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Semianalytical approach for theVaidya metric in double-null coordinates
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We reexamine here a problem considered in detail before by Waugh and Lake: the solution of
spherically symmetric Einstein’s equations with a radial flow of unpolarized radiation (the Vaidya
metric) in double-null coordinates. This problem is known to be not analytically solvable; the only
known explicit solutions correspond to the constant mass case (Schwarzschild solution in Kruskal-
Szekeres form) and the linear and exponential mass functions originally discovered by Waugh and Lake.
We present here a semianalytical approach that can be used to discuss some qualitative and quantitative
aspects of the Vaidya metric in double-null coordinates for generic mass functions. We present also a
new analytical solution corresponding to �1=v�-mass function and discuss some physical examples.
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I. INTRODUCTION

The Vaidya metric [1], which in radiation coordinates
�w; r; �;�� has the form

ds2 � �

�
1�

2m�w�
r

�
dw2 � 2cdrdw� r2d�2; (1)

where d�2 � d�2 � sin2�d�2, c � �1, is a solution of
Einstein’s equations with spherical symmetry in the ei-
konal approximation to a radial flow of unpolarized ra-
diation. For the case of an ingoing radial flow, c � 1 and
m�w� is a monotone increasing mass function in the
advanced time w, while c � �1 corresponds to an out-
going radial flow, with m�w� being in this case a mono-
tone decreasing mass function in the retarded time w. For
many years, it has been used in the analysis of spherical
collapse and the formation of naked singularities (For
references, see the extensive list of [2] and also [3]). It
is known that Vaidya metric can be obtained, by taking
appropriate limits in the self-similar case, from the
Tolman metric representing spherically symmetric dust
distribution [4]. This result has shed some light on the
nature of the so-called shell-focusing singularities [5],
discussed in details in [2,6–8]. TheVaidya metric has also
proved to be useful in the study of Hawking radiation and
the process of black-hole evaporation[9–13], and more
recently, in the stochastic gravity program[14].

Motivated by the long-known fact that the radiation
coordinates are defective at the horizon [15], implying
that the Vaidya metric (1) is not geodesically complete
(see [16] for considerations about possible analytical ex-
tensions),Waugh and Lake [17] considered the problem of
casting the Vaidya metric in double-null coordinates
�u; v; �;��. As all previous attempts to construct a gen-
eral transformation from radiation to double-null coor-
address: asaa@ime.unicamp.br
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dinates have failed, they followed Synge [18] and
considered Einstein’s equation with spherical symmetry
in double-null coordinates ab initio. The spherically sym-
metric line element in double-null coordinates is

ds2 � �2f�u; v�dudv� r2�u; v�d�2; (2)

where f�u; v� and r�u; v� are nonvanishing functions. The
energy-momentum tensor of a unidirectional radial flow
of unpolarized radiation in the eikonal approximation is
given by

Tab �
1

8�
h�u; v�kakb; (3)

where ka is a radial null vector. As Waugh and Lake, we
will consider, without loss of generality, the case of the
flow along v-direction: ka � �0; 1; 0; 0�. The case of si-
multaneous ingoing and outgoing flows was considered in
[19]. Einstein’s equations are less constrained in such
case, allowing the construction of some similarity solu-
tions. In our case, the metric (2) with the energy-
momentum tensor (3) reduce to the following set of
equations [17]:

f�u; v� � 2B�v�@ur�u; v�; (4)

@vr�u; v� � �B�v�
�
1�

2A�v�
r�u; v�

�
; (5)

h�u; v� � �4
B�v�A0�v�

r2�u; v�
; (6)

where B�v� and A�v� are arbitrary functions obeying,
according to the weak energy condition,

B�v�A0�v� � 0: (7)

Note that from (4), the regularity of f�u; v� requires
B�v� � 0. Schwarzschild solution in the Kruskal-
14-1  2004 The American Physical Society



FIG. 1. Constant r=� curves for the case A�v� � �2=v. The
values of r=� shown are, from bottom to top, 0, 0.5, 0.6, 1, 1.5,
2, 2.5 and 3. Future is to right and up. The corresponding
conformal diagram is inserted. Here, r � 0 is a naked singu-
larity.
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Szekeres form corresponds to A0 � 0. For A0 � 0, the
choice

2B�v� � �
A0

jA0j
(8)

allows one to interpret A�v� as the mass of the solution
and v as the proper time as measured in the rest frame at
infinity for the asymptotically flat case [17]. We assume
here A�v�> 0. The radial flow is ingoing if A0 > 0, and
outgoing if A0 < 0. Note that if the weak energy condition
(7) holds, the function A�v� is monotone, implying that
the radial flow must be ingoing or outgoing for all v. It is
not possible, for instance, to have ‘‘oscillating’’ mass
functions A�v� in double-null coordinates.

The problem may be stated in the following way: given
the functions A�v� and B�v�, Eq. (5) shall be integrated
and r�u; v� is obtained. Then, f�u; v� and h�u; v� are
calculated from (4) and (6). The arbitrary function of u
appearing in the integration of (5) must be chosen prop-
erly to have a nonvanishing f�u; v� function from (4).
Unfortunately, this procedure is not analytically solvable
in general. Waugh and Lake, nevertheless, were able to
find regular solutions for Eqs. (4)–(6) for linear [A�v� �
�cv] and a certain exponential
{A�v� � 1

� 
� exp��cv=2� � 1�g mass functions (�;�,
and � are positive constants, c � �1, corresponding to
ingoing/outgoing flow, respectively). To the best of our
knowledge, these are the only varying mass analytical
solutions obtained in double-null coordinates so far. We
notice, however, that Kuroda was able to construct a
transformation from radiation to double-null coordinates
for some particular mass functions [10,11].

In the following section, we will present a semianalyt-
ical approach to attack the problem of solving Eqs. (4)–
(6) for general mass functions obeying the weak energy
condition (7). The approach allows us to construct quali-
tatively conformal diagrams, identifying horizons and
singularities, and also to evaluate specific geometric
quantities. Before, however, we notice that one can solve
analytically Eqs. (4)–(6) also for the case of

A�v� �
�2

v
; (9)

being � a massive parameter, and B � 1=2. With the mass
function (9), Eq. (5) can be integrated as

L�r; u; v� � P�u�v� 2�e!
2
�

���
2

p
v
Z !

0
es

2
ds � 0; (10)

where

! �
1

2
���
2

p

�
v
�
� 2

r
�

�
(11)

and P�u� is an arbitrary function. It is quite easy to show
that L�r; u; v� � 0 is an invariant surface of (5), i.e, one
has
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dL
dv

�
@L
@r

@vr�
@L
@v

�
1

v
L (12)

along the solutions of (5). From (4), we have

f � ��P0�u�v
e�!2

2r
: (13)

The function P�u� must be chosen to preclude zeros of
f�u; v�. With P�u� � �u=�, we have from (10)

u
�
v
�
� 2e!

2
�

���
2

p v
�

Z !

0
es

2
ds: (14)

Equation (14) defines r�u; v�. Its graphics and the corre-
sponding conformal diagram are presented in Fig. 1.

The only spacetime singularity for v > 0 is r � 0. We
recall that the Kretschmann scalar for metrics of the
form (2) obeying (4)–(6) is given by [17]

K � RabcdRabcd � 48
A2�v�

r6
: (15)

The resulting spacetime corresponds to a naked singular-
ity that vanishes smoothly, giving rise to an empty space-
time. Its causal structure is identical to the first linear case
(� > 1=16) of Waugh and Lake, with time reversed (see
below).

We finish this section noticing that algebraic manipu-
lation programs (Maple, for instance) are able to find
solutions of (5) for the case A�v� / v2 in terms of Airy
functions, but they seem too cumbersome to be useful.
Furthermore, their causal structure is always similar to
the (� > 1=16) linear case of Waugh and Lake. Also,
Kuroda has considered before the case of M�w� � %wn
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for small w and n � 1 in radiation coordinates, obtaining
some local properties of the singularity r � w � 0 [11].

II. SEMIANALYTICAL APPROACH

Equation (5) along u constant is a first order ordinary
differential equation in v. One can evaluate the function
r�u; v� in any point by solving the v-initial-value problem
knowing r�u; 0�. The trivial example of Minkowski
spacetime (A � 0), for instance, can be obtained by
choosing r�u; 0� � u=2.

The curve r � 2A�v� is the frontier of two regions of
the �v; r� plane where the solutions of (5) have qualitative
distinct behaviors. Suppose, for instance, A0�v�> 0 (and
B � �1=2. The case of an outgoing radiation flow fol-
lows in a straightforward manner). For all points of the
plane �v; r� below this curve, r0 < 0 (See Fig. 2). Hence,
any solution entering in this region will, unavoidably,
reach the singularity at r � 0, with finite v. Suppose a
given solution ri�v� with initial condition ri�0� � ri enters
into this region. As the uniqueness of solutions for (5) is
guaranteed for any point with r � 0, solutions never cross
each other in the plane �v; r� for r � 0. Hence, any solu-
tion starting at r�0�< ri is confined to the region below
ri�v�, and it will also reach the singularity at r � 0 with
finite v. On the other hand, suppose that a given solution
re�v� with initial condition re�0� � re never enters into
the region below the curve r � 2A�v�. Any solution start-
ing at r�0�> re is, therefore, confined to the region above
FIG. 2. In the region below the generic monotonic function
r � 2A�v� (the apparent horizon), all solutions have r0 < 0.
Any solution that enters into this region will reach the singu-
larity at r � 0 with finite v. On the other hand, solutions
confined to the r0 > 0 region always escape from the singularity
and reach I�. In this case, supposing that the mass function
A�v� has an asymptotic value such that ri�v�< 2A�v�< ri�v�,
there exists an event horizon (the dashed line on the conformal
diagram) somewhere between the solutions ri�v� and re�v�. The
vector T � @v � @u points to the future for the ingoing radia-
tion case.
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re�v� and will escape from the singularity at r � 0.
Keeping in mind that these solutions correspond to null
trajectories with u constant, it is possible to infer the
causal structure of the spacetime from their qualitative
behavior and an appropriate choice for the initial condi-
tions r�u; 0�. For instance, in the case of Fig. 2, supposing
that the mass function A�v� has an asymptotic value such
that ri�v�< 2A�v�< ri�v�, an event horizon shall be lo-
cated somewhere between ri�v� and re�v�.

Event horizons are global structures. One needs to
know the total (v ! 1) spacetime evolution to define
them. On the other hand, apparent horizons are defined
locally [20]. Indeed, they are the real relevant ones in our
semianalytical approach. The curve r � 2A�v� is an ap-
parent horizon. For a given v, all solutions in Fig. 2 such
that r�v� � 2A�v� will be captured by the singularity.
Solutions for which r�v�> 2A�v� are temporally free,
but they may find themselves trapped later if A�v� in-
creases. The event horizon is the last of these solutions
trapped by the singularity.

We remind that Eq. (4) requires that @ur�u; v� � 0,
implying that, for v constant, r�u� du; v� � r�u; v� for
all u. This condition holds everywhere we have unique-
ness of the solutions of (5), provided that the initial
conditions are such that @ur�u; 0� � 0. Moreover, if
@ur�u; 0�> 0, then @ur�u; v�> 0, implying from (4) that
the sign of f�u; v� will be determined by B�v�. For the
ingoing radiation case, one has B�v� � �1=2, and from
(2) one sees that the vector field T � @v � @u is timelike.
Our conformal diagrams are oriented such that this vec-
tor field points upward. If the condition @ur�u; 0� � 0
holds, the conformal diagrams obtained for a given
A�v� from different initial conditions are always equiva-
lent. Some explicit examples will clarify the proposed
approach.

A. Linear mass function

The linear mass function solution discovered by Waugh
and Lake corresponds to A � �v and B � �1=2 (the
ingoing radiation case, the outgoing one also follows in
a straightforward way). Note that with these choices,
Eq. (5) does not satisfy the Lipschitz condition in r �
0, implying that uniqueness is not guaranteed for solu-
tions passing there. This will be a crucial point to clarify
the nature of the three qualitative different cases identi-
fied by Waugh and Lake, corresponding to � > 1=16, � �
1=16, and � < 1=16. We notice that the linear mass case
was also considered in [8] in great detail and in a more
general situation (the case of a charged radial null fluid).

The frontier of the region where all the solutions reach
the singularity at r � 0 is, in this case, the straight line
r � 2�r. Taking the v-derivative of (5), one gets

r00 �
�
r

�
v
2r

�
1�

2�v
r

�
� 1

�
: (16)
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FIG. 4. For � � 1=16, we have two relevant lines in the �r; v�
plane: r � v=4 and r � v=8. The first one plays the role of an
event horizon, separating the two regions of distinct qualitative
behavior for the null trajectories along v. Beyond the horizon,
all solutions escape to infinity. Inside, all solutions reach the
singularity r � 0 with finite v. The conformal diagram is
inserted. The singularity at r � 0 is a shell-focusing one.

FIG. 3. For � > 1=16, all solutions are concave for v > 0.
Hence, all null trajectories along v necessarily reach the
singularity at r � 0. The figure corresponds to the case � �
1=10. The conformal diagram is inserted.
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The regions in the plane �v; r� where the solutions obey
r00 � 0 are the straight lines

r �
v
4

 
1�

������������������
1� 16�

p
!
: (17)

One can reproduce the analysis of Waugh and Lake for
the three qualitative different cases according to the value
of � by considering the possible solutions of (17). For this
purpose, we will consider the solutions of (5) with the
initial condition r�u; 0� / u.

For � > 1=16, the case showed in Fig. 3, r00 < 0 for all
points with v > 0, and the only relevant frontier is the
r � 2�v straight line (the apparent horizon). All solu-
tions of (5) are concave functions and cross the r0 � 0
line, reaching the singularity with a finite v which in-
creases monotonically with u. The causal structure of the
corresponding spacetime is very simple. There is no hori-
zon, and the future cone of all points ends in the singu-
larity at r � 0.

Each curve in Fig. 3 corresponds to a constant u slice of
the full solution r�u; v�. It is possible, in principle, to
reconstruct the two dimensional surface r�u; v� and to
plot its lines of constant r on the �u; v� plane, as done in
Fig. 1, reproducing all original results of Waugh and Lake
[17]. However, these lines are not necessary to construct
the conformal diagrams.

For � � 1=16, r00 � 0 on the line r � v=4. This straight
line itself is a solution. All other solutions are concave
functions. We have two distinct qualitative behaviors for
the null trajectories along u constant. All solutions start-
ing at r�0�> 0 are confined to the region above r � v=4.
They never reach the singularity, all trajectories reach
I�. However, in the region below r � v=4, we have
infinitely many concave trajectories starting and ending
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in the (shell-focusing) singularity. They start at r�0� � 0,
increase in the region between r � v=4 and r � v=8,
cross the last line and reach unavoidably r � 0 again,
with finite v. The trajectory r � v=4 plays the role of
an event horizon, separating two regions with distinct
qualitative behavior: one where constant u null trajecto-
ries reach I� and another where they start and end in the
singularity. This situation is shown in Fig. 4. This behav-
ior is only possible, of course, because the solutions of (5)
fail to be unique at r � 0.

For � < 1=16 (Fig. 5), we have three distinct regions
according to the concavity of the solutions. They are
limited by the two straight lines (17) that are also solu-
tions of (5). Between them, solutions are convex. Above
r� and below r�, solutions are concave. The last line is
the inner horizon. Inside, the null trajectories with con-
stant u start and end in the singularity r � 0. The line r�
is an outer horizon. Between them, the constant u null
trajectories start in the naked singularity and reach I�.
Beyond the outer horizon, all constant u null trajectories
escape the singularity.

B. Collapse of a radial null fluid

As an example of the proposed approach applied to new
mass functions, let us consider first the case of a collapse
of incoming radial null fluid, starting with the empty
space. This could be described, for instance, by the
mass function

A�v� �
m
2
�1� tanh'v�: (18)
-4



FIG. 5. With �< 1=16, we have two horizons r� and r�.
Any solution starting above r� always escapes to I�. Solutions
starting inside the inner event horizon ri always reach the
singularity at r � 0. Between the horizons, solutions start in
the naked singularity but escape to I�. The figure corresponds
to the case � � 1=20. The conformal diagram is inserted.
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The corresponding spacetime is empty for v ! �1, it
receives smoothly a radial flow of null fluid, and finishes
as a black hole of mass m for v ! 1. The solutions of (5)
are presented in the Fig. 6.With the mass function (18), we
always have a singularity at r � 0 for v � �1. The
constant u null trajectories approach r � 0 asymptoti-
cally for v ! �1. Some of them, confined by the hori-
zon, are captured by the collapse and reach the
singularity, and others escape to I � . Any initial condi-
FIG. 6. The case A�v� � m�1� tanh'v�=2. The solutions
tend asymptotically to r � 0 when v ! �1. A zoom of the
range �3< v<�2 illustrating such asymptotic behavior is
inserted. In this case, r � 0 is always singular for v >�1.
This plot corresponds to m' � 1; the situation is qualitatively
identical for other cases. The conformal diagram is inserted.
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tion obeying @ur�u; v0� � 0 leads to the same causal
structure.

The proposed semianalytical procedure can be used
also to derive some qualitative results. One could, for
instance, locate accurately the event horizon in this
case. Since we do not expect deviations from the
Minkowski spacetime for v ! �1, we could start with
initial conditions such that r�u;�1� � u=2. Then, we
identity in the solutions of (6) the one [the horizon
rh�v�)] approaching asymptotically the curve r � 2A�v�
for large v. For large values of v0, the horizon would be
located at 
2rh��v0�;�v0�.

C. Black-hole evaporation

As a last example, let us consider the physically rele-
vant case of black-hole evaporation.We remind that much
work has been devoted on Vaidya metric to describe
black-hole evaporation[9–13]. Our approach allows us
to analyze this question in the more convenient double-
null coordinates. The process of black-hole evaporation
supposes A0 < 0 and an outgoing radiation flow. Hence,
one needs to chose B�v� � 1=2 in our procedure.With this
choice, we see from (4) that f�u; v�> 0, implying that the
field @v � @u is not timelike anymore. It is, namely, its
orthogonal vector field @v � @u that will define the time
naked
singularity

−I −I

I

r=0

u v

u=
0

EH

CH

I

II

FIG. 7. Conformal diagram for an evaporating black hole
with mass A�u� given by (21). The region I corresponds to
the black hole, and can be obtained, by using the transforma-
tions (19), from the ingoing radiation case. Region II is the
empty space left after the vanishing of the black hole at u � 0.
The event horizon is the line EH. The dashed CH line is a
Cauchy horizon. Beyond it, we have breakdown of predictabil-
ity due to the naked singularity left by the black hole.

-5



FERNANDO GIROTTO AND ALBERTO SAA PHYSICAL REVIEW D 70 084014
evolution in this case. In order to keep the future direction
pointing upward in the conformal diagrams, one needs to
reorient the coordinates u and v. The appropriate trans-
formation here is

v ! u; u ! �v: (19)

With this choice and B�v� � 1=2, Eq. (5) reads

@ur�u; v� �
1

2

�
1�

2A��u�
r�u; v�

�
; (20)

which is formally identical to the equation for the ingoing
case characterized by the mass function A��u� with
radiation flow along the u direction. Hence, the descrip-
tion of an outgoing situation with decreasing mass func-
tion A�u� can be obtained by applying the transformation
(19) for the ingoing case corresponding to the mass
function A��v�.

With the help of (19), one could construct the confor-
mal diagram corresponding to the mass function A�u� �
m�1� tanh'u�=2 starting from the last example. Such a
case, however, does not correspond really to an evaporat-
ing black hole since, according to this mass function, the
black hole never disappears, the singularity at r � 0 is
ever present for u <1. In a real process of black-hole
evaporation due to Hawking radiation, the black hole
loses mass with a rate _M / M�2, disappearing completely
in a finite time and giving rise to an empty spacetime. The
mass function

A�u� �
	
�m tanh'u; u < 0;
0 u � 0;

(21)

can be used to simulate the vanishing of a black hole in a
finite time. For the ingoing radiation case A��v�, the
situation is similar to the last example, but with the
crucial difference that for v � 0 the spacetime is empty,
and the solutions can reach (and cross) r � 0. We notice
that the form of A�u� is not important. In order to con-
struct the conformal diagram of an evaporating black
084014
hole, one only needs that A�u� � 0 after some u <1. In
this case, the full conformal diagram (see Fig. 7) is
constructed adding to that one obtained from the ingoing
collapse case by using the transformation (19), a patch of
Minkowski spacetime, just after the instant u � 0 corre-
sponding to the vanishing of the black hole. The resulting
conformal diagram represents a black hole that evapo-
rates leaving behind a naked singularity.
III. CONCLUSION

We presented a semianalytical approach to construct
the Vaidya metric in double-null coordinates for general
monotonic mass functions. We applied it to elucidate the
nature of the three distinct qualitative causal structures
identified by Waugh and Lake [17] for linear mass func-
tions, to construct a solution corresponding to a smooth
radial collapse of a null fluid, starting from empty space
and finishing with a black hole, and to construct the
conformal diagram of an evaporating black hole.

The approach involves an arbitrary function r�u; 0�.
However, any choice for which @ur�u; 0� � 0 will result
in causally equivalent regular [f�u; v� � 0] spacetimes.
The analytical solutions of this problem also involve an
arbitrary function, as P�u� in (10), that must be chosen
properly in order to get a regular spacetime.

The double-null form of theVaidya metric is suitable to
the study of quasinormal modes of time-dependent solu-
tions. In double-null coordinates, the equations for scalar
perturbations are separable and we obtain an effective
Schrödinger equation with a time-dependent potential for
the perturbations. This situation has been recently con-
sidered in the heuristic analysis of [21]. The full problem
is now under investigation.
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