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Small Kerr–anti-de Sitter black holes are unstable

Vitor Cardoso*
Centro de Fı́sica Computacional, Universidade de Coimbra, P-3004-516 Coimbra, Portugal

and Centro Multidisciplinar de Astrofı́sica - CENTRA, Departamento de Fı́sica, Instituto Superior Técnico,
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Superradiance in black hole spacetimes can trigger instabilities. Here we show that, due to super-
radiance, small Kerr–anti-de Sitter black holes are unstable. Our demonstration uses a matching
procedure, in a long wavelength approximation.
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I. INTRODUCTION

Einstein equations describing general relativity and
gravitation form a system of coupled nonlinear partial
differential equations, which is extremely hard to solve,
even resorting to state-of-the-art computing. Therefore
exact solutions to Einstein equations, which are possible
to obtain only in special instances, are of fundamental
importance. They allow us to probe essential features of
general relativity. For example, by having at hand the
spherically symmetric Schwarzschild solution it was pos-
sible to match general relativity predictions against ex-
perimental observations. Once an exact solution is found,
one must examine it in detail and investigate the physical
properties of such a solution. One of the most important
aspects is the stability of a given solution. In fact, if a
solution is not stable, then it will most certainly not be
found in nature, unless the instability time scale is much
larger than the age of our universe. What does one mean
by stability? In this classical context, stability means that
a given initially bounded perturbation of the spacetime
remains bounded for all times. For example, the
Schwarzschild spacetime is stable against all kinds of
perturbations, massive or massless [1]. On the other
hand the Kerr spacetime, describing a rotating black
hole, is stable against massless field perturbations but
not against massive bosonic fields [2].

The physics behind this instability is related to a phe-
nomenon known as superradiance, a process which has
been known for several decades, and which consists basi-
cally of a scattering process which extracts energy from
the scattering potential. For example, the Klein-Gordon
equation for a charged scalar particle on a steplike po-
tential already displays such a ‘‘superradiant’’ scattering,
i.e., the energy of the reflected wave is larger than the
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incident one [3,4]. The first classical example of super-
radiant scattering, which would lead to the notion of
superradiant scattering in black hole spacetimes, was
given by Zel’dovich [5], by examining what happens
when scalar waves impinge upon a rotating cylindrical
absorbing object. Considering a wave of the form
e�i!t�im� incident upon such a rotating object,
Zel’dovich concluded that if the frequency ! of the
incident wave satisfies

!<m�; (1)

where � is the angular velocity of the body, then the
scattered wave is amplified. If the ‘‘rotating object’’ is a
Kerr black hole, then superradiant scattering also occurs
[5–7] for frequencies ! satisfying (1), but where � is now
the angular velocity of the black hole. If one could find a
way to feed the amplified scattered wave onto the black
hole again, then one could in principle extract as much
energy as one likes from the black hole (as long as it is less
than the total rotational energy). The first proposal of this
kind was in fact made by Zel’dovich [5], who suggested to
surround the rotating cylinder by a reflecting mirror. In
this case the wave would bounce back and forth, between
the mirror and the cylinder, amplifying itself each time.
A similar situation can be achieved for a Kerr black hole:
surround it by a spherical mirror and excite a given
multipole m wave in it. Then the total extracted energy
should grow exponentially until finally the radiation pres-
sure destroys the mirror. This is exactly the same princi-
ple behind the instability of Kerr black holes against
massive bosonic perturbations, because in this case the
mass of the field works as a wall near infinity [2].

The system black hole plus mirror is known as Press
and Teukolsky’s black hole bomb [8], which has been
recently investigated in detail in [9]. It was shown in
[9] that for the system to really become unstable, the
mirror must have a radius larger than a certain critical
value. This is because the oscillation frequencies are
11-1  2004 The American Physical Society
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dictated by the mirror, and go like 1=r0, with r0 being the
mirror radius. Thus for superradiance to work, one must
have by (1), 1=r0 & m�. In principle, black holes in anti-
de Sitter (AdS) space should have similar properties as
those of the black hole bomb, since the boundary of anti-
de Sitter spacetime behaves as a wall. In fact, a similar
reasoning applied to Kerr–anti-de Sitter (Kerr-AdS)
black holes leads one to verify the stability of large
rotating black holes in anti-de Sitter spacetime (the
stability of these large black holes was proven by
Hawking and Reall [10]), and lead also to the conjecture
that small Kerr-AdS black holes should be unstable [9].
The purpose of the present paper is to prove the insta-
bility of small Kerr-AdS black holes, by solving directly
the wave equation for a scalar field, in the large wave-
length approximation, by using matched asymptotic
expansions.
II. FORMULATION OF THE PROBLEM AND
BASIC EQUATIONS

We shall consider a scalar field in the vicinity of a Kerr-
AdS black hole, with an exterior geometry described by
the line element [11]

ds2 � �
�r
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and ‘ �
��������������
�3=

p
is the cosmological length associated

with the cosmological constant . This metric describes
the gravitational field of the Kerr black hole, with mass
M, angular momentum J � Ma, and has an event horizon
at r � r� (the largest root of �r). A characteristic and
important parameter of a Kerr black hole is the angular
velocity of its event horizon given by

� �
a

r2� � a2

�
1�

a2

‘2

�
: (4)

In order to avoid singularities, the black hole rotation is
constrained to be

a < ‘: (5)

In the absence of sources, which we consider to be our
case, the evolution of the scalar field is dictated by the
Klein-Gordon equation in a Kerr-AdS spacetime,
�r�r

� � �R��2�� � 0. Here, R � �12=‘2 is the
Ricci scalar of the Kerr-AdS spacetime, � is a coupling
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constant, and � is the mass of the scalar field. For
simplicity, and without loss of generality, we choose the
value of � and � in order that the Klein-Gordon equation
stays simply as r�r

�� � 0. To make the whole problem
more tractable, it is convenient to separate the field as [12]

��t; r; �; �� � e�i!t�im� ~Sml ���R�r�; (6)

where ~Sml ��� are the AdS spheroidal angular functions,
and the azimuthal number m takes on integer (positive or
negative) values. For our purposes, it is enough to con-
sider positive !’s in (6) [6]. Inserting this in the Klein-
Gordon equation, we get the following angular and radial
wave equations for ~Sml ��� and R�r�:

��

sin�
@���� sin�@� ~S

m
l � �

�
a2!2cos2��

m2�2

sin2�
�

Alm��

�
~Sml � 0; (7)

�r@r��r@rR� � �!2�r2 � a2�2 � 2Mam!r�

a2m2 � �r�a
2!2 � Alm��R � 0; (8)

where Alm is the separation constant that allows the split
of the wave equation and is found as an eigenvalue of (7).
For small a! and for small a=‘, the regime of interest in
the next section, one has [13]

Alm � l�l� 1� �O�a2!2; a2=‘2�: (9)

The boundary conditions that one must impose upon the
scalar field are the following. First, we require that the
scalar field vanishes at r ! 1 because the AdS space
behaves effectively as a reflecting box, i.e., the AdS in-
finity works as a mirror wall (but see also [14] and
references therein for another possible set of boundary
conditions). Second, near the horizon r � r�, the scalar
field as given by (6) behaves as

�� e�i!te�i�!�m��r ; r ! r�; (10)

where the tortoise r coordinate is defined implicitly by
dr=dr � �r2 � a2�=�r. Requiring ingoing waves at the
horizon, which is the physically acceptable solution, one
must impose a negative group velocity vgr for the wave
packet. Since vgr � �1 we must thus use the minus sign
in (10). To satisfy these two boundary conditions simul-
taneously, the frequencies ! must take on certain special
values, which are called quasinormal frequencies (QN
frequencies, !QN) and the associated modes are called
quasinormal modes. In general, !QN will be a complex
quantity, signaling the decay of the field, or then its
growth. Note that according to the field decomposition
(6) if the imaginary part of ! is positive then the field
will grow exponentially as time goes by. Thus we say that
the system is unstable if the imaginary part of !QN is
positive.
-2
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III. ANALYTICAL CALCULATION OF THE
UNSTABLE MODES

In this section, we will show that small Kerr-AdS black
holes are unstable. We shall, within some approximations,
compute the characteristic QN frequencies for a scalar
field and show that they do have positive imaginary parts.
The instability is due to the presence of an effective
‘‘reflecting mirror’’ at the AdS infinity, since the waves
are then successively impinging on the small AdS black
hole and being reflected at infinity [9]. We shall see that
this interpretation agrees in all aspects with the study of
the black hole bomb [9].

We assume that 1=! � M, i.e., that the Compton
wavelength of the scalar particle is much larger than
the typical size of the black hole, and that the AdS black
hole is small, i.e., that the size of the black hole is much
smaller than the typical AdS radius, r�=‘ � 1 . We will
also assume slow rotation: a � M, and a � ‘. Following
a matching procedure introduced in [7,15,16], we divide
the space outside the event horizon in two regions,
namely, the near region, r� r� � 1=!, and the far
region, r� r� � M.We will solve the radial equation (8)
in each one of these two regions. Then, we will match the
near-region and the far-region solutions in the overlap-
ping region where M � r� r� � 1=! is satisfied.When
the correct boundary conditions are imposed upon the
solutions, we shall get a defining equation for !QN, and
the stability or instability of the spacetime depends basi-
cally on the sign of the imaginary component of !QN.

A. Near-region wave equation and solution

For small AdS black holes, r�=‘ � 1, in the near
region, r� r� � 1=!, we can neglect the effects of the
cosmological constant, � 0. Moreover, one has r� r�,
r� � 2M, and !a2 � 0 (since ! � M�1 and a � M),
and �r � � with

� � r2 � a2 � 2Mr: (11)

The near-region radial wave equation can then be written
as

�@r��@rR� � r4��!�m��2R� l�l� 1��R � 0: (12)

To find the analytical solution of this equation, one first
introduces a new radial coordinate,
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z �
r� r�
r� r�

; 0 � z � 1; (13)

with the event horizon being at z � 0. Then, one has
�@r � �r� � r��z@z, and the near-region radial wave
equation can be written as

z�1� z�@2zR� �1� z�@zR�$2 1� z
z

R�
l�l� 1�

1� z
R � 0;

(14)

where we have defined the superradiant factor

$ � �!�m��
r2�

r� � r�
: (15)

Through the definition

R � zi$�1� z�l�1F; (16)

the near-region radial wave equation becomes

z�1� z�@2zF� ��1� i2$� � �1� 2�l� 1��

i2$�z�@zF� ��l� 1�2 � i2$�l� 1��F � 0: (17)

This wave equation is a standard hypergeometric
equation [17], z�1� z�@2zF� �c� �a� b� 1�z�@zF�
abF � 0, with

a � l� 1� i2$; b � l� 1; c � 1� i2$;

(18)

and its most general solution in the neighborhood of z � 0
is Az1�cF�a� c� 1; b� c� 1; 2� c; z� � BF�a; b;
c; z�. Using (16), one finds that the most general solution
of the near-region equation is

R � Az�i$�1� z�l�1F�a� c� 1; b� c� 1; 2

�c; z� � Bzi$�1� z�l�1F�a; b; c; z�: (19)

The first term represents an ingoing wave at the horizon
z � 0, while the second term represents an outgoing wave
at the horizon. We are working at the classical level, so
there can be no outgoing flux across the horizon, and thus
one sets B � 0 in (19). One is now interested in the large
r, z ! 1, behavior of the ingoing near-region solution. To
achieve this aim one uses the z ! 1� z transformation
law for the hypergeometric function [17],
F�a� c� 1; b� c� 1; 2� c; z� � �1� z�c�a�b ��2� c���a� b� c�
��a� c� 1���b� c� 1�

F�1� a; 1� b; c� a� b� 1; 1� z�

�
��2� c���c� a� b�
��1� a���1� b�

F�a� c� 1; b� c� 1;�c� a� b� 1; 1� z�; (20)
and the property F�a; b; c; 0� � 1. Finally, noting that when r ! 1 one has 1� z � �r� � r��=r, one obtains the large
!r behavior of the ingoing wave solution in the near region,
-3
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R� A��1� i2$�

�
�r� � r��

�l��2l� 1�

��l� 1���l� 1� i2$�
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�
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�
: (21)

B. Far-region wave equation and solution

In the far region, r� r� � M, the effects induced by
the black hole can be neglected (a� 0, M� 0, �r �
r2�1� r2=‘2�) and the radial wave equation (8) reduces
to the wave equation of a scalar field of frequency ! and
angular momentum l in a pure AdS background,

�r2 � ‘2�@2rR� 2
�
2r�

‘2

r

�
@rR�

‘2
�
!2 ‘2

r2 � ‘2
�
l�l� 1�

r2

�
R � 0: (22)

Notice that in the above approximation, the far-region
wave equation in the Kerr-AdS black hole background is
equal to the wave equation in the pure AdS background.
However, one must be cautious since the boundaries of the
far region in the Kerr-AdS black hole case are r � r� and
r � 1, while in the pure AdS case the boundaries are r �
0 and r � 1. In what follows we will find the solution of
(22), first in the pure AdS case, and then we will use this
last solution to find the far-region solution of the Kerr-
AdS black hole case.

The wave equation (22) can be written in a standard
hypergeometric form. First we introduce a new radial
coordinate,

x � 1�
r2

‘2
; 1 � x � 1; (23)

with the origin of the AdS space, r � 0, being at x � 1,
and r � 1 corresponds to x � 1. Then, one has @r �
2‘�1

������������
x� 1

p
@x, and the radial wave equation can be writ-
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x�1� x�@2xR�
2� 5x

2
@xR�

�
!2‘2

4x
R�

l�l� 1�

4�1� x�

�
R � 0:

(24)

Through the definition

R � x!‘=2�1� x�l=2F; (25)

the radial wave equation becomes

x�1� x�@2xF� ��1�!‘� � �l� 5
2�

!‘�x�@xF� 1
4�l�!‘��l� 3�!‘�F � 0: (26)

This wave equation is a standard hypergeometric
equation [17], x�1� x�@2xF� �#� �$� %� 1�x�@xF�
$%F � 0, with

$ �
l� 3�!‘

2
; % �

l�!‘
2

; # � 1�!‘;

(27)

and its most general solution in the neighborhood of
x � 1 is Cx�$F�$;$� #� 1; $� %� 1; 1=x� �
Dx�%F�%;%� #� 1; %� $� 1; 1=x�. Using (25), one
finds that the most general solution for R�x� is

R � Cx��l�3�=2�1� x�l=2F�$;$� #� 1; $� %� 1; 1=x�

�Dx�l=2�1� x�l=2F�%;%� #� 1; %� $� 1; 1=x�:

(28)

Since F�a; b; c; 0� � 1, as x ! 1 this solution behaves as
R� ��1�l=2�Cx�3=2 �D�. But the AdS infinity behaves
effectively as a wall, and thus the scalar field must vanish
there which implies that we must set D � 0 in (28).We are
now interested in the small r, x ! 1, behavior of (28). To
achieve this aim one uses the 1=x ! 1� x transformation
law for the hypergeometric function [17],
F�$;$� #� 1; $� %� 1; 1=x� � x$�#�1�x� 1�#�$�% ��$� %� 1���$� %� #�
��$���$� #� 1�

F�1� %; 1� $; #� $� %

� 1; 1� x� � x$
��$� %� 1���#� $� %�

��1� %���#� %�
F�$;%; $� %� #� 1; 1� x�;

(29)
and the property F�a; b; c; 0� � 1. Finally, noting that
when x ! 1 one has x� 1 ! r2=‘2, one obtains the small
!r behavior of R�r�,

R� C��5=2�
�

��1�l=2‘�l���l� 1
2�

��1� l
2 �

!‘
2 ���1�

l
2 �

!‘
2 �

rl

�
��1��3l=2‘l�1��l� 1

2�

��32 �
l
2 �

!‘
2 ���

3
2 �

l
2 �

!‘
2 �

r�l�1

�
: (30)
The boundaries of the pure AdS spacetime are the
origin, r � 0, and the effective wall at r � 1. When r !
0, the wave solution R diverges, since r�l�1 ! 1 in (30).
In order to have a regular solution at the origin we must
then demand that ��32 �

l
2 �

!‘
2 � � 1. This occurs when

the argument of the gamma function is a nonpositive
integer, ���n� � 1 with n � 0; 1; 2; . . . . Therefore, the
requirement of regularity of the wave solution at the
origin selects the frequencies that might propagate in
-4
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the AdS background. These are given by the discrete
spectrum !‘ � l� 3� 2n, which agrees with known
results [18,19]. We remark that, alternatively, in order to
have a regular solution at the origin we could have re-
quired ��32 �

l
2 �

!‘
2 � � 1. This option would lead to the

negative spectrum !‘ � ��l� 3� 2n�, which of course
must also be a solution. However, to simplify matters we
shall deal only with positive frequencies, as was said
earlier.

Now that we have found the wave solution that prop-
agates in a pure AdS spacetime, we can discuss the far-
region solution in a Kerr-AdS background. As we pointed
out earlier, the main difference between the two solutions
lies on the inner boundary: r � 0 in the pure AdS case and
r � r� in the black hole case. We expect that the allowed
spectrum of discrete real frequencies that can propagate
in the far region of the Kerr-AdS black hole is equal to the
one of the pure AdS background since, at large distances
from the inner boundary, both backgrounds are similar.
However, the existence of the black hole inner boundary
implies that once radiation crosses this zone it will be
scattered by the black hole (more precisely it will be
scattered by the potential barrier outside the event hori-
zon) and its amplitude will decrease or, eventually, since
conditions for superradiance might be present, it will
grow leading to an instability. Therefore, in the spirit of
[2], we expect that the presence of this scattering by the
black hole induces a small complex imaginary part in the
allowed frequencies, ) � Im�!�, that describes the slow
decay of the amplitude of the wave if ) < 0, or the slowly
growing instability of the mode if ) > 0. Summarizing,
the frequencies that can propagate in the Kerr-AdS back-
ground are given by

!QN �
l� 3� 2n

‘
� i); (31)

with n being a non-negative integer, and ) being a small
quantity. The small !r behavior of the radial wave solu-
tion in the Kerr-AdS background is described by (30),
subjected to the regularity condition (31). Now, we want
to extract ) from the gamma function in (30). This is done
in Appendix A, yielding for small ) and for small !r the
result

R� C��5=2�
�

��1�l=2‘�l���l� 1
2�

���l� 1
2 � n���52 � n�

rl

�i)
��l� 1=2�

2

��1��3l=2�n�1‘l�2n!
�l� 2� n�!

r�l�1

�
: (32)
C. Matching conditions: properties of the unstable
modes

When M � r� r� � 1=!, the near-region solution
and the far-region solution overlap, and thus one can
match the large !r near-region solution (21) with the
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small !r far-region solution (32). This matching yields

) ’ �2i
��1�n�1‘�2�l�1�

��l� 1=2�
�r� � r��

2l�1

��n� 5=2�
��l� 1� i2$�

���l� i2$�

�
���2l� 1�

���l�
���l� 1=2�

���l� 1=2� n�
��l� 1�

��2l� 1�

�
�l� 2� n�!

n!
: (33)

Using the property of the gamma function, ��1� x� �
x��x�, we can find the values of all the gamma functions
that appear in (33) yielding simply (see Appendix B)

) ’ �+
�
l� 3� 2n

‘
�m�

�
r2��r� � r��

2l

,‘2�l�1�
; (34)

with

+ �
�l!�2�l� 2� n�!
�2l� 1�!�2l�!n!

2l�4�2l� 1� n�!!
�2l� 1�!!�2l� 1�!!�2n� 3�!!

�

"Yl
k�1

�k2 � 4$2�

#
; (35)

and $ � ��l� 3� 2n�=‘�m���r2�=�r� � r���. Equa-
tions (31) and (34) are the main results of this paper. We
have

) / ��Re�!QN� �m��: (36)

Thus, ) > 0 for Re�!QN�<m�, and ) < 0 for
Re�!QN�>m�. The scalar field � has the time depen-
dence e�i!t � e�iRe�!�te)t which implies that for
Re�!QN�<m�, the amplitude of the field grows expo-
nentially and the mode becomes unstable, with a growth
time scale given by . � 1=). This was the main aim of
this paper, namely, to show that small, r� � ‘, Kerr-AdS
black holes are unstable. As a check of our results we note
that for l � 0 we have ) / r2�, which is in agreement with
numerical results for quasinormal modes of small
Schwarzschild–anti-de Sitter black holes [18,20]. Also,
it was shown numerically in [18] that for higher l poles
the imaginary component decays faster with r�, which is
consistent with our result. Indeed, we see from (34) that
the imaginary part should behave as r2l�2

� , for nonrotat-
ing black holes.

At this point it is appropriate to discuss the domain of
validity of our results. Our final result (31) says that
Re�!QN� � 1=‘, and the condition for superradiance is
Re�!QN� & �. Now, we have �� a=r2� in the slow ro-
tation approximation. Therefore, the superradiance con-
dition together with (31) implies that the rotation
parameter must satisfy a=‘ * r2�=‘

2, where the small
black hole condition implies r�=‘ � 1. This sets the
lower bound on a=‘ for which instability sets in. The
upper bound is fixed by the slow rotation approximation
a � r� that we used to derive our results. Thus, within
-5
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FIG. 1. Range of black hole parameters for which one has
stable and unstable modes. Regularity condition implies that
a=‘ < 1, and for small Kerr-AdS black holes we have r�=‘ <
1. Region I represents a stable mode zone, while regions II and
III represent black holes that can have unstable modes. To be
accurate, in the approximations we used, we can only guaran-
tee the presence of an instability in region II. There is however
no reason to doubt that the instability also exists in region III.
The frontier between regions I and II is the parabola a=‘ �
r2�=‘

2. To ascertain the complete instability zone, numerical
work is needed.
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all our approximations, we see that instability sets in for
r2�=‘

2 & a=‘ � r�=‘. There is however no reason to
doubt that the instability exists all the way up to the
maximal rotation case a � ‘. This discussion is summa-
rized in Fig. 1.
IV. CONCLUSIONS

We have shown that small, r� � ‘, Kerr-AdS black
holes are unstable against the scattering of a wave that
satisfies the superradiant regime, !<m�. This possibil-
ity was raised in [10], and heuristic arguments that fa-
vored this hypothesis were presented in [9]. We have
achieved this result by analytical means in the long
wavelength limit, ! � 1=r�, and in the slow rotation
regime, a � ‘ and a � r�. We have provided analytical
estimates for growing time scales and oscillation fre-
quencies of the corresponding unstable modes. Al-
though we have worked only with zero spin (scalar)
waves, we expect that the general features for other spins
will be the same. As shown in [10], large Kerr-AdS black
holes are stable.

The properties of the instabilities present in the small
Kerr-AdS black hole and in the black hole-mirror system
(proposed in [8] and studied in detail in [9]) are quite
similar. The black hole-mirror system, also known as
Press-Teukolsky’s black hole bomb [8], consists of a
084011
Kerr black hole in an asymptotically flat background
surrounded by a mirror placed at constant r, r � r0.
Superradiant scattering occurs naturally in the Kerr black
hole and, in this regime, if one surrounds the black hole
by a reflecting mirror, the wave will bounce back and
forth between the mirror and the black hole, amplifying
itself each time and leading to an instability. The analogy
between this system and the Kerr-AdS black hole is clear.
The AdS space behaves effectively as a box, i.e., the AdS
wall with typical radius ‘ plays in this analogy the role of
a mirror wall with radius r0 � ‘. Indeed, in the Press-
Teukolsky’s black hole bomb the real part of the allowed
frequency is proportional to the inverse of the mirror’s
radius [9], Re�!� / 1=r0, while in the small Kerr-AdS
black hole case we have found that Re�!� / 1=‘.
Moreover, in the Press-Teukolsky’s system the growth
time scale of the instability satisfies [9] )�1 �

1=Im�!� / r2�l�1�
0 , while in the AdS black hole we have

)�1 / ‘2�l�1�. Although we worked in the four dimen-
sional case only, the general arguments that pointed to the
existence of this instability allow one to predict that
higher dimensional small Kerr-AdS black holes are also
unstable.
APPENDIX A: THE SMALL r BEHAVIOR OF THE
FAR-REGION SOLUTION

In this Appendix we present the main steps that allow
us to go from (30) into (32). In order to do so, one first
notes that use of (31) yields

�
�
3

2
�

l
2
�
!‘
2

�
�
�
3

2
�

l
2
�
!‘
2

�
� ��l� 3� 2n� i‘)=2�

����n� i‘)=2�:

(A1)

Using the gamma function properties [17], ��k� z� �
�k� 1� z��k� 2� z� � � � �1� z���1� z� with k �
l� 3 and z � n� i‘)=2, and ��z���1� z� � ,=
sin�,z� with z � 1� n� i‘)=2, one has (for ) � 1)
the result�

�
�
3

2
�

l
2
�
!‘
2

�
�
�
3

2
�

l
2
�
!‘
2

��
�1

’ i��1�n�1 n!
�l� 2� n�!

‘
2
): (A2)

Moreover, use of (31) with )� 0 yields

�
�
1�

l
2
�
!‘
2

�
�
�
1�

l
2
�
!‘
2

�

’ �
�
�l�

1

2
� n

�
�
�
5

2
� n

�
: (A3)

Finally, inserting (A2) and (A3) into (30) yields (32).
-6



SMALL KERR–ANTI-DE SITTER BLACK HOLES ARE . . . PHYSICAL REVIEW D 70 084011
APPENDIX B: USEFUL GAMMA FUNCTION RELATIONS

The transition from (33) into (34) is done using only the gamma function property, ��1� x� � x��x�. Indeed, with it
we can show that

��l� 1� i2$�

���l� i2$�
� i��1�l�12$

Yl
k�1

�k2 � 4$2�;
���2l� 1�

���l�
� ��1�l�1 l!

�2l� 1�!
;

���l� 1=2�
���l� 1=2� n�

� ��1�n2�n �2l� 1� n�!!
�2l� 1�!!

; ��l� 1=2� � 2�l�2l� 1�!!
����
,

p
;

��n� 5=2� � 2�n�2�2n� 3�!!
����
,

p
:

(B1)
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