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Transient accelerated expansion and double quintessence
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We consider Double Quintessence models for which the Dark Energy sector consists of two coupled
scalar fields. We study, in particular, the possibility to have a transient acceleration in these models. In
both Double Quintessence models studied here, it is shown that, if acceleration occurs, it is necessarily
transient. We consider also the possibility to have transient acceleration in two one-field models, the
Albrecht-Skordis model and the pure exponential. Using separate conservative constraints (margin-
alizing over the other parameters) on the effective equation of state weff , the relative density of the Dark
Energy �Q;0 and the present age of the Universe, we construct scenarios with a transient acceleration
that has already ended at the present time, and even with no acceleration at all, but a less conservative
analysis using the cosmic microwave background data rules out the last possibility. The scenario with a
transient acceleration ended by today can be implemented for the range of cosmological parameters
�m;0 * 0:35 and h & 0:68.
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I. INTRODUCTION

The release of type Ia Supernovae data independently
by two groups, the Supernovae Cosmology Project and
the High-z Survey Project [1], confirmed in more recent
work [2], indicating that our Universe might be presently
accelerating, has profound implications on the current
paradigm in cosmology. It was found that, assuming flat-
ness, the best-fit Universe with a cosmological constant 	
is given by the set of cosmological relative densities
��	;0;�m;0� � �0:72; 0:28�. Here,m stands for usual pres-
sureless matter including (cold) dark matter and baryonic
matter. These data are also in surprising agreement with
the location of the first acoustic (Doppler) peak of the
cosmic microwave background (CMB) temperature an-
isotropy multipoles. If these data are confirmed in the
future, they imply a radical departure from usual text-
book Friedman-Lemaı̂tre-Robertson-Walker (FLRW)
cosmology [3]. Indeed, a perfect isotropic fluid cannot
lead to accelerated expansion unless it has a sufficiently
negative pressure while the data seem to imply that such a
kind of smoothly distributed matter, called Dark Energy,
constitutes about two-thirds of the whole matter budget of
our Universe.

Obviously, a pure cosmological constant 	 could be
responsible for this acceleration. However, its amplitude
has to be exceedingly small, about 123 orders of magni-
tude too small in order to be explained in a ‘‘natural’’ way.
While this possibility is actually in good agreement with
observations and attractive as it seems to make many
pieces of our present understanding of structure formation
fit into a consistent picture, in view of the above-
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mentioned theoretical problems research has focused on
other, more elaborate, Dark Energy candidates that would
mimic a pure cosmological constant.

A 	 term is equivalent to a perfect isotropic fluid with
constant equation of state p	 � ��	, equivalently w	 �
�1. Provided enough of the total energy density is stored
in this component, the expansion will be accelerated. A
first generalization could be some phenomenological scal-
ing Dark Energy with constant equation of state and w<
� 1

3 . Some interesting insight can be gained by consider-
ing most of the Universe energy stored in such a compo-
nent (see, e.g., [4]).

Another more elaborate alternative to a pure cosmo-
logical constant 	 is some effective, slowly varying,
cosmological constant term that will start driving the
Universe expansion at low redshifts. The prominent can-
didate in this respect is some minimally coupled scalar
field , often termed quintessence, slowly rolling down
its potential so that it has a negative pressure, p �
w�, w <� 1

3 [5–8]. Later on tracking solutions
were introduced [9], a substantial improvement with re-
spect to the initial conditions problem, however without
solving the cosmic coincidence problem. Actually, this is
precisely the mechanism which drives the inflationary
stage in the early Universe and here, too, one can consider
several potentials and investigate how well they fit the
observational data. If a scenario of this kind is the correct
one, then it is possible in principle to reconstruct (the
relevant part of) its potential V�� and the corresponding
equation of state characterized by w, using luminosity-
distance measurements in function of redshift z. This
08-1  2004 The American Physical Society
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procedure can be extended to more elaborate models of
gravity like so-called generalized, or extended, quintes-
sence models in the framework of scalar-tensor theories
of gravity [10,11]. Note that the latter case can represent a
possible physical realization of so-called phantom en-
ergy, with w<�1 [10] and it has been intensively inves-
tigated (see, e.g., [12]). One can also consider other
modifications to the theory of gravity or to the coupling
of scalar fields (see, e.g., [13]).

A Chaplygin gas is another example of more exotic
Dark Energy candidates that was proposed; in the course
of the Universe expansion, this gas undergoes a transition
from a dustlike to a cosmological constantlike equation of
state [14].

Actually, as the Dark Energy sector is still unknown, it
is interesting to explore all possible models that can pass
successfully the observational constraints and we want to
investigate Double Quintessence models for which this
sector consists of two coupled scalar fields. Two scalar
fields models give rise to exchange of kinetic energy
between the two fields and produce a nontrivial time
evolution of the Dark Energy equation of state. Some
models of two-fields quintessence have been introduced
and studied in the literature [15–18].We show with simple
two-fields models how the introduction of an auxiliary
field can bring accelerated expansion of our Universe to
an end. Though our models have natural parameters, the
cosmological coincidence however is not solved here. We
note that many-fields inflationary models can have sig-
natures [19] which distinguish them from single-field
inflationary models, in the first place the possibility to
have a characteristic scale in the primordial fluctuations
spectrum (see, e.g., [20]). In this respect, the situation is
here more contrasted and we will return to this point in
the conclusion.

The existence of an event horizon in the case of a de
Sitter phase is an obstacle to the implementation of string
theory because the S-matrix formulation is no longer
possible, hence eternal acceleration, leading to a de
Sitter space in the asymptotic future is problematic [21].
Therefore, transient acceleration of our Universe is cer-
tainly a welcome feature in this respect. Even more, we
will show that we can have, in a fairly natural way, a
transient acceleration which has already ended at the
present time and is still in accordance with the observa-
tions. We explore the window in parameter space for
which this intriguing scenario is realized. It is even
possible, though this is a marginal possibility, to con-
struct scenarios where there is no acceleration at all,
neither at the present time nor in the past of our
Universe. Of course, agreement with the observational
data still requires that the Dark Energy sector dominate
for some time and has an effective equation of state
satisfying w< 0. We will see that in our models the
quantity w, which will be called eos (equation of state)
084008
parameter, is not constant and is actually strongly vary-
ing on the redshift interval 0< z< 2 relevant for (past)
luminosity-distance measurements. Actually, it was al-
ready found earlier that luminosity-distance measure-
ments are rather insensitive to large variations of the
eos parameter at low redshifts [4,22]. This is why, very
interestingly, in our Double Quintessence models, it is
possible to construct scenarios where the standard inter-
pretation of a presently accelerating Universe can be
challenged.

In Sec. II, we give the basic equations of our system and
introduce the relevant quantities and notations. In
Sec. III, we list the observational constraints on our
models and the associated quantities. In Sec. IV, our
models are presented and investigated numerically in
Sec. V, and regions in parameter space leading to viable
models are explored. We will take 8G � M�2

p � 1
(where Mp is the reduced Planck mass) and �h � c � 1
in the following.
II. COSMOLOGICAL EVOLUTION

Let us introduce now the background evolution equa-
tions of our system. The equations of motion for a spa-
tially flat FLRW cosmology with two coupled
homogeneous scalar fields  and �, and Hubble parame-
ter H, are conveniently written in the following way:

_�b � �3H�b�b (1)

� � �3H _� @V (2)

�� � �3H _�� @�V (3)

_H � �4G��m�m � �r�r � �Q�Q�; (4)

subject to the constraint equation:

H2 �
8G
3

��m � �r � �Q� �
k

a2
: (5)

Here a dot denotes a derivative with respect to the cosmic
time t, the subscript b refers to the dominant background
quantity, either dust (m) or radiation (r), while Q refers to
the Dark Energy sector, here the two quintessence scalar
fields. We have further

pb � ��b � 1��b; (6)

with �m � 1 and �r �
4
3 where, for any component i, we

have introduced for convenience the quantity

�i � 1� wi: (7)

Finally the quintessence fields with potential V have the
following energy density and pressure:

�Q � 1
2
_2 � 1

2
_�2 � V�;�� (8)
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pQ � 1
2
_2 � 1

2
_�2 � V�;�� (9)

with pQ � ��Q � 1��Q. It is convenient to define the
following new variables:

X �

����������
8G

3H2

s
_���
2

p ; X� �

����������
8G

3H2

s
_����
2

p ;

XV �

����������
8G

3H2

s ����
V

p
:

(10)

The above equations are then written in the following
way :

0 � �8G���1=2�
���
6

p
X (11)

�0 � �8G���1=2�
���
6

p
X� (12)

X0
 � �3X �

���
3

2

s
�8G���1=2�X2

V@ lnV �
3

2
XF (13)

X0
� � �3X� �

���
3

2

s
�8G���1=2�X2

V@� lnV �
3

2
X�F (14)

X0
V �

���
3

2

s
�8G���1=2�XV�X@ lnV � X�@� lnV�

�
3

2
XVF (15)

with

F�X; X�; XV; N� � �1� X2
 � X2

� � X2
V�

	

�
�m�m � �r�r
�m � �r

�
� 2�X2

 � X2
��

(16)

where a prime denotes a derivative with respect to the
quantity N, the number of e-folds with respect to the
present time,

N � ln
a
a0
; (17)

and we have alsoH � _N. It is straightforward to relate the
quantity N to the redshift z:

1� z � e�N: (18)

The fields are expressed in units of the reduced Planck
mass and all quantities above are dimensionless.
Moreover we have the following standard evolution for
matter and radiation densities

�m � �m;0 exp��3N�; (19)

�r � �r;0 exp��4N�; (20)

and more generally for constant wX,
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�X � �X;0 exp��3
1� wX�N�: (21)

Hereafter and in (17), the subscript 0 refers to the value of
any quantity today and the subscript i refers to its value at
some initial time ti.
III. OBSERVATIONAL CONSTRAINTS

We consider now all the relevant quantities pertaining
to our system which will enter the observational
constraints.

The relative energy density for matter, radiation and
quintessence, �m, �r and �Q, where we have for each
component labeled by the subscript i;�i � �i=�c with �c
the critical density, are given by

�m � �1� X2
 � X2

� � X2
V�

�m;0

�m;0 ��r;0e
�N ; (22)

�r � �1� X2
 � X2

� � X2
V�

�r;0

�r;0 ��m;0e
N ; (23)

�Q � X2
 � X2

� � X2
V: (24)

The equation of state (eos) parameter wQ for the Dark
Energy (Double Quintessence) sector, and the effective
eos parameter weff [23] read

wQ �
pQ
�Q

�
X2
 � X2

� � X2
V

X2
 � X2

� � X2
V

; (25)

weff �

Ra0
0 da

0wQ�a
0��Q�a

0�Ra0
0 da

0�Q�a0�

�

R
0
�1 dN

0eN
0
�X2

 � X2
� � X2

V�R
0
�1 dN

0eN
0
�X2

 � X2
� � X2

V�
: (26)

The case where Dark Energy consists of one field is
straightforwardly recovered from the above equations.
Finally, the deceleration parameter q, the Hubble-pa-
rameter-free luminosity distance DL and the age of the
Universe t0 are, respectively, given in terms of N by

q � �
�a

aH2 �
1

2

X
i

�i�1� 3wi�; (27)

�
1

2
�1��r � 3wQ�Q�; (28)

DL � H0dL � �1� z�
Z z

0
dz0

H0

H�z0�

� e�N
Z 0

N
dN0e�N

0 H0

H
; (29)

H0t0 �
Z �1

0
dz

H0

�1� z�H�z�
�

Z 0

�1
dN
H0

H
; (30)
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FIG. 1. The relative error for the luminosity-distance dL�z�
with respect to the 	 model with �	;0 � 0:66 is shown. One
has 
dL�h��=
dL;	�h	�� � 1 � e	�DL=DL;	� � 1. The follow-
ing models are plotted: the Einstein-de Sitter Universe with
e	 � 1 (dotted line), the potential Eq. (80) for P0 � 0:164 of
Table II and accelerated expansion ended by today, with e	 � 1
(lower long-dashed line) and e	 � 1:03 (upper long-dashed
line), the pure exponential potential Eq. (49) for parameter
values % � 1:84 and X2

V;i � 5:8	 10�113 and no acceleration at
all, with e	 � 1 (lower short-dashed line) and e	 � 1:11
(upper short-dashed line). As seen from the figure, by varying
e	, and e	 > 1, we improve agreement with the SNIa data,
except for small z & 0:3 where the relative departure can be
large. Clearly, this is impossible with the Einstein-de Sitter
model.
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with �
H
H0

�
2
�

�m;0e�3N ��r;0e�4N

1� X2
 � X2

� � X2
V

: (31)

Let us consider two universes with the same ‘‘history,’’ in
the sense that they share the quantity h�z� � 
H�z��=H0

while they differ in the present value H0. As can be seen
immediately from (29), the quantity DL depends only on
h�z� and will therefore be the same for both universes. It
will be interesting to compare luminosity distances dL�z�
for such universes; we have, in particular, when compar-
ing two universes with same h�z� but different Hubble
constant H0 and H0;	

dL�z;H0� �
H0;	

H0
dL�z;H0;	� �

h	
h
dL�z;H0;	�

� e	dL�z;H0;	�; (32)

where h � H0=�100 km=s=Mpc�, respectively, h	 �
H0;	=�100 km=s=Mpc�. We have further for any two uni-
verses (dropping the argument z)

dL�h�
dL;	

�h	� � e	
DL
DL;	

; (33)

which shows the relative variation of dL�z;H0� when
varying H0 with respect to some fixed value H0;	. We
will make use of (33) in Fig. 1.

The traditional sign convention for the ‘‘deceleration’’
parameter q gives a positive q for a decelerating universe.
A cosmological constant 	 corresponds to the particular
casew	 � �1 and �	 � 	=�3H2�. For flat universes, the
relative energy densities �i satisfy

P
i�i � �m ��r �

�Q � 1 at all times. In particular, at late times, the
energy density of radiation can be neglected and (27)
and (28) give

q ’ 1
2�m � 1

2�Q�1� 3wQ� ’
1
2�1� 3wQ�Q�: (34)

We see, in particular, from (27) that a decelerated expan-
sion at late times requires

wQ >�1
3�

�1
Q : (35)

In this work, we will consider universes where the quan-
tity q (re)changes sign, from negative to positive, i.e.,
accelerating universes resuming a decelerated expansion,
in some cases even before the present time. We will call
henceforth tend the time at which the transient accelerated
stage ends:

q�t � tend� � 0: (36)

For our system, the eos parameter wQ is constrained
between �1<wQ < 1 while the energy density of the
Dark Energy sector (like the energy density of any com-
ponent) is bounded according to 0<�Q < 1. The pa-
084008
rameter q has to be negative at the present time if the
Universe is accelerating today, viz. q0 < 0.

The nucleosynthesis bound is the most stringent one
[24]

�Q�N ��23� & 0:045 at 2#; (37)

while we have at last scattering [24]

�Q�N ��8� & 0:39 at 2#: (38)

We adopt the following range 0:6 & h & 0:8 and we con-
sider universes satisfying the conservative bounds [2,25–
30]

0:2 & �m;0 & 0:45; (39)

�r;0h2 � 4:3069	 10�5; (40)

as well as

0:55 & �Q;0 & 0:8: (41)

In [2,25,26], a constant eos parameterwQ was considered.
The quantity weff was introduced in [23] in order to
account for a varying equation of state of the Dark
Energy sector. Note that for constant eos parameter one
has weff � wQ and it was shown in [25] that constraints
-4
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FIG. 3. The evolution of wQ (solid line) and of the decelera-
tion parameter q (dashed line) is shown for the potential
Eq. (81) with the same parameters as in Fig. 10, and with
growing values of % from bottom to top. For the model % �
1:85, there is no accelerated expansion at all. Note that wQ
exhibits oscillations in the range z� 1–3 because the auxiliary
field � reaches, and oscillates around, 0.
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on wQ can be replaced by constraints on weff so we
consider the observational constraint :

weff & �0:70: (42)

The conservative bound (42) is required by the CMB as
well as the SNIa and the large scale structure data [25–
29].

Combining Eqs. (35) and (41), decelerated expansion
today requires the necessary condition

wQ;0 * �0:606: (43)

We note immediately that conditions (42) and (43) are
incompatible for a constant equation of state, i.e., weff �

wQ � const. Both conditions (42) and (43) can be met
today when the equation of state varies strongly at low
redshifts as we will see with concrete models studied in
this work (see Figs. 2 and 3). The lower bound (43) is
always necessary but only sufficient when �Q;0 � 0:55.
When �Q;0 � 0:8, the condition sufficient for decelerated
expansion is tighter, namely wQ;0 � � 5

12 � �0:416.
Clearly, the lower �Q;0 the easier it is to implement
decelerated expansion today. Finally, we impose that the
age of the Universe satisfies [31]

t0 * 13 Gyr; (44)

which translates into a constraint on the quantity H0, or
equivalently on h, as can be seen from (30). One has
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FIG. 2. The evolution of the quantities wQ (solid line) and
q (dashed line) are shown versus redshift for the poten-
tial Eq. (80) with the fixed parameters % � 10, c � 23:8
while P0 takes the values, from bottom to top,
0:160; 0:162; 0:163; 0:164; 0:166; 0:168; 0:170 (i � 0 and
�i � 5), see Table II. Note that the third model from
the bottom, P0 � 0:163, satisfies the necessary condition
for decelerated expansion today; however, this is not suffi-
cient because �Q;0 > 0:55. The models with P0 �

0:164; 0:166; 0:168; 0:170 produce a transient acceleration
which ends before today (q0 > 0).
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H�1
0 � 3:0856	 1017h�1 s � 9:7776 h�1 Gyr; (45)

so that the constraint (44) can be rewritten as

H0t0 * 1:330h: (46)

Note that, in the past, the inclusion of a cosmological
constant was invoked precisely in order to reconcile an
‘‘old’’ universe with a high value for H0 while today it is
motivated by completely different observations. The
bound (44) is conservative and corresponds to the present
age of an Einstein-de Sitter universe with h � 0:65. In
our simulations we will assume equipartition of the en-
ergy

1
2
_2
i �

1
2
_�2
i � Vi (47)

initially at the end of the primordial inflationary stage
(zi � 1029), but the initial time could as well be taken at
nucleosynthesis or at matter-radiation equality [32].
IV. MODELS

We will be interested in universes where the accelerated
expansion is brought to an end, or even does not take
place. If the Universe is accelerating indefinitely it will
exhibit an event horizon such that

DH�t0� �
Z 1

t0

dt
a�t�

(48)

is finite. In the case of a constant eos parameter wQ and a
quintessence domination (�Q � �m;�r), we have a /

t2=
3�1�wQ�� and if wQ <�1=3 the integral (48) is finite.
-5
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It is well known that the problem of initial conditions
for the quintessence field can be considerably alleviated
by the so-called tracking behavior whereas the relative
density �Q follows the density �b of the dominating
background component, with some specific evolution of
wQ. We will consider two one-field models and two
Double Quintessence models.

Let us stress first what will be relevant in the frame-
work of either one-field, or two-field quintessence models
with transient acceleration that we study here. There are
several ways to obtain transient acceleration:
(i) T
he tracking behavior of the scalar potential is
not reached until today; namely, fields are frozen
in the past with wQ ’ �1;�Q � 1, while once
the tracking behavior is reached, Eq. (35) must be
satisfied. In Sec. IVA, we will see that a pure
exponential potential can exhibit such a behavior
as studied in [33–36]. Moreover, in [37] it is
shown that a FLRW universe filled with a scalar
field only can undergo a stage of transient accel-
eration. As we show in Sec. IV D, even the quin-
tessence domination can be avoided because of the
varying coupling constant of the model studied
there.
(ii) T
he existence of a minimum or a local flatness in
the  direction of the potential can produce an
accelerated expansion but the minimum has to
disappear in order to make this acceleration tran-
sient. In the model of Albrecht and Skordis [38]
(Sec. IV B) for which a feature is introduced in a
pure exponential potential, the parameters have to
be fitted in order for the field to roll over the
barrier. In the model IV C, the minimum is dy-
namical and disappears. So in these cases, the
actual acceleration takes place outside the scaling
regime, which was reached early on in the
Universe evolution, when the field  approaches
his minimum; see Secs. IV B and IV C.
(iii) S
till another possibility to obtain transient accel-
eration is to cancel the scalar potential V: This is
the case in the hybrid inverse power-law potential
V�;�� � �2M4�n�n studied in [15]. On the
contrary, the inverse power-law potential cannot
produce a transient acceleration because wQ !
�1;�Q ! 1 in the future [5,9]. Other models
where V cancels can produce transient accelera-
tion like the oscillatory Dark Energy model with a
double exponential potential V�� �

A exp�12%� � B exp�� 1

2%��2 [39] and also the
power-law potential V / 2n; n � 1; 2; . . . .
If V � 0, even a flat universe can undergo a transient
acceleration followed by a big crunch [40,41], and an ever
decelerating universe can also be considered in a closed
FLRW (k � �1) [42]. In the following we will restrict
ourselves to positive potentials V � 0 and flat space
084008
k � 0. In the transient acceleration picture, it is interest-
ing to consider whether the acceleration finishes in a time
comparable to H�1

0 , namely, tend * t0 or tend & t0, much
larger thanH�1

0 , i.e., tend � t0, or if the acceleration does
not occur at all.

A. Pure exponential potential

We consider a scalar field  with an exponential po-
tential

V�� � M4e�%; (49)

already widely investigated in the past [5–7,43] and
motivated in [44]. For this potential an attractor solution
exists: either a scaling solution such that

�Q �
3�b
%2

and �Q � �b if %2 > 3�b; (50)

or else a scalar field dominated solution

�Q � 1 and �Q �
%2

3
if 0< %2 < 3�b: (51)

The nucleosynthesis bound �Q�1 MeV� & 0:045 at the
2# level [24] implies from (50) that % * 9 during the
scaling regime. If we want to take advantage of the
attractor property of this potential, it is impossible to
have reasonable �Q;0 without violating the nucleosynthe-
sis bound, and anyway wQ would mimic the background
component eos, wQ � wm � 0 thereby preventing a past
and/or actual acceleration.

In [33–35] the authors present a way to circumvent
these arguments and revive the pure exponential poten-
tial, using the attractor property in the future instead of
the past of the Universe by fine-tuning the mass scale
M2 �MpH0 (in this section we will sometimes reput Mp

for clarity). Contrary to the claim in [33], _2
i � Vi is not

necessary, only Vi �M2
pH2

0 has to be imposed initially.
Apart from % andM, two extra values i and _i must be
specified. We can always take i � 0 by a redefinition of
M which corresponds to a rescaling of the problem.

The Universe experiences first a kination regime such
that V � _2 / a�6 with wQ ’ 1 followed by a regime
during which V � _2 and while M2

pm
2
 � V � M2

pH
2,

the field  gets frozen with wQ ’ �1 until now where
_2 �M2

pm2
 � V �M2

pH2
0 allowing the attractor regime

to be reached in the near future and we are left with a
fixed ratio, either �Q � 1 and wQ � %2=3� 1 if %2 < 3
or else �Q � 3=%2 and wQ � 0 if %2 > 3, in the presence
of dust [33–35].

In contrast to the statement in [34], the value % >
���
3

p

gives a viable model provided the scaling regime is not
yet reached and it produces intriguing possibilities for the
evolution of the Universe, namely, an acceleration which
ends before today and even no acceleration at all.
-6
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An acceptable quintessence density �Q >�Q;0 * 0:55
implies, using (50), % & 2:3. If % <

���
2

p
, acceleration is

eternal because the attractor solution (in the future) is
characterized by �Q � 1 and wQ <�1=3 as seen from
(51). Therefore transient acceleration implies

���
2

p
< % &

2:3 and an eternal quintessence density domination
(�Q >�m). Numerical results of section VA can tighten
even more the upper bound. This model has one fine-
tuned parameter M, which has to satisfy M2 �MpH0.

It is possible to produce analogous scenarios contain-
ing multiple scalar fields with an exponential potential
[45] of the type

V � M4
Xn
i�1

e�%ii : (52)

In the context of assisted inflation, though each field is
unable to support separately an inflationary stage, to-
gether they are able to do so.

But we are interested in a transient acceleration
whether already finished or not, hence in no inflationary
solutions at late times, which requires the condition

Xn
i�1

1

%2i
<

1

2
; (53)

because both attractor solutions (50) and (51) remain valid
with the change

%2 !
�Xn
i�1

1

%2i

�
�1
: (54)

If each i � 0 initially, then M has to satisfy M��������������
MpH0

p
with some level of fine-tuning.

Models containing coupled scalar fields with an expo-
nential potential [46] of the type

V � M4e�
P

m
j�1
%jj (55)

can produce the same scenarios with %2 replaced byPm
j�1 %

2
j in the expressions (50) and (51). So if

2<
Xm
j�1

%2j ; (56)

transient acceleration will occur even though for each
slope separately %j <

���
2

p
. Again if each j � 0 initially,

then M has to satisfy M�
�������������
MpH0

p
.

It is possible to generalize the two last cases [47] with
the potential

V � M4
Xn
i�1

e�
Pmi

j�1 %ijij : (57)

It can be shown that, in the presence of a barotropic fluid,
the two late-time attractor solutions are either a scaling
solution,
084008
�Q �
3�b
%2r

and �Q � �b if %2r > 3�b; (58)

or else a scalar field dominated solution,

�Q � 1 and �Q �
%2r
3

if 0< %2r < 3�b (59)

with

1

%2r
�

Xn
i�1

1Pmi
j�1 %

2
ij

: (60)

For example if each %ij � % and mi � m then %r �
���m
n

p
%.

Thus assisted inflation tends to lower %r and the coupled
part to increase it but, when

2<
1Pn

i�1
1Pmi
j�1 %

2
ij

; (61)

the late-time solution produces a decelerated expansion
with the fine-tuning M�

�������������
MpH0

p
if initially each

ij � 0.

B. Albrecht and Skordis potential

Albrecht and Skordis [38] proposed an interesting
model of quintessence. As noted by [48], this model
contains solutions for which there is a transient accelera-
tion of our Universe. We would like to emphasize even
more that acceleration which has already ended by today
is also a possibility. The model (denoted AS in the follow-
ing) has the following potential:

V�� � M4e�%
P0 � ��c�
2�: (62)

The potential Eq. (62) has a small minimum in order for

the field to be trapped at � � c � �1���������������������
1� %2P0

p
�=%. If %2P0 < 1 the minimum exists and the

field plays for a while the role of a quasicosmological
constant term ( slows down but does not oscillate);
however, if the field has enough kinetic energy it can
roll over the barrier. If %2P0 > 1 there is no minimum and
the potential has to be flattened sufficiently for accelera-
tion to occur and �Q can reach 0:55. In Sec. V B, an
accurate interval will be given for %2P0. The only fine-
tuning in this model is the value of c which expresses
the cosmological coincidence problem: c is roughly the
minimum of the potential and so defines the moment
when acceleration begins. Once c is fixed, the beginning
of the accelerated stage is given. Apart from that, all
parameters (M, %, P0, c) take natural values.

To summarize, we have to take % * 9 in order to
satisfy the nucleosynthesis bound, %2P0 � 1 in order for
the acceleration to be transient and possibly ending before
the present time, and finally c has to be fine-tuned so
that quintessence dominates today.
-7
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C. Pseudoexponential potential

For the AS potential Eq. (62) the minimum, when it
exists, is fixed. Hence, the acceleration will be eternal for
most parameter values, see Fig. 4. With a straightforward
generalization, allowing a simple coupling between two
scalar fields, we can obtain a transient acceleration, pos-
sibly ending before today, whenever acceleration takes
place. The introduction of an auxiliary field � will con-
trol the presence or not of a minimum for . The idea is
to have initially on one hand a minimum of the potential
in the  direction responsible for the acceleration of our
Universe, and on the other hand an evolution of the �
field such that this minimum disappears in the course of
time allowing the resumption of matter domination. We
will study a two-fields potential of the form

V�;�� � M4e�%
P0 � f�����c�
2 � g����:

(63)

The AS model [38] is recovered when f � 1 and g � 0.
For the potential Eq. (63) the minimum is now located at

� � c �
1

%

�
1�

��������������������������������������
1� %2

P0 � g���

f���

s �
: (64)

The function g (g > 0) can describe a mass term for � of
the form g / �2, but it is not essential for the dynamics
of the model. Thus, we will take g � 0 for simplicity.
0.98
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FIG. 4. The allowed window (the area between the solid
curves) in the parameter space �%; %2P0� is shown for the AS
potential Eq. (62) when the acceleration is transient and all
observational constraints, Eq. (69), are met. The nucleosynthe-
sis bound implies % * 9 while transient acceleration implies
% & 25. The observations constrain the remaining parameter of
the model c to be in the range 237:5 & %c & 239 for the
initial condition i � 0 at Ni � �67. Above the lower dashed
line, q0 can be negative as well as positive; above the upper
dashed line q0 > 0 always. For %2P0 values below the window,
acceleration is eternal as  settles at its minimum forever.

084008
The minimum (64) will disappear provided we have

f���< %2P0 � f��c�: (65)
We note in passing that the potential can be rewritten in
the form V�;�� � M4=%2e�%
f��c� � f���	
�%� %c�

2�. We will use for f a positive, continuous
function which is monotonic in the region �> 0 and/or
�< 0. As can be seen from the condition (65), if f is
decreasing, respectively, increasing, then for �i smaller,
respectively, larger, than �c acceleration is possible be-
cause the minimum (64) exists.

During the evolution of the Universe, the field  rolls
down its potential, which is dominated by the exponential
part, such that M2

pm2
 �M2

pm2
� � V � _2 �M2

pH2 with
�Q � 4=%2, wQ � 1=3 during radiation domination,
while �Q � 3=%2, wQ � 0 during matter domination
until  approaches its minimum. As long as the field 
is trapped at its minimum (64) and oscillates around it,
the Universe undergoes an accelerated expansion with
V � _2 and therefore wQ ’ �1 until � satisfies � �

�c, respectively � � �c, if f is increasing, respectively
decreasing. At that moment the minimum (64) disap-
pears, allowing  to continue to roll freely towards larger
values and hence the matter dominated regime is re-
sumed. For a given set of parameters (%;P0; . . . ), the
further the initial condition �i from �c, the longer the
evolution of � toward �c and so the longer the acceler-
ated regime of our Universe. When � is initially larger
(smaller) than �c, provided f is increasing (decreasing)
� passes through �c because @�V � M4e�%��

c�
2 df
d� is positive (negative), acceleration occurs which

is always transient; if on the contrary �i � �c (�i �
�c) quintessence domination is not possible. The critical
value �c controls the presence or not of the minimum for
. Contrary to [16,17] where acceleration is always per-
manent, or [18] where acceleration can be either transient
or permanent, acceleration here is always transient as in
[15,39]. Of course the absence of acceleration is also
possible in principle for all these potentials but this
possibility has to be rejected by observations.

For the numerical computations presented in Sec. V C,
we will use a very simple function f without any addi-
tional parameter, namely,

f��� � �2; (66)
for which the minimum of  disappears if ��c � � �
�c with �c � %

������
P0

p
. Analogously to the AS model, we

have to take % * 9 in order to satisfy the nucleosynthesis
bound and, once i is fixed, c has to be fine-tuned in
order for quintessence domination to occur today.
-8
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D. Pure exponential potential with a varying coupling
constant

Starting from a pure exponential potential V�� /
e�%, we now allow % to depend on the auxiliary field
� and to vary in time, i.e., we make the generalization
%! %eff���, and we consider the potential

V�;�� � M4e�%eff ���: (67)

A similar idea was used in [38] where %eff�� depends on
 in order to create a minimum and to produce an eternal
acceleration.

We will assume that %eff has a global minimum equal
to % in � � �min � 0. Whatever the precise form of %eff ,
@ lnV � �%eff < 0 for all � which implies that  is
always growing and @�lnV � �
�d%eff�=�d��� is posi-
tive, respectively, negative, if  and � have opposite
signs, respectively, the same sign. Hence if initially i <
0 and �i > 0, respectively �i < 0, (we could take i > 0
as well with %eff ! �%eff)  grows towards positive
values while � decreases, respectively, grows, until it
reaches, and oscillates around, zero. While < 0 and
�� 0, %eff ! % and V ! e�%. Hence, as for the pure
exponential % & 2:3 implies sufficient quintessence
domination (�Q;0 * 0:55) after the matter dominated
stage. Once > 0, � moves away from zero and the
function %eff is again growing, allowing for the resump-
tion of matter domination (�Q � 1). The current quin-
tessence domination begins when � goes to zero and
consequently when %eff reaches its minimum. Thus @V
will only depend on % and so will the dynamics of . The
lower %, the slower the evolution of  toward zero and
hence the longer the acceleration and/or the quintessence
domination regime of our Universe. Clearly the more
remote i from 0, the stronger this effect.

The quantity M is solely determined by the conditions
to have a realistic evolution of our Universe and turns out
to be roughly equal to the energy scale today M��������������
MpH0

p
. In this potential j%effj � � lnM4=3H2 because

X2
V � 1. So the potential (67) allows us to use the scaling

property of the exponential potential as early as the end of
inflation without necessarily having kination followed by
a stage where the fields are frozen. If X2

V;i � 1, then after
a kination regime (wQ � 1), we have �Q � �b and the
evolution of the fields is frozen since m2

 �m2
� �

M�2
p V � H2 until V �M2

pH
2. For potential (67), as for

the potential (63), acceleration if it takes place is neces-
sarily transient. Moreover, the full range 0< % & 2:3
gives viable models, either with transient acceleration or
without acceleration because for this potential the domi-
nation of quintessence is transient.

We will take for numerical simulations in Sec. V D:

%eff��� � %�1� ,�2�; (68)

with ,> 0. To summarize, for the potential (67), �
084008
controls the beginning of quintessence domination while
 controls its end. Observational constraints require the
following two conditions: % & 2:3 and M2 �MpH0.
V. NUMERICAL RESULTS

We summarize briefly the observational constraints
and the initial conditions used in our numerical calcula-
tions. We will use the following conservative constraints
(41), (42), and (46) on the quintessence density today
�Q;0, the effective eos parameter weff and the age of the
Universe t0:

0:55 � �Q;0 � 0:80; weff � �0:70;

H0t0 � 1:330h:
(69)

From the equipartition of energy, natural initial con-
ditions suggest that �Q;i � 10�3 � 10�4 [9]. When
�Q;i & 1%, the parameter window allowed by observa-
tions is unchanged and so we will take

X;i � X�;i � XV;i � 10�2 at Ni � �67; (70)

implying �Q;i � 3	 10�4 except for the pure exponen-
tial potential, Sec. VA, where we take X2

;i � X2
�;i �

10�4 and X2
V;i has to be adjusted.

A. Pure exponential potential

The exponential potential Eq. (49) is a viable candidate
for quintessence provided the attractor solution is not yet
reached as explained in Sec. IVA, and, in particular, it
can produce transient acceleration. In addition to the
constraint % >

���
2

p
in order to have transient acceleration

(see Sec. IVA), imposing the observational constraints
(69) only % � 1:975 is allowed. In [34], only the case % <���
3

p
was considered because they used the constraints

wQ;0 � �0:60 and �Q;0 � 0:60 which lead to a stronger
constraint on %.

Thus in order to have transient acceleration, % is con-
strained as

���
2

p
< % � 1:975 resulting in weff * �0:86.

Here 3:7 & X2
V;i 	 10113 & 9:2 with i � 0 at Ni � �67.

Different possibilities arise: If �1:82–1:837� � % �
1:837, the acceleration ends before today with a low
quintessence density �Q;0 & 0:62 and weff * �0:75.
Surprisingly there is no acceleration at all in the interval
1:838 � % � 1:975 while �Q;0 & 0:61 andweff * �0:75.
If the observations would constrain weff so that weff &

�0:86, only permanent acceleration would be possible
(i.e., % <

���
2

p
).

In Fig. 5, the ratio tend=t0 is shown as a function of %.
We should stress that the constraints we have adopted

are conservative and a more refined analysis would re-
strain the viability of our models. Let us consider the
following constraints at 1# from the Wilkinson
Microwave Anisotropy Probe (WMAP) alone [26]:
-9
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FIG. 6. The following models are plotted: the SNIa data with
1# errors corresponding to flat 	 models with �	;0 � 0:74
(upper solid line), �	;0 � 0:66 (lower solid line), the Einstein-
de Sitter Universe (dotted line), the potential Eq. (80) for P0 �
0:164 of Table II and accelerated expansion ended by today
(long-dashed line), the pure exponential potential Eq. (49) for
parameter values % � 1:84, X2

V;i � 5:8	 10�113 and no accel-
eration at all (short-dashed line). The luminosity distances
dL�z� for a given model with H0 can be compared by varying
e	, e	DL�z� � �h	=h�DL�z� � H0;	dL�z�, where H0;	 (and the
corresponding h	) is some fixed fiducial value. The correction
factor 1:03 � e	 � 1:10 will bring the first model (pseudoex-
ponential) inside the SNIa data (1# uncertainties), 1:11 �
e	 � 1:18 is needed for the pure exponential.
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FIG. 5. The ratio tend=t0 is displayed as a function of % for the
pure exponential potential Eq. (49). For t > tend, decelerated
expansion is recovered (q > 0). All models displayed have a
transient acceleration; for those below the dashed line the
acceleration is ended by today. Initially, at Ni � �67, we
take X2

V;i � Vi=�c;i � M4=�c;i � 5:8	 10�113. For this initial
value XV;i, the range 1:833 � % � 1:837 yields an accelerated
stage which ends before today while the range 1:838 � % �
1:975 produces no acceleration at all, the range % > 1:975
being excluded by observations, Eq. (69). Note that tend !
�1 when %!

���
2

p
.
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13:2 Gpc � 3h�1
Z zdec

0

dz
h�z�

� 14:2 Gpc; (71)

0:12 & �m;0h2 & 0:16; (72)

0:67 � h � 0:77; (73)

13:1 � t0 � 13:7 Gyr: (74)

We have finally from the SNIa data at 1# [49]

0:26 � �m;0 � 0:34: (75)

It is easily checked that the range (39) corresponds to (72)
with the lower, respectively upper, bound corresponding
to h � 0:81, respectively h � 0:58. However in a more
refined analysis the quantities h and �m;0 are no longer
independent.

In Fig. 6 the quantity DL�z� is plotted for an ever
decelerating universe with % � 1:84, X2

V;i � 5:8	
10�113. This model, representative of the scenario without
acceleration at all, is characterized by the following
cosmological parameters �Q;0 � 0:583, wQ;0 � �0:568,
weff � �0:722, H0t0 � 0:843. With a correction factor
1:11 � e	 � 1:18, the luminosity distances agree with
the SNIa data, with uncertainties taken at 1#. Taking
the fiducial value h	 � 0:72, we would get 0:61 � h �
0:65. For this model we have further

Rzdec
0

dz
h�z� � 2:668 so

that the constraint (71) yields 0:56 � h � 0:61 and
084008
0:133 � �m;0h2 � 0:153 and an age 13:51 � t0 �
14:72 Gyr. So this extreme scenario is already in mar-
ginal agreement with the WMAP data alone due to the
low value of h, a value h ’ 0:61 being slightly below the
2# error from the WMAP data alone.

Let us consider now when WMAP is combined with
other CMB data and other data probing the power spec-
trum of the perturbations, we get at 1# [26]

13:7 Gpc � 3h�1
Z zdec

0

dz
h�z�

� 14:2 Gpc; (76)

0:126 & �m;0h2 & 0:143; (77)

0:68 � h � 0:75; (78)

13:5 � t0 � 13:9 Gyr: (79)

We get now the tighter bounds 0:56 � h � 0:58, 0:133 �
�m;0h2 � 0:142. The value of h is too low and the model
without any acceleration is clearly in trouble.

We should however make the following important re-
mark: The uncertainties are obtained from the data as-
suming a 	CDM model and a specific model for the
perturbations, a constant spectral index ns for (71)–(74)
and a running spectral index for (76)–(79). Our models
-10
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are not, by definition, 	CDM models so that, strictly
speaking, the data should be processed specifically for
each of our models.

B. Albrecht and Skordis potential

For the AS potential Eq. (62), only a tiny interval for
%2P0, namely 0:985 & %2P0 & 1:127, allows a transient
acceleration if we impose the constraints (69), see Fig. 4.
If %2P0 & 0:985, the field  stays at its minimum and
acceleration lasts forever while if %2P0 * 1:127 accelera-
tion can occur but �Q;0 will never reach the value 0:55
because the minimum does not exist and the evolution of
the field is too fast. If the transient acceleration ends
before today, again with the constraints (69) the parame-
ter space (%, %2P0) is even more restricted, see Fig. 4. The
parameter % is constrained to be % * 9 because of the
nucleosynthesis bound if the scaling behavior starts ear-
lier than nucleosynthesis, while transient acceleration
implies % & 25. For this interval, we have 237:5 &

%c & 239 when we start with i � 0 at Ni � �67.
Moreover M� 10�2�1=4c;i if we impose X2

V;i � 10�4.
In Table I some examples of a transient acceleration are

given with fixed parameters % � 10, %c � 238:5 and we
vary P0. All the points for which the transient accelera-
tion is ended by today have weff * �0:88. If weff is con-
strained from observations to satisfy weff & �0:88,
acceleration ended by today is not possible in the AS
potential. Nevertheless transient acceleration ended by
today with the AS potential is easier to achieve than
any transient acceleration using the pure exponential
with weff * �0:86.
TABLE I. Models for the AS potential (62) with fixed pa-
rameters % � 10 and %c � 238:5 are tabulated. All models
have transient acceleration; for those in the upper part of the
table the expansion is already decelerated today �tend < t0�.
Note that the model at the top of the lower part of the table,
%2P0 � 1:03, satisfies the necessary condition for decelerated
expansion today (43); however, this condition is not sufficient
as �Q;0 � 0:637.

%2P0 �Q;0 weff H0t0 tend=t0 wQ;0 q0

1.07 0.556 �0:782 0.838 0.879 �0:250 0.291
1.06 0.573 �0:804 0.849 0.907 �0:303 0.240
1.05 0.592 �0:828 0.862 0.936 �0:364 0.176
1.04 0.613 �0:854 0.878 0.966 �0:437 0.098
1.031 0.634 �0:879 0.895 0.997 �0:516 0.009

1.03 0.637 �0:882 0.897 1.001 �0:526 �0:002
1.02 0.663 �0:913 0.920 1.042 �0:634 �0:131
1.01 0.691 �0:946 0.948 1.098 �0:768 �0:296
1.0 0.719 �0:977 0.978 1.194 �0:914 �0:486
0.99 0.733 �0:993 0.995 1.478 �0:996 �0:595
0.986 0.732 �0:994 0.994 2.306 �1:0 �0:598
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Whatever % and P0, the maximum value for tend=t0 is 3
because P0 is bounded from below (see also Fig. 4).

At the end of Sec. V C, a model representative of all
four models with acceleration ended by today will be
analyzed in the light of the constraints (71)–(79).

C. Pseudoexponential potential

We can illustrate the considerations concerning the
potential Eq. (63) (with g � 0) using the function defined
in Eq. (66). The potential reads then

V �
M4

%2
e�%
�2

c ��2�%� %c�
2�; (80)

and the minimum for  disappears if ��c � � � �c
with �c � %

������
P0

p
. Here we will use the following initial

conditions i � 0 and �i � 5. Once i and �i are given,
we can choose �c so that 0<�c <�i while it is always
possible to find an appropriate c. In a way analogous to
the numerical calculations with the AS potential, we keep
the parameters % � 10, %c � 238 fixed and we vary �c.
Also, as for the AS model, we have M� 10�2�1=4c;i if we
impose X2

V;i � 10�4.
In Fig. 7, the evolution of densities is plotted for the

parameter P0 � 0:164 (�c ’ 4:05). This set of parame-
ters induces a transient acceleration which ends before
today. In the scaling regime, �Q ’ 0:04 during radiation
domination and �Q ’ 0:03 during matter domination,
while �Q;0 ’ 0:661.
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FIG. 7. The evolution of the densities �r (dotted line), �m
(dashed line) and �Q (solid line) are shown for the potential
Eq. (80) with % � 10, P0 � 0:164, c � 23:8 (i � 0 and
�i � 5). The quintessence density today is �Q;0 ’ 0:661.
The age of the Universe is H0t0 ’ 0:912 and accelerated ex-
pansion stops at tend ’ 0:996t0. The scaling behavior of the
quintessence field , Eq. (50), is obvious when the background
is radiation or matter dominated, in the past as well as in the
future.
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FIG. 9. The ratio tend=t0, where tend is the time at which
accelerated expansion ends, is shown for the potential
Eq. (80) versus the ratio �0=�c with �c � %

������
P0

p
. The dis-

played models have the fixed parameters % � 10, c � 23:8
with the initial conditions i � 0 and �i � 5, while we vary
the parameter �c, or equivalently, P0. All models displayed
have transient acceleration but only those below the dashed line
have a decelerated expansion today. The range of values
�0=�c & 0:95 is excluded by the observations for this set of
parameter values.
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In Fig. 8, the eos parameter is plotted with wQ;0 ’
�0:491 and weff � �0:874 and the scaling behavior is
evident: wQ ’ 1=3 during radiation domination, wQ ’ 0
during matter domination. When the field  settles at its
minimum, wQ ’ �1 and this stage is followed by a stage
of kination and freezing out of  once the minimum is
left. The deceleration parameter q is also plotted imply-
ing an actual deceleration as q0 ’ 0:013. Acceleration
(q < 0) begins at z ’ 0:658 and finishes at z ’ 0:0035
when the age of the Universe is tend=t0 ’ 0:996 while
the present age of the Universe satisfies H0t0 ’ 0:912.

In Fig. 9, the ratio tend=t0 is plotted as a function of the
ratio �0=�c. Clearly, the more remote �i (�0) from �c,
the longer the acceleration regime. As soon as the mini-
mum disappears,  stops oscillating and continues to roll
down its potential. Contrary to the AS potential tend=t0
can be as large as we want because P0, or equivalently �c,
is not bounded from below.

In Fig. 2, wQ and q are plotted against redshift: the
cases P0 � 0:164; 0:166; 0:168; 0:170 induce an accelera-
tion ended by today. Viable models where the acceleration
ends before today have weff * �0:88.

In Table II, some examples for this model are shown
with i � 0, �i � 5 and again % � 10, c � 23:8 and
we vary P0 (or equivalently �c).

In Fig. 6, the quantity DL is plotted for a model for
which the acceleration is already finished (% � 10, P0 �
0:164, c � 23:8, i � 0, �i � 5, �m;0 � 0:339,H0t0 �
0:912). With a correction factor 1:03 � e	 � 1:10, the
luminosity distances agree with the SNIa data, with un-
certainties taken at 1#. Taking the fiducial value h	 �
0:72, we would get 0:65 � h � 0:70.
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FIG. 8. The evolution of wQ (solid line) and the deceleration
parameter q (dashed line) are shown for the model of Fig. 7. We
obtain here wQ;0 ’ �0:491, q0 � 0:013 and weff ’ �0:874.
Again, we note the scaling behavior of wQ, Eq. (50). In the
future we have a kination regime (wQ � 1) and a freezing
regime (wQ ��1) of the field .
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We can repeat for this model a more refined analysis of
the kind done for the other model (pure exponential)
shown in Figs. 1 and 6, see Sec. VA. We have

Rzdec
0

dz
h�z� �

2:992 so that the constraint (71) yields 0:63 � h � 0:68,
0:135 � �m;0h

2 � 0:157 and an age 13:11 � t0 �
14:11 Gyr. So this model is in good agreement with the
TABLE II. Models for the potential (80) with fixed parame-
ters % � 10 and %c � 238 are tabulated. The four upper
models of the table have a transient acceleration already ended
by today, see Fig. 2. The model at the top of the lower part of
the table, P0 � 0:163, satisfies the necessary condition for
decelerated expansion today (43); however, this condition is
not sufficient as �Q;0 � 0:679.

P0 �Q;0 weff H0t0 tend=t0 wQ;0 q0

0.17 0.575 �0:771 0.846 0.889 �0:207 0.321
0.168 0.600 �0:801 0.863 0.915 �0:280 0.248
0.166 0.628 �0:835 0.885 0.954 �0:372 0.149
0.164 0.661 �0:874 0.912 0.996 �0:491 0.013

0.163 0.679 �0:894 0.929 1.02 �0:564 �0:075
0.162 0.699 �0:916 0.949 1.05 �0:649 �0:181
0.16 0.740 �0:960 0.995 1.15 �0:850 �0:444
0.15 0.746 �0:989 1.008 2.49 �0:993 �0:611
0.14 0.716 �0:990 0.978 3.62 �0:995 �0:569
0.13 0.681 �0:990 0.947 5.02 �0:996 �0:518
0.12 0.643 �0:989 0.917 6.80 �0:998 �0:463
0.11 0.602 �0:988 0.889 9.06 �0:998 �0:401
0.1 0.559 �0:987 0.862 11.98 �0:997 �0:336
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TABLE III. Models for the potential Eq. (81) with fixed
parameter values ,% � 12:44, and initial conditions i �
�5, �i � 2, are shown here. All models have transient accel-
eration except for the model at the bottom of the table which
has no acceleration at all. Note that the necessary condition
(43) for decelerated expansion today is satisfied for % � 1:8 but
it is not sufficient as �Q;0 � 0:580.

% �Q;0 weff H0t0 tend=t0 wQ;0 q0

1.2 0.794 �0:806 1.016 46.42 �0:715 �0:352
1.3 0.755 �0:792 0.973 56.31 �0:691 �0:282
1.4 0.717 �0:778 0.937 63.94 �0:669 �0:220
1.5 0.680 �0:765 0.907 3.62 �0:649 �0:161
1.6 0.645 �0:753 0.883 2.19 �0:627 �0:107
1.7 0.611 �0:741 0.861 1.61 �0:608 �0:057
1.8 0.580 �0:730 0.843 1.20 �0:590 �0:013
1.85 0.564 �0:724 0.835 q > 0 8 t �0:582 0.007
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WMAP data alone and the SNIa data. If we consider the
tighter constraints (76), we obtain 0:63 � h � 0:66,
0:135 � �m;0h2 � 0:145 and an age 13:51 � t0 �
14:11 Gyr, still allowed by (76) and (77).

D. Pure exponential potential with a varying coupling
constant

We now consider the potential Eqs. (67) and (68)

V � M4 exp
�%�1� ,�2��; (81)

for which quintessence domination occurs when % & 2:3
and acceleration today takes place providedM�

�������������
MpH0

p
.

We have taken ,% � 12:44 with i � �5 and
�i � 2 and initially X2

V;i � 10�4. Thus the dynamics of
the fields starts initially, that is, there is no freezing out
(V �H2).

In Fig. 10, the quintessence density evolution is
plotted for different values % �
1:2; 1:3; 1:4; 1:5; 1:6; 1:7; 1:8; 1:85. The effect of the
value of % is shown where, for fixed initial condi-
tions, the models today are roughly equivalent, but
the duration of the transient acceleration depends strongly
on the value of %.

In Fig. 3, wQ and q are shown and we note a perma-
nently decelerating universe for % � 1:85; however, all of
the models with no acceleration at all have weff * �0:74
0
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FIG. 10. The evolution of the quintessence density is shown
for the potential Eq. (81) and same models as in Table III with,
from top to bottom, % � 1:2; 1:3; 1:4; 1:5; 1:6; 1:7; 1:8; 1:85. For
the models % � 1:8; 1:85 (% >

���
3

p
), there is an intermediate

stage where �Q ! �3=%2��b [cf. Equation (50)] starting around
N ’ �1:4 (z ’ 3); for the models % � 1:2; 1:3; 1:4; 1:5; 1:6; 1:7
(% <

���
3

p
), there is an intermediate stage where �Q ! 1

[cf. Equation (51)]. For all models displayed here, �Q ! 0
asymptotically. Note that for , � 0 (pure exponential), the
models with % � 1:2; 1:3; 1:4 [% <

���
2

p
, see Eq. (51)] would

yield eternal acceleration and domination of the quintessence
energy density. We see that the smaller %, the longer quintes-
sence dominates.
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and are marginally viable. Note that the oscillations of
the auxiliary field � around z� 1–3 translate into oscil-
lations in wQ, but it is impossible to see them in the
luminosity distance dL [4,22].

In Table III below some examples for this model are
shown with i � �5, �i � 2, ,% � 12:44 and we vary
%.

Scenarios with no acceleration at all in model D are of
the same type as for the pure exponential, model A. The
analysis performed at the end of Sec. VA is therefore
representative for model D.
VI. CONCLUSION

Recent observational data suggest that some unknown
component, called Dark Energy, contributes to about
two-thirds of the present total energy density filling our
Universe. Though the accuracy of the existing observa-
tions allows one to constrain already at the present stage
to some extent the possible Dark Energy candidates, a
very large number of models are still permitted. It is
therefore interesting to investigate all possible scenarios
and we have also investigated in this work specific models
where the Dark Energy sector is made of two coupled
scalar fields. We have studied numerically two one-field
models, the pure exponential in Sec. VA and the AS
model in Sec. V B, and two Double Quintessence models,
which can be seen as extensions of the corresponding
one-field model, in Secs.V C and V D.We were interested,
in particular, in scenarios for which the (recent) stage of
accelerated expansion is transient.

Constraining the models with the observations, we
have found the allowed window in the corresponding
parameter space of each model. Investigation of these
models has revealed that the following three possibilities
can arise: The present acceleration is transient and still
going on; some accelerated expansion did take place in
-13



TABLE IV. The possible scenarios for our one-field models (upper part of the table) and our Double Quintessence models (lower
part) are summarized. As can be seen, for the one-field models, eternal acceleration covers most of the allowed parameter space.
Note that for the Double Quintessence models, the acceleration is necessarily transient. All four models can produce scenarios
satisfying (69) with a transient acceleration already ended at the present time.

Models Scenarios Parameters Fine-tuning

Pure exponential Eternal acceleration 0 � % �
���
2

p
V0 � M4e�%0 �M2

pH2
0

V � M4e�% Transient acceleration
���
2

p
< % & 1:837

No acceleration at all 1:838 & % & 1:975
AS Eternal acceleration 9 & % c depends on initial conditions
V � M4e�%
P0 � ��c�

2� %2P0 & 0:985
Transient acceleration 9 & % & 25

0:985 & %2P0 & 1:127

AS generalization Transient acceleration 9 & % c depends on initial conditions
V � M4e�%
P0 ��2��c�

2� %2P0 & �0 & �i

Exponential with a varying % Transient acceleration 0< % & 1:84 M4 �M2
pH

2
0

V � M4e�%�1�,�
2� No acceleration at all 1:84 & % & 2
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the recent past but is already finished by today; finally no
acceleration at all, this latter possibility being marginal.
The two first scenarios, i.e., a transient acceleration either
finished or not by today, can be obtained in all four
models. A scenario with no acceleration at all is obtained
only for the two one-field models VA and V D provided
the cosmological parameters take their values at the edge
of the allowed range, �m;0 * 0:4 and h & 0:65. We
summarize the possible dynamics of our models in
Table IV.

In both Double Quintessence models studied in
Secs. V C and V D, for the allowed window in parameter
space where accelerated expansion takes place, the dy-
namics of the model is such that the acceleration is
necessarily transient; hence, for these two models accel-
eration if it takes place will eventually come to an end
either before today or in the future. In the model of
Sec. V C, in addition to the tracking field , an auxiliary
field � is introduced which controls the presence of a
minimum for the  field and the duration of the Universe
transient acceleration. In the model of Sec. V D, it is the
auxiliary field �, and hence %eff , which induces acceler-
ated expansion when it reaches its minimum. In contrast
to our Double Quintessence models where acceleration is
necessarily transient, for the one-field models we have
studied the acceleration is typically eternal and covers
most of the allowed parameter space. In view of the
theoretical problems posed by eternal acceleration, all
viable scenarios with transient acceleration constitute a
welcome alternative. On the other hand, the cosmological
coincidence is not solved here and requires some amount
of fine-tuning on one of the free parameters.We insist that
all the scenarios studied here are in agreement with
observations, in particular, with the Hubble diagram
H�z�, or the luminosity distances dL�z� as a function of
redshift, as reconstructed from the Supernovae data lead-
084008
ing to the possible interpretation of a flat universe with
�	;0 ’ 0:72.

As mentioned in the introduction, it is well known that
many-fields inflationary models can produce primordial
fluctuation spectra with a characteristic scale. The ques-
tion arises naturally whether similar effects can be pro-
duced here. In fact, the luminosity distances can exhibit a
characteristic scale if the equation of state of dark energy
undergoes a phase transition. Such cases were considered
in [50], where the quantity w�z� was taken with a steplike
structure. We have checked numerically that such models
could indeed exhibit a characteristic scale in their lumi-
nosity distances. In our Double Quintessence models
where accelerated expansion is ended at the present
time, we have also a large variation of w�z� at low red-
shifts, typically from w�z� ’ �1 up to some higher value.
However, as can be seen from Figs. 2 and 3 this variation
takes place at very low redshifts 0 � z & 0:3 and, though
significant, this variation is not sharp enough. This is the
reason why no characteristic scale is seen in the corre-
sponding luminosity distances. Actually, it was already
emphasized that the luminosity distances are not very
sensitive to large, smooth, variations of the equation of
state, or equivalently of the quantityw�z�, at low redshifts
z. Results obtained here are a particular illustration of
this property.

In light of our results, it is clear that eternal accelera-
tion could be challenged in two ways, either the accelera-
tion is transient and will end at some time in the future, or
it has already ended by today. Results obtained here show
that the second possibility must be taken seriously if the
observations allow a rather high matter content today,
viz. �m;0 * 0:35 and also large variations of the eos
parameter w�z� at low redshifts. In particular, if it turns
out that the data require wQ;0 & �0:5, this possibility is
ruled out.
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