x(7))|04,) = G* (7), which is due to the sta-
tionarity of the trajectory.

Since the region behind the horizons (in the left Rindler
wedge) is causally disconnected, only the component of
the field operator restricted to the right Rindler wedge
will contribute. This component has the form

or(e(n) = 3| e e )a + e i(%)af | o®

l

In this expression ¢; is the field energy as measured in the
rest frame of the detector and the function f,;(¢) is the
&'-dependent part of the stationary field solution, given by
the modified Bessel function in Eq. (51). (The detector is
located at position ¢ = a/p>.) For the correlation func-
tion of the field along the accelerated trajectory this gives

2 . .
[e”f”<d,»*d,~>M + e””@ﬁj)M]

2 —i€;T 1 i€;T 1
[e i T + e'si - 6*2770,} (69)

\

The term proportional to 8(&,, — €;) corresponds to
absorption of a field quantum of energy €; while the
term proportional to &(&,,, + €;) is an emission term.
For linear acceleration, with €; = a{}; > 0, transition up
in energy only gets a contribution from the absorption
term and transition down in energy only gets a contribu-
tion from the emission term. The ratio between these two
rates then is simply given by the factor exp(—27(;) =
exp(—27E,,,/a), and for an equilibrium situation this
gives the ratio between the probabilities of occupation
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of the two levels. This ratio has the form of a Boltzmann
factor corresponding to the Unruh temperature (31).

When @ # 0 there are two changes. Since (); =
€;/p — wky/p* is no longer fixed by the energy differ-
ence between the two levels, the term exp(—27{);) cannot
be factorized out in the ratio between transitions up and
down. This effect is due to the drift of the gas of field
excitations, which means that the probability distribution
over excited states is no longer determined only by the
energy. The second effect is due to the fact that €; can take
negative as well as positive values. Thus, transition up in
energy gets a contribution from the emission term as well
as the absorption term, and this is the case also for
transition down in energy. Both these effects tend to
make the ratio between transitions up and down more
complicated. It cannot simply be written as a Boltzmann
factor. Thus, the simple thermal probability distribution
over energy levels of the detector that is found for linear
acceleration is no longer there for the more general sta-
tionary curves.

Even if a simple Boltzmann factor cannot be extracted
in the general case, an effective temperature can be
defined by the ratio between the rates for transitions up
and down (in energy) between a pair of energy levels
[11,13]. This will be an energy dependent temperature,
i.e., it will not only depend on the parameters a and w of
the accelerated trajectory, but also the energy difference
A& between the two levels of the detector. With I'; as the
rate for transitions up and I'_ the rate for transitions
down, the effective temperature is given by

kyTurr(AE) = A81n<r). (71)
I

In Fig. 5 we have plotted this function, relative to the
Unruh temperature a/27, for some values of w/a both
with w < a and w > a. For moderate values of w/a one
notes that the energy dependence is not very strong, and
this gives support to the idea that the definition of an
effective temperature is physically meaningful. Even
when w/a is larger and increases beyond the value 1
where the event horizon of the accelerated orbit disap-
pears, there is no dramatic change. Thus, even if in the
general case a precise temperature cannot be given, a
qualitative description of the effect as heating of the
accelerated detector by the vacuum fluctuations seems
reasonable, with an effective temperature not very differ-
ent from the Unruh temperature a/27 defined by the
acceleration parameter of the orbit.

Although the analysis of the detector excitations in this
section has been studied explicitly only for the case of
a > w, the expressions for a < w will be quite analogous.
However, an important difference is that for a < w the
first term in (69) will vanish, while the second term will
give a nonzero contribution due to the existence of states
with negative €;. Thus we see that in this case there are no
excitations due to absorption of quanta with positive

PHYSICAL REVIEW D 70 084016

25 T T T T T

o5 ---0=0.99a

AE (in units of a)

FIG. 5. The energy dependent effective temperature. The
temperature is plotted as a function of detector energy for
several values of w/a and is measured relative to the Unruh
temperature a/27 defined by the proper acceleration of the
accelerated detector. One notes the continuous transition from
the cases with w < a, where event horizons exist, to the cases
® > a with no event horizon. In the calculation of the effective
temperature the integral of Eq. (67) has been evaluated nu-
merically, with the detector orbit x(7) and the vacuum corre-
lation function expressed in Minkowski coordinates.

energy, but there are excitations due to emission of quanta
with negative energy.

VL. NONPLANAR MOTION

We now turn to the general case where the motion is no
longer planar and the general form of the Hamiltonian is
given by (1) or (2), with @ - @ # 0. Since this case is
qualitatively not so different from the case of planar
motion, we will discuss it more briefly. In this case as
well, we can simplify the form of the Hamiltonian by a
Lorentz transformation. It is now done by transforming
the coefficients of the boost operator and the angular
momentum to collinear form. The transformation is, as
for planar motion, a boost in the direction orthogonal to
both @ and w (the y direction).

The transformation of the boost operator and the an-
gular momentum under a Lorentz transformation is

_ r_ Y K
K=K —-BXJ 7+lﬁﬁ K'),

J=yJ +BXK -—2-BB-1), (1)
v+ 1
which gives the following expression for the Hamiltonian
in terms of operators of the transformed inertial frame:
Hyo=vyH+B-P—(a—BXw K
—(@w+ B xa)J] (73)
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for B orthogonal to a and w. The coefficients of the two
operators become collinear if

B =

w X a

o a0 - V@2 — w2 + 4w - a)?]

(74)
We note that by a further transformation in the form of a
shift in the location of the spatial origin, the operator H’
can be absorbed in K’ and P’ can be absorbed in J'.

We specify the choice of axes for the original frame in
the same way as given by (2), with a directed (with value
a) in the x direction and with w as a vector with compo-
nents w, and w, in the x, z plane. For the transformed
frame we choose the x’ coordinate to be in the direction of
the collinear boost and axis of rotation, as specified by
(73) and (74). This direction is rotated relative to the
x axis in the x,z plane. With these choices the
Hamiltonian of the accelerated frame gets the form

Ho = y[—yla — Bw,)? + B2k,

=\(Ba — ) + w2, (75)

where S is the component of f in the direction of w X a
as given by (74), y = (1 — %) ~'/2 and the relative signs
of the two terms is determined by the sign of w - a.

This form of the accelerated Hamiltonian is not very
different from the one given by (35) for planar accelera-
tion with a > w. The main difference is that the trans-
lation operator Py is replaced by the angular momentum
operator J. This implies that the accelerated trajectory
(of the reference curve C), as seen in the transformed
frame, now is a superposition of a rotation about the x’
axis and uniform acceleration in the x’ direction. It is an
accelerated screwlike motion.

In the same way as for planar acceleration, the asymp-
totic form of the trajectory is dominated by the x' com-
ponent of the motion, and the location of the event
horizons is determined by the uniform acceleration of
the x’ projection of the reference curve. The location of
the event horizons and static limit in the accelerated
frame can be found in the same way as for planar motion,
by transformation to the inertial rest frame at time 7 = 0.
The main difference between the two cases is that there is
no longer translational invariance in the z direction, so
that the corresponding surfaces are curved also in this
direction. We do not give explicit expressions for these
surfaces, but note that the qualitative picture is the same
as before. Between the accelerated observer on the trajec-
tory C and the event horizons there is a static limit, where
the stationary curves of the accelerated frame change
from being timelike to being spacelike. Note that in the
present case there is always an event horizon, without any
restriction on the values of a and w.

Since J, commutes with K the eigenstates of the
accelerated Hamiltonian can be chosen as eigenstates of
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the boost operator, in the same way as for planar motion.
The difference is that the x/, z-dependent factor of these
states should be angular momentum states and not plane
waves. Thus, by a Bogoliubov transformation the field
modes that are located behind the horizons, as viewed
from the accelerated observer, can be separated out and
energy eigenstates restricted to the right Rindler wedge of
the boost operator K s can be defined. Also now there will
be negative energy states, and these are up to exponen-
tially decaying tails located between the horizon and the
static limit. The Minkowski vacuum state, when re-
stricted to the right Rindler wedge, is described by a
density matrix which is of the form

py = Ne 1/0H Q"] (76)

with /N as a normalization factor, 6 and £}’ given by

6= l\/(a - Bw.)? + B*w?, Q' =y(w+ B Xa).
27

(77)

When we again interpret the exponent as defining a
thermodynamic potential, the form suggests that in the
accelerated frame the Minkowski vacuum state can now
be viewed as a rotating, hot vacuum gas. However, the
operator J' is a rotation operator in the Rindler coordi-
nate frame and not in the rest frame. If we change to
operators of the inertial rest frame and parametrize the
density operator p;; of the Minkowski vacuum state in
the same way as we did for planar motion, it gets the form

Py = |j<|28*[277y/ (a*ﬁwz)erﬁzwi](Hofﬁ’P)’ (78)

where the symmetry operator 7 now is given by
P= B P (Bxw)K-[(+F)w
+B X al- J} (79)

We note that the expression for the symmetry operator in
the planar case is recovered in the limit @ - @ — 0 (when
a> w).

VIL. CONCLUDING REMARKS

We have in this paper examined the ‘“generalized
Unruh effect,” which refers to observable vacuum effects
in general stationary coordinate frames. Such a stationary
frame will be characterized both by acceleration and
rotation with respect to an inertial rest frame. In the
main part of the paper we have focused on planar motion.
For accelerated orbits, event horizons will then exist
provided the proper acceleration a dominates the angular
velocity w as measured in an inertial rest frame.

When event horizons exist, the situation is similar to
that of uniform linear acceleration. By mixing in a cer-
tain way (Minkowski) creation and annihilation opera-
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tors in the form of a Bogoliubov transformation, excita-
tions associated with the two sides of the horizons de-
couple, and a field theory restricted to the physical side of
the horizons can be defined. Relative to these excitations
Minkowski vacuum will contain excitations and can be
characterized by a thermodynamical potential which de-
pends on a vacuum temperature as well as a drift velocity
of the vacuum.

Although Minkowski vacuum can be interpreted as a
thermodynamic state, when viewed in the accelerated
frame, a stationary detector will not show an excitation
spectrum which can be expressed simply in terms of a
Boltzmann factor. There are two reasons for this. The first
one is due to the drift (and rotation) of the (thermody-
namic) vacuum state. This will give rise to nonuniversal
thermal effects like the ones seen by a detector moving
with large speed through a hot gas. The other effect is due
to the presence of negative energy quanta which are
associated with the region behind the static limit in the
accelerated frame. Thus, the detector may be excited
either due to emission of negative energy quanta or by
absorption of positive energy quanta.

For accelerations with a < w, the event horizons dis-
appear and the motion can be viewed as uniform circular
motion. Although these cases seem qualitatively different
from the ones characterized by a > w, and although
Minkowski space no longer can be viewed as a (non-
trivial) thermodynamic state, we have demonstrated the
smooth transition of the effective (energy dependent)
temperature as measured by an accelerated detector,
when the parameters are continuously changed from
one type of motion to the other.

In the case of stationary, nonplanar orbits, which can
be viewed as circular motion imposed on uniform linear
acceleration, event horizons will always exist, and quali-
tatively the description of the (generalized) Unruh effect
for this type of motion will be similar to that of planar
motion with a > w.

Finally we have pointed to the close relation between
the vacuum effects for detectors following general sta-
tionary curves in Minkowski space and for stationary
detectors close to the event horizons of massive rotating
black holes. For planar motion we in the Appendix ex-
plicitly show how the metric of the accelerated frame is
identical to the limiting form of the Kerr metric for points
close to the equator of the rotating black hole when the
mass of the hole tends to infinity.

APPENDIX: CONNECTION BETWEEN KERR
SPACE-TIME AND TRAJECTORIES WITH w # 0

In this Appendix we compare the situation of a sta-
tionary observer close to the static limit of a rotating
(Kerr) black hole with that of an accelerated observer in
Minkowski space. We show that in the limit where the
mass M of the black hole tends to infinity, space-time near
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the observer becomes flat, and the space-time trajectory
becomes identical to a stationary curve in Minkowski
space. We restrict the discussion to the case where the
observer is located close to the equator of the black hole.
In this case the space-time curve is a planar stationary
curve characterized by a constant proper acceleration a
and angular velocity @, where ¢ 1 w and w # Oand a >
. As we shall show, the two parameters a and w can be
related to the parameters of the black hole and the posi-
tion of the observer. [In the Appendix we use G = 1 for
the gravitational constant (rather than z = 1) and still use
¢ = 1 for the speed of light.]

At the equator of a rotating black hole (0 = 7/2), the
Kerr metric expressed in Boyer-Lindquist coordinates
gets the following form:

2M 2
ds* = (1 - 7)61'12 - %dr2 — r2de?
r r-+ j-—2Mr
2Mj? 4Mj
—<r2 L+l >d¢>2 + 2 ag, (A
r r

where M is the mass of the hole and j is the angular
momentum per unit mass of the black hole, usually called
a in the literature, but renamed here to avoid confusion
with the acceleration parameter. In these coordinates the

event horizon is located at r, = M — \/M? — j? and the
static limit at r;, = 2M.

We now want to show that for a space-time region
centered around a static trajectory with fixed coordinates
r>2M, 0 = 7/2, ¢ = 0 (arbitrarily chosen), there ex-
ists a mapping between the Boyer-Lindquist coordinates
of the black hole and a coordinate system of an acceler-
ated observer in Minkowski space. This mapping be-
comes an isometry (i.e., it maps the Kerr metric into the
metric of the observer following the stationary trajec-
tory) in the limit M — oo.

Since we focus on space-time points close to the static
limit we write the radial coordinate as

r=2M+gq (A2)

with ¢ as a new coordinate to replace r. The M — oo limit
we assume to be taken in such a way that g/M — 0 and
j?/M — 0. The last condition is imposed in order for the
distance between the static limit and the event horizon to
stay finite when M tends to infinity. With these approxi-
mations the metric outside the static limit is

2M
ds = SLdit — = ag® — 4Md6> — aMPdg?
q* 35
+2jdtdd (A3)

and with a rescaling of the coordinates,
t

lT: ’
2M
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it further gets the M independent form

ds®> = gdf* — ;quz — d7? — dy* + 2jdidy. (A5)
g+

To compare this expression with the Minkowski space
metric, as it appears in an accelerated frame with w # 0,
we make use of the (accelerated) coordinates (40). In
these coordinates the accelerated observer is not station-
ary, but has a constant drift velocity in the y direction
determined by the ratio w/a. To compensate for the drift
we redefine the y coordinate

F=y e’ (A6)
a®— w
so that the accelerated observer is stationary in the coor-
dinate system (7'; &', §, z). As previously discussed, the
values of the proper acceleration a and the angular ve-
locity w fix the & coordinate to be & = a/(a* — w?),
while the other space coordinates may be chosen as j =
z = 0. We note that the spatial hyperplane defined by
these coordinates is not the observer’s plane of simulta-
neity [as it is for the accelerated coordinates (7; &, 1, z)
previously used], since the direction of the time axis of
the observer is not orthogonal to the hyperplane.
However, this is not a problem, since the same thing is
true for the Boyer-Lindquist coordinates.
In the coordinates (7/; &', #, z), the Minkowski space
metric takes the form

2
ds? = (a? — w2)<§’2 _ @ i)wZ)z)dT/Z — dE? — d5?
—dz? — ———dydr. (A7)
at—w

This can be recast in a form similar to (A5) by redefining
the coordinates. Thus, if we make the following identi-
fications between coordinates:

=3 )

y=73

I =2Vd? — %7,

7=7z (A8)

and if we identify 2j with the following function of a and
w:
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(A9)

then (A7) reproduces exactly the metric (AS5) derived
from the black hole metric.

We note that the angular momentum parameter of the
black hole, 2j = w/(a* — w?) = d,,, can also be inter-
preted as the distance between the event horizon and the
static limit, as measured in the instantaneous rest frame
of the stationary observer. This follows from the expres-
sions (41) and (44) for the location of the horizon and
static limit in the accelerated frame. In the same way
a/(a®> — w?) = d,, measures the distance from the ob-
server to the event horizon. Thus the dimensionless ratio
w/a corresponds to the ratio between these two distances,
and the limiting value w/a — 1 can be obtained by
making j large compared to the distance between the
stationary observer and the static limit.

In conclusion, we have shown how to map the coordi-
nate system near a stationary observer, located outside
the static limit of a rotating black hole, to a Minkowski
space coordinate system where an accelerated observer is
at rest, and to show that in the limit M — oo the mapping
is an isometry. The two parameters a and w of the
accelerated orbit we have related to the angular momen-
tum j of the black hole and the distance from the static
observer to the event horizon.

The mapping between these two seemingly different
situations indicates that the (generalized) Unruh effect
associated with motion along stationary space-time
curves in Minkowski space is of similar form as the effect
measured by a stationary detector outside the stationary
limit of a massive rotating black hole. However, a more
detailed discussion of this point depends on showing in
what sense the Minkowski vacuum state is the natural
vacuum state of the black hole in the limit M — oo.

ACKNOWLEDGMENTS

J. M. L. thanks the Miller Institute for Basic Research
in Science for financial support and hospitality during his
visit to UC Berkeley. Supports from the Research Council
of Norway and the Fulbright Foundation are also
acknowledged.

[1] W.G. Unruh, Phys. Rev. D 14, 870 (1976).

[2] S.A. Fulling, Phys. Rev. D 7, 2850 (1973).

[3] P.C.W. Davies, J. Phys. A 8, 609 (1975).

[4] S.W. Hawking, Nature (London) 248, 30 (1974).

[5]1 S.W. Hawking, Commun. Math. Phys. 43, 199 (1975).

[6] G. Denardo and R. Percacci, Nuovo Cimento B 48, 81
(1978).

[7] J.R. Letaw and J. D. Pfautsch, Phys. Rev. D 22, 1345
(1980).

[8] J.R. Letaw, Phys. Rev. D 23, 1709 (1981).

[9] J.R. Letaw and J.D. Pfautsch, Phys. Rev. D 24, 1491
(1981).

[10] J.R. Letaw and J. D. Pfautsch, J. Math. Phys. (N.Y.) 23,
425 (1982).

084016-17



JAN IVAR KORSBAKKEN AND JON MAGNE LEINAAS

[11]
[12]
[13]
[14]
[15]
(16]
[17]
[18]
[19]
(20]

(21]
[22]

J.S. Bell and J. M. Leinaas, Nucl. Phys. B212, 131
(1983).

J.S. Bell and J. M. Leinaas, Nucl. Phys. B284, 488 (1987).
W.G. Unruh, in Proceedings of the Advanced ICFA
Beam Dynamics Workshop, Monterey, 1998, edited by
Pisin Chen (World Scientific, Singapore, 1999), p. 594.

J. M. Leinaas, in Proceedings of the 18th Advanced ICFA
Beam Dynamics Workshop, Capri, 2000, edited by Pisin
Chen (World Scientific, Singapore, 2002), p. 336.

I. Rogers, Phys. Rev. Lett. 61, 2113 (1988).

O. Levin, Y. Peleg, and A. Peres, J. Phys. A 26, 3001
(1993).

P.C.W. Davies, T. Dray, and C. Manogue, Phys. Rev. D
53, 4382 (1996).

G. Sewell, Ann. Phys. (N.Y.) 141, 201 (1982).

R.J. Hughes, Ann. Phys. (N.Y.) 162, 1 (1985).

J.S. Bell, R.J. Hughes, and J. M. Leinaas, Z. Phys. C 28,
75 (1985).

W. Rindler, Am. J. Phys. 34, 1174 (1966).

J.S. Bell, Proc. R. Soc. London A 231, 479 (1955).

(23]
(24]

[25]
(26]

[27]

(28]

084016-18

PHYSICAL REVIEW D 70 084016

E.C. Titchmarsh, Eigenfunction Expansions (Oxford
University Press, New York, 1958), Vol. 1.

R. Penrose, Riv. Nuovo Cimento 1, 252 (1969).

U. H. Gerlach, Phys. Rev. D 27, 2310 (1983).

Even for linear acceleration one may note an ambiguity
in associating a specific temperature with the vacuum
state as viewed in the accelerated Rindler coordinates.
The temperature a/27 corresponds to the local tempera-
ture measured at the position of the reference curve C,
while at other points in the accelerated frame the tem-
perature will be different. This is similar to the situation
in a gravitational field, where the specification of a
temperature of a hot gas will depend on a choice of a
reference point, since the locally measured temperature
will vary in space due to the redshift effect.

The change introduced in the Hamiltonian can be
viewed as due to a gravitational effect of the rotation.
N.D. Birrell and P.C.W. Davies, Quantum Fields in
Curved  Space  (Cambridge  University  Press,
Cambridge, 1982).



