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Quantum inflaton, primordial perturbations, and CMB fluctuations
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Tour 24, 5ème, étage, 4, Place Jussieu, 75252 Paris cedex 05, France
(Received 7 June 2004; published 22 October 2004)
*Electronic
†Electronic
‡Electronic

1550-7998=20
We compute the primordial scalar, vector and tensor metric perturbations arising from quantum field
inflation. Quantum field inflation takes into account the nonperturbative quantum dynamics of the
inflaton consistently coupled to the dynamics of the (classical) cosmological metric. For chaotic
inflation, the quantum treatment avoids the unnatural requirements of an initial state with all the
energy in the zero mode. For new inflation it allows a consistent treatment of the explosive particle
production due to spinodal instabilities. Quantum field inflation (under conditions that are the quantum
analog of slow-roll) leads, upon evolution, to the formation of a condensate starting a regime of
effective classical inflation. We compute the primordial perturbations taking the dominant quantum
effects into account. The results for the scalar, vector and tensor primordial perturbations are expressed
in terms of the classical inflation results. For a N-component field in aO�N� symmetric model, adiabatic
fluctuations dominate while isocurvature or entropy fluctuations are negligible. The results agree with
the current Wilkinson Microwave Anisotropy Probe observations and predict corrections to the power
spectrum in classical inflation. Such corrections are estimated to be of the order of m2

NH2 , where m is the
inflaton mass and H the Hubble constant at the moment of horizon crossing. An upper estimate turns to
be about 4% for the cosmologically relevant scales. This quantum field treatment of inflation provides
the foundations to the classical inflation and permits to compute quantum corrections to it.
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I. INTRODUCTION

Inflation is a stage of accelerated expansion in the very
early Universe [1,2]. The present observations make infla-
tionary cosmology the leading theoretical framework to
explain the homogeneity, isotropy and flatness of the
Universe, as well as the observed features of the cosmic
microwave background. The Wilkinson Microwave
Anisotropy Probe (WMAP) results [3–5] confirm the
basic tenets of the inflationary paradigm.

There are many different models for inflation and most
(if not all) of them invoke one or several scalar fields, the
inflaton(s), whose dynamical evolution coupled with the
space-time geometry leads to an inflationary epoch. The
inflaton is a scalar field which provides an effective
description for field condensates in the grand unified
theories (GUT). The inflaton field is just an effective
description of the particle dynamics and may not corre-
spond to any real particle (even unstable). Fortunately, we
do not need to know the detailed microscopical descrip-
tion given by the GUT to get the cosmological evolution.
Indeed, a more precise description should be possible
from a microscopic GUT. Somehow, the inflaton is to
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the microscopic GUT theory like the Ginzburg-Landau
theory of superconductivity is to the microscopic BCS
superconductivity theory.

Most treatments of inflation study the evolution of the
inflaton as a homogeneous classical scalar field. The
quantum field theory interpretation is that this classical
homogeneous field configuration is the expectation value
of a quantum field operator in a translational invariant
quantum state. In the classical treatments, the evolution of
this coherent field configuration is studied through clas-
sical equations of motion, while fluctuations of the scalar
field around this classical value are treated perturbatively
and quantum mechanically, and provide the seeds for the
scalar density perturbations of the metric [1].

However, since the energy scale of inflation is so high
(the GUT scale), it is necessary a full quantum field
theory description for the matter. Only such a quantum
treatment permits a consistent description of particle
production and particle decays.

An important class of inflationary models, the ‘‘large
field’’ models [2], produce inflation starting from a large
field amplitude configuration that rolls down the potential
(for example: chaotic inflation). Another important class
of inflationary models, the ‘‘small field’’ models [2],
produce inflation starting from a small field amplitude
configuration near the false vacuum of a spontaneously
broken symmetry potential (for example: new inflation).
28-1  2004 The American Physical Society
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The inflaton background dynamics for these models is
usually studied in a classical framework, and in order to
have a long inflationary period it is necessary that the
field rolls down very slowly: for these models various
conditions have been obtained which are different real-
izations of what we will call here the classical slow-roll
condition,

_~’ 2 � jm2j ~’2: (1.1)

This condition guarantees that there is inflation ( �a > 0)
and that it lasts long enough. (~’ is the classical inflaton
field, m its mass, and the dot denotes cosmic time
derivative.)

One of the shortcomings of the classical chaotic infla-
tionary scenarios is the need of an initial state with quite
unnatural restrictions. In classical inflation the energy is
dominated by the zero mode which leads the dynamics. In
quantum inflation all modes contribute to the energy and
one can choose, in particular, initial states with zero
expectation value for the inflaton. Therefore, the initial
state may not break the ’! �’ symmetry of the po-
tential, while this symmetry is always broken in classical
inflation. On the other hand, classical inflation scenarios
do not allow a consistent treatment of the particle
creation.

In order to overcome the restrictions on chaotic infla-
tion and provide a consistent description of new inflation,
a quantum treatment for the inflaton dynamics is needed
[6–9]. This quantum treatment must be nonperturbative
in order to consistently include the contribution of the
excited modes since the energy is proportional to the
inverse of the coupling. The nonperturbative method we
use here is the large N expansion. Thus, we consider a N
component inflaton field with an O�N� invariant interac-
tion. The presence of the O�N� symmetry simplifies the
calculation of the large N limit but is not a conceptual
restriction.

The goal of this article is to compute the primordial
perturbations produced in the quantum inflation scenar-
ios, and show its relation with those produced by classical
inflation.

We consider the case where the gravitational and the
inflaton backgrounds are homogeneous, and the metric
background is of the flat Friedman-Robertson-Walker
(FRW) type,

ds2 � dt2 � a2�t��dx2 � dy2 � dz2�: (1.2)

We present a quantum field framework for inflation that
takes into account the nonperturbative quantum dynam-
ics of the inflaton consistently coupled to the dynamics of
the (classical) metric. This generalized framework avoids
the shortcomings of the classical chaotic and new infla-
tion scenarios. It also clarifies how and when a classical
effective scenario emerges.
083528
Quantum gravity corrections can be neglected during
inflation because the energy scale of inflation 	m	
MGUT 	 10�6MPlanck. That is, quantum gravity effects
are at most 	10�6 and can be neglected in this context.

Quantum field inflation (under conditions that are the
quantum analogue of slow-roll) leads, upon evolution, to
the formation of a condensate starting a regime of effec-
tive classical field inflation. That is, the N-component
quantum inflaton becomes an effective N-component
classical inflaton, which can be directly expressed in
terms of an effective single-field classical inflation sce-
nario. The action structure, parameters (mass and cou-
pling) and initial conditions for the effective classical
field description are fixed by those of the underlying
quantum field inflation. This condensate description al-
lows an easy computation of the primordial perturbations
that takes into account the dominant quantum effects.
That is, the effects of the quantum nature of the inflaton
background (which is absent in classical inflation), and
the effects due to the quantum nature of the inflaton and
metric perturbations. This condensate description pro-
vides the primordial perturbation spectrum for quantum
field inflation in terms of the well-known classical in-
flation results. We show that quantum inflation allows a
consistent computation of the background and of the
primordial perturbations with results in agreement with
the observations.

For a O�N� symmetric model, adiabatic fluctuations
dominate while isocurvature and entropy fluctuations
are negligible in agreement with theWMAP observations.
Therefore, the presence of a large symmetry in multi field
models is supported by observations. Nonsymmetric
multi field models produce sizable isocurvature and en-
tropy fluctuations.

Furthermore, the classical inflation scenario emerges
as an effective description of the post-condensate infla-
tionary period both for the background and for the per-
turbations. Therefore, the quantum treatment of inflation
provides the foundations for classical inflation.

The cosmologically relevant density fluctuations [i.e.,
for the cosmic microwave background (CMB) anisotro-
pies] in quantum inflation exhibit corrections compared
with classical inflation.We find as the main source of such
corrections the quantum changes in the effective mass felt
by the cosmological fluctuations. An estimate for such
quantum corrections to the power spectrum yields O� m

2

NH2�

at the moment of horizon crossing which turns to be about
4% for the cosmologically relevant scales [and
N � O�1�].

This paper is organized as follows: in Sec. II, we briefly
present the single-field classical inflation scenario.
In Sec. III, we present the results in quantum field in-
flation dynamics for the inflaton and the scalar factor
(Sec. III A), and for the scalar, vector and tensor pertur-
bations (Sec. III B). Both quantum chaotic and quantum
-2
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new inflation are treated. The conclusions are developed
in Sec. IV. Finally, two appendices are devoted to the
computation of scalar and tensor perturbations in
multiple-field inflation.

II. CLASSICAL INFLATION

Let us briefly present first the single-field classical
inflation scenario. The action for the classical inflaton
dynamics is

~S cl � ~Sg � ~Sm � �~Sg � �~Sm; (2.1)

where ~Sgr � ~Sm describes the dynamics of the back-
ground for the metric and the inflaton, respectively, and
�~Sgr � �~Sm describe their perturbations. In the classical
framework only the perturbations are quantized. We use
the tilde,~, to denote the quantities in classical inflation.

The gravitational action and its perturbation are

~S gr � �~Sgr � �
1

16�G

Z �������
�g

p
d4xR; (2.2)

where G is the universal gravitational constant, and R is
the Ricci scalar for the complete metric g��. By expand-
ing g�� in terms of the background FRW metric and its

perturbation, g�� � g�FRW�
�� � �g��, the ~Sgr terms (those

which do not contain �g��) and the �~Sgr terms can be
identified. These terms take account of the dynamics of
the FRW background and of the dynamics of the metric
perturbations, respectively. (Detailed expressions can be
found in [10].)

The classical matter action and its perturbation are

~S m � �~Sm �
Z �������

�g
p

d4x
�
1

2
@� ~�@� ~�� ~V�~��

�
(2.3)

�
Z
d4xa3�t�

�
1

2
� _~��2 �

1

2

�r~��2

a2�t�
� ~V�~��

�
: (2.4)

We consider here a potential of the form

~V�~�� �
1

2
~m2 ~�2 �

~!
4
~�4 �

~m2

4 ~!

1� �
2

;

with ~� � sign� ~m2� � 1;
(2.5)

where ~m2 > 0 describes chaotic inflation, and ~m2 < 0
describes new inflation. Expanding the inflaton field as
~� � ~’� �~’, ~Sm stands for the terms without � ~’ and
takes account of the field background dynamics, while
�~Sm containing the � ~’ terms describes the field pertur-
bations dynamics.

The initial state for chaotic inflation is a highly excited
field state, i.e., a state with large j ~’j, while for new
inflation is a lowly excited state, i.e., with small j ~’j.

In order to have a long inflationary period, it is neces-
sary that the field rolls down towards the minimum very
slowly. For these models various conditions have been
083528
obtained that are different realizations of what we call
here the classical slow-roll condition:

_~’ 2 � jm2j ~’2; (2.6)

this condition guarantees that there is inflation and that it
lasts long enough.

We will denote j ~��S�k � ~m2; ~!�j2 and j ~��T�
k � ~m2; ~!�j2, the

spectrum of primordial scalar and tensor perturbations,
respectively, for classical inflation. These spectrums have
been only computed in the literature [1,10–12] for clas-
sical inflation, but not for quantum inflation (see, how-
ever, Ref. [8]).
III. QUANTUM FIELD INFLATION

On the other hand, the action for quantum field inflaton
is

Sq � ~Sg � Sm � �~Sg � �Sm (3.1)

where ~Sg � Sm describes the dynamics of the back-
ground, and �~Sg � �Sm that of the perturbations. The
important difference with classical inflation is that the
dynamics of the inflaton background (Sm) is computed
here in quantum field theory.

The gravitational terms have the same expressions as in
the classical inflaton dynamics [Eq. (2.2)].

In our treatment we consider semiclassical gravity: the
geometry is classical and the metric obeys the semiclas-
sical Einstein equations where the right-hand side is the
expectation value of the quantum energy-momentum
tensor. (Quantum gravity corrections are at most of order
	m=MPlanck 	MGUT=MPlanck 	 10�6 and can be
neglected.)

In order to implement a nonperturbative treatment, we
consider a N-component inflaton field ~�. The matter
action, besides of being quantum, is for a N component
inflaton ~� and displays a 1=N factor in the � ~�2�2 term in
order to allow a consistent implementation of the large N
limit.

Sm � �Sm �
Z �������

�g
p

d4x
�
1

2
@� ~�@� ~�� V� ~��

�
(3.2)

�
Z
d4xa3�t�

�
1

2
� _~��2 �

1

2

�r ~��2

a2�t�
� V� ~��

�
; (3.3)

where ~� � ��1; . . . ; �N�

V� ~�� �
1

2
m2 ~�2 �

!
8N

� ~�2�2 �
Nm4

2!
1� �
2

;

with � � sign�m2� � 1; (3.4)

For positive m2 the O�N� symmetry is unbroken while it
is spontaneously broken for m2 < 0. The first case de-
scribes chaotic inflation and the second one corresponds
to new inflation.
-3
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The quantum field ~� can be expanded as its expectation
value h ~��x�i plus quantum contributions which are in
general large and cannot be linearized (except for k=a
much larger than the effective mass). We therefore split
the quantum contribution ~�� h ~��x�i into large quantum
contributions ~’�x� (or background), plus small quantum
contributions � ~’�x�. Thus, we express the N-component
quantum scalar field ~� as

~��x� � h ~��x�i � ~’�x� � � ~’�x�: (3.5)

The dynamics of � ~’�x� can be then linearized, and in-
cludes the cosmologically relevant fluctuations, that is
those which had exited the horizon during the last Ne ’
60 e-folds of inflation.

Without loss of generality, we can chose the ‘‘1’’-axis in
the direction of the expectation value h ~��x�i of the in-
flaton, and collectively denote by ~�? its N � 1 perpen-
dicular directions. That is,

~��x� � ��k�x�; ~�?�x��; h ~��x�i �
� ����
N

p
’�t�; ~0

�
;

(3.6)

then, Eq. (3.5) reads

~��x� �
� ����
N

p
’�t� � ’k�x�; ~’?�x�

�
� ��’k�x�; � ~’?�x��:

(3.7)

’�t�; ’k�x� and ~’?�x� are the inflaton background contri-
butions which come from the quantum expectation value
and from the quantum fluctuations respectively; � ~’�x� is
the perturbation contribution. (The factor

����
N

p
is made

explicit for convenience.)
After expanding Eq. (3.2) using Eq. (3.5), Sm stands for

the terms without � ~’ and describes the inflaton back-
ground dynamics, while �Sm stands for the remaining
terms which describe the inflaton perturbation dynamics.

Both �’k; ~’?� and ��’k; � ~’?� represent quantum fluc-
tuations of the field around its expectation value, and both
can be expanded in Fourier modes. The field modes which
contribute to the observable primordial perturbations
(those that had exited the horizon during the last Ne ’
60 e-folds) are part of the perturbation ��’k; � ~’?�;
while the field modes with larger spatial scales are part
of the background �’k; ~’?�. In momentum space, let us
call ! the k-scale that separates the perturbation from the
background. Namely, ! must be smaller than the charac-
teristic k-scale at which the modes exited the horizon
Ne ’ 60 e-folds before the end of inflation and larger
than the k-scales that dominate the background.

The mode expansions for the background inflaton
�’k; ~’?� and the inflaton perturbations ��’k; � ~’?� are
then
083528
’k� ~x; t� �
1���
2

p
Z !

0

d3k

�2��3
�bkgk�t�e

i ~k� ~x � byk g
�
k�t�e

�i ~k� ~x�;

(3.8)

~’?� ~x; t� �
1���
2

p
Z !

0

d3k

�2��3
� ~akfk�t�e

i ~k� ~x � ~ayk f
�
k�t�e

�i ~k� ~x�;

(3.9)

�’k� ~x; t� �
1���
2

p
Z 1

!

d3k

�2��3
�bkgk�t�e

i ~k� ~x � byk g
�
k�t�e

�i ~k� ~x�;

(3.10)

� ~’?� ~x; t� �
1���
2

p
Z 1

!

d3k

�2��3
� ~akfk�t�e

i ~k� ~x � ~ayk f
�
k�t�e

�i ~k� ~x�;

(3.11)

with bk, ~ak and byk , ~ayk being annihilation and creation
operators, respectively, satisfying the canonical commu-
tation relations. The background �’k; ~’?�, includes the
modes with k <!, while the perturbations ��’k; � ~’?�
include the modes with k >!.

For asymptotic values of k (hence k > kPlanck) the
modes tend to the vacuum modes, ensuring the finiteness
of the total energy. The scale ! is well above the k-modes
that dominate the bulk of the energy, and well below the
cosmologically relevant modes. The results are indepen-
dent of the precise value of !.

This is due to the fact that modes with k� m cannot
be significantly excited since the energy density of the
universe during inflation must be of the order
* 10m2M2

Planck.
On the other hand, relevant modes for the large scale

structure and the CMB are today in the range from
0.1 Mpc to 103 Mpc. These scales at the beginning of
inflation correspond to physical wavenumbers in the range

eNT�601016 GeV< k< eNT�601020 GeV;

where NT stands for the total number of e-folds (see, for
example, Ref. [13]).

Therefore, there is an intermediate k-range of modes
which are neither relevant for the background nor for the
observed perturbation. ! is inside this k-range, and the
results are independent of its particular value. In usual
cases we can safely choose for !,

10m & ! & 103eNT�60m:
A. Quantum field inflation dynamics

We now describe the main features of the background
dynamics, i.e., the a, ’ and �’k; ~’?� dynamics. We treat
the inflaton as a full quantum field, and we study its
dynamics in a self-consistent classical space-time metric
(consistent with inflation at a scale well below the Planck
-4
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energy density). The dynamics of the space-time metric is
determined by the semiclassical Einstein equations,
where the source term is given by the expectation value
of the energy-momentum tensor of the quantum in-
flaton field G�� � 8�m�2

Pl hT��i. Hence we solve self-
consistently the coupled evolution equations for the clas-
sical metric and the quantum inflaton field.

The amplitude of the quantum fluctuations for a set of
modes can be large (in quantum chaotic inflation due to
the initial state, and in new inflation due to spinodal
instabilities). This implies the need of a nonperturbative
treatment of the evolution of the quantum state, and
therefore we use the large N limit method.

In the large N limit, the longitudinal quantum contri-
butions’k are subleading by a factor 1=N [6,14,15]. Thus,
the evolution equations for the inflaton background at
leading order in large N can be expressed in terms of
its expectation value, ’�t�, and the mode functions fk�t�
of the transversal quantum contributions ~’?. In the large
N limit, the evolution equations for the inflaton back-
ground are

�’� 3H _’�M2’ � 0; (3.12)
�f k � 3H _fk �
�
k2

a2
�M2

�
fk � 0; (3.13)
w ith M2 � m2 �
!
2
’2 �

!
2

Z
R

d3k

2�2��3
jfkj2; (3.14)

and for the scale factor (H � _a=a),

H2 �
8�

3m2
Pl

+;

+
N

�
1

2
_’2 �

M4 �m4

2!
�
m4

2!
1� �
2

�
1

4

Z
R

d3k

�2��3

�
j _fkj

2 �
k2

a2
jfkj

2

�
:

(3.15)

where + � hT00i is the energy density. The pressure
(p�ji � hTji i) is given by

p� +
N

� _’2 �
1

2

Z
R

d3k

�2��3

�
j _fkj

2 �
k2

3a2
jfkj

2

�
: (3.16)

The index R denotes the renormalized expressions of
these integrals [6]. This means that we must subtract the
appropriate asymptotic ultraviolet behavior in order to
make convergent the integrals in Eqs. (3.14)-(3.16):
083528
jfkj2 �
k2�B�t� 1

ka2�t�

�
1�

B�t�

2k2
�

1

8k4

�
3B2�t�

�a�t�
d
dt

�a�t� _B�t��
�
�O

�
B3�t�

k6

��
;

j _fkj
2 �
k2�B�t� k

a4�t�

�
1�

1

2k2
�B�t� � 2 _a2�t��

�
1

8k4
�B2�t� � a2�t� �B�t� � 3a�t� _a�t� _B�t�

�4 _a�t�B� �O

�
B3�t�

k6

��
;

(3.17)

where

B�t� � a2�t�
�
M2�t� �

R�t�
6

�

and the scalar curvature is

R�t� � 6
�
�a�t�
a�t�

�
_a2�t�

a2�t�

�
:

Equations. (3.12)-(3.13) for the expectation value and for
the field modes are analogous to damped oscillator equa-
tions, and the inflationary period ( �a > 0) corresponds to
the overdamped regime of these damped oscillators.

We consider here two typical classes of quantum in-
flation models:
(i) Q
-5
uantum chaotic inflation, where inflation is pro-
duced by the dynamical quantum evolution of a
excited initial pure state with large energy density
(more details and the generalization to mixed
states can be found in [6]). This state is formed
by a distribution of excited modes. It can be shown
that the initial conditions for a general pure state
are given by fixing the complex values of fk�0� and
_fk�0�. Among these four real (two complex) num-

bers for each k mode, one is an arbitrary global
phase, and another is fixed by the wronskian. The
two remaining degrees of freedom fix the occupa-
tion number for each mode and the relative phase
between fk�0� and _fk�0�. The coherence between
different k modes turns out to be determined by
such relative phases.
(ii) Q
uantum new inflation, where inflation is pro-
duced by the dynamical quantum evolution of a
state with small inflaton expectation value, and
small occupation numbers for the quantum modes,
evolving with a spontaneously broken symmetry
potential. (More details can be found in [7,8].)
The two classes of quantum inflation models have
important differences in their initial state and in their
background and perturbation dynamics (e.g., spinodal
instabilities are present in new inflation and not in chaotic
inflation). However, we stress here the common features
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which allow a unified treatment of the computation for
the primordial perturbations generated in these models.

In this quantum field inflation framework we have
found the following generalized slow-roll condition

_’ 2 �
Z
R

d3k

2�2��3
j _fkj

2 � m2

�
’2 �

Z
R

d3k

2�2��3
jfkj

2

�
(3.18)

which guarantees inflation ( �a > 0) and that it lasts long
(for both scenarios). (This condition includes the classi-
cal slow-roll condition _’2 � m2’2 as a particular case.)
There is a wide class of quantum initial conditions sat-
isfying Eq. (3.18) and leading to inflation that lasts long
enough [6].

The quantum field dynamics considered here leads to
two inflationary epochs, separated by a condensate for-
mation:
(1) T
he pre-condensate epoch—During this epoch the
term D �

R
d3k
�2��3

k2

a2 jfkj
2 in Eq. (3.15) has an im-

portant contribution to the energy density while it
quickly decreases due to the exponential redshift of
the excitations (k=a! 0). This epoch ends at a
time 0A when the D contribution to the energy
density becomes negligible, i.e., the k2=a2 contri-
bution in the background evolution equations is
negligible at 0 � 0A.
After outward horizon crossing, the time depen-
dence of the modes factorizes and becomes k in-
dependent. The k2=a2 term in Eq. (3.13) becomes
negligible, and all the modes satisfy the same
damped oscillator equation. For m2 > 0 the modes
decrease (due to the damping), while for m2 < 0
they grow (due to spinodal instabilities). At the end
of this epoch (t � 0A) all the relevant modes for
the background dynamics have exited the horizon,
and the time dependence factorization allows to
consider them as a zero mode condensate.
(2) T
he post-condensate quaside Sitter epoch—The
enormous redshift of the previous epoch assembles
the quanta into a zero mode condensate, ~’eff , given
by[7,8]

~’1
eff�t� �

����
N

p
’�t�;

~’ieff�t� �

�����������������������������������Z d3k

2�2��3
jfk�t�j

2

s
for i � 2; . . . ; N;

(3.19)

with constant direction in the field space [due to
the O�N� invariance of the potential], and modulus

~’ eff�t� �
����
N

p
����������������������������������������������������
’2�t� �

Z d3k

2�2��3
jfk�t�j2

s
: (3.20)

The modulus ~’eff verifies the classical equations of
motion,
083528-6
�~’ eff � 3H _~’eff � ~m2 ~’eff � ~!~’3
eff � 0; (3.21)

H2 �
8�

3m2
Pl

+; + �
1

2
_~’2
eff �

1

2
~m2 ~’2

eff �
~!
4
~’4
eff ;

(3.22)

with ~! �
!
2N

; ~m2 � m2;

~� � sign� ~m2� � 1:
(3.23)

The pressure is given by

p� + � _~’2
eff : (3.24)

Therefore, the background evolution in this period
can be effectively described by a classical scalar
field obeying the evolution Eq. (3.21) and with
initial conditions defined at t � 0A. Moreover, it
is important to stress that the initial conditions for
~’eff are fixed by the quantum state:

~’ eff�0A� �
����
N

p
�����������������������������������������������������������
’2�0A� �

Z d3k

2�2��3
jfk�0A�j2

s
:

(3.25)
Also the value of 0A depends on the full quantum
evolution before the formation of the condensate. 0A is
therefore a function of the coupling, the mass and the
quantum initial conditions [6].

The previous result shows that after the formation of
the condensate (both for chaotic and for new inflation),
the background dynamics can be described by an effec-
tive classical background inflation whose action structure,
parameters (mass and coupling) and initial conditions are
fixed by those of the underlying quantum field inflation.

Let us call N�t� the e-folds remaining at time t till the
end of inflation:

N�t� � log
�
aend
a�t�

�
�

Z tend

t
dt0H�t0�: (3.26)

In particular, the total number of e-folds is given byNT �

log� aendainitial
� which must be larger than Ne ’ 60.

One particular consequence of quantum inflation, is
that it can change the total number of e-folds NT . In
chaotic inflation NT decreases if the initial state had
excited modes with nonzero wavenumber (for constant
initial energy). For example, if the initial energy is con-
centrated in a shell of wavenumber k0 and for simplicity
the quadratic term dominates the potential Eq. (3.4), we
have [6]

NT ’
4�

m2
Plm

2

+0

1� �k0=m�2
(3.27)

(where the classical result is recovered at k0 � 0). We
have shown [6] that there are enough e-folds even for
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k0 	 80m for reasonable choices of the initial energy
density (+0 � 10�2m4

Pl) and of the parameters (for in-
stance, Nm2=�!m2

Pl� � 2� 105).

B. Primordial perturbations in quantum
field inflation

The relevant primordial perturbations are those that
exited the horizon during the last e-folds of inflation [1].
As we have seen in the previous subsection the back-
ground (a, ’, ’k and ~’?) dynamics during the last
e-folds in the quantum field inflation scenarios (both
chaotic and new) are effectively classical. This will allow
to compute the relevant primordial perturbations for
these scenarios and express them in terms of the known
perturbations for the corresponding single-field classical
scenarios.

The more general metric perturbation �g�� can be

decomposed as usual in scalar �g�S���, vector �g�V��� and
tensor �g�T��� components [10,16]

g�� � g�FRW�
�� � �g�� � g�FRW�

�� � �g�S��� � �g�V��� � �g�T���;

(3.28)

with

g�FRW�
�� � a2�T �

1 0
0 ��ij

� �
; (3.29)

�g�S��� � a2�T �
2) �@iB
�@iB 2�*�ij � @i@jE�

� �
; (3.30)

�g�V��� � �a2�T �
0 �Si

�Si @iFj � @jFi

� �
; (3.31)

�g�T��� � �a2�T �
0 0
0 hij

� �
: (3.32)

Here, T is the conformal time, and we define

H �
1

a
da

dT
� aH; T �

Z t dt
a�t�

;

*;); E; B; Si; Fi and hij are functions of space and time.
*;); E and B are scalars, Si and Fi are three-vectors and
hij is a three-tensor. i; j are three-spatial indexes raised
and lowered with �ij and its inverse �ij, respectively. The
following constraints are imposed,

@iSi � @iFi � 0; hii � 0; @jhij � 0;

in order to guarantee that Si and Fi do not contain pieces
that transform as scalars, and that hij do not contain
pieces that transform as scalars or vectors. The gauge
independence of the physical results allows us to choose
the longitudinal gauge (E � 0; B � 0) for the scalar per-
turbations, and the vector gauge (Fi � 0) for the vector
perturbations [10,16]. The advantage of these gauges is
083528
that the equations have the same form as with the gauge
invariant quantities

)�gi� � )�
1

a
d

dT

��
B�

dE

dT

�
a
�
;

*�gi� � *�H

�
B�

dE

dT

�
;

S�gi�i � Si �
dFi
dT

:

(3.33)

On the other hand, as the space-space perturbations of the
energy-momentum tensor for the inflaton satisfies �Tij /
�ij we have * � ).

The perturbations are usually described in terms of the
following spectral quantities

j��S�k j2 �
2k3

9�2 h)
2
ki; (3.34)

j��V�
k j2 �

2k3

9�2 hSi�k�S
i�k�i; (3.35)

j��T�k j2 �
2k3

9�2 hhij�k�h
ij�k�i; (3.36)

which are the spectra for scalar, vector, and tensor per-
turbations, respectively. The index k in )k � )�k�, Si�k�,
hij�k�, . . .denotes the k Fourier component of the respec-
tive perturbation, defined as

hij�x� �
Z d3k

�2��3=2

�
hij�k�ei ~k� ~x � hij��k�e�i ~k� ~x

�
: (3.37)

The scalar and tensor spectral indexes, nS and nT and
their respective runnings dnS

dlnk ;
dnT
dlnk , are defined in the

environment of a momentum scale k0 by

j��S�k j2 � j��S�k0 j
2

�
k
k0

�
nS�1�1

2�
dnS
dlnk� ln�

k
k0
�

;

j��T�k j2 � j��T�k0
j2
�
k
k0

�
nT�

1
2�
dnT
dlnk� ln�

k
k0
�

:

(3.38)

In the linear approximation, scalar, vector, and tensor
perturbations evolve independently and thus can be con-
sidered separately [10].

1. Scalar perturbations

We now compute the scalar metric perturbations to the
background, these are tightly coupled to the inflaton
perturbations, and therefore, both perturbations have to
be studied together [10,11].

We have shown that the background dynamics for
quantum field inflation can be separated in two epochs:
before and after the formation of the condensate. As the
first one is short, in the more natural scenarios the last
Ne ’ 60 e-folds take place after the formation of the
condensate. Thus, the cosmologically relevant scales of
-7
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the perturbations exit the horizon when the condensate
was already formed.

Therefore, the dynamics of the perturbations after the
formation of the condensate is well approximated by that
given by the effective classical inflation background,
Eqs. (3.21)-(3.25). Recall that the form of the effective
classical evolution, and the values of the parameters and
of the initial conditions for the condensate are deter-
mined by the underlying quantum field theory through
the relations shown in the previous Sec. III A.

The precondensate period determines the initial con-
ditions of the cosmological relevant modes for the post-
condensate epoch at time t � 0A. These initial conditions
are different from the vacuum ones.We choose in general,

fk�0� �
1�������
,k

p ;

_fk�0� � ��i,k �H�0� � 6k!k�0��fk�0�;
(3.39)

where ,k and 6k are functions of k that characterize the

initial state and !k�t� �
�������������������������
k2 �M2�t�

p
. The initial modes

for vacuum initial conditions (as those customary used in
classical inflation) are

fcl inf
k �0� �

1������������
!k�0�

p ;

_fcl inf
k �0� � ��i!k�0� �H�0��fcl inf

k �0�;

However, the finiteness of the energy density [Eq. (3.15)]
imposes that the difference between these initial condi-
tions and the vacuum ones must asymptotically vanish for
k! 1. We see from Eqs. (3.15) and (3.17) that the mode
functions jfk�0�j2 and jfcl inf

k �0�j2 can differ asymptoti-
cally at most as

O

�
a5�t�m5

k5

�
; (3.40)

where we used the inflaton mass as scale for the effective
inflaton mass.

A further source of quantum inflation effects arises
from the evolution Eqs. (3.13). The effective mass squared
M2 differs from the one used in classical inflation due to
the last term in Eq. (3.14) which contains the integral
over the square modulus of the mode functions. The
contribution of the modes k <! is taken into account
during the post-condensate epoch by ~’eff . The modes k >
! contribute to M2�t� as

�M2
!�t� � �contribution to M2�t� from modes k >!�

	 !a2�t�m4
Z 1

!

d3k

k5
	 !

a2�t�m4

!2 : (3.41)

Furthermore, contributions from higher orders in 1=N
will take the form,
083528
�M2
N�t� � �contribution to M2�t� from

1

N
corrections�

	
m2

N
: (3.42)

Contributions �M2�t� to the effective mass squared in-
duce corrections in the square modulus of the mode
functions jfk�t�j2 of the order O��a2�M2�=k3� as one
sees from their large-k behavior Eq. (3.17). As a result
of these three quantum effects: initial conditions
Eq. (3.40), �M2

!�t� in Eq. (3.41) and �M2
N�t� in

Eq. (3.42), the mode functions result,

jfk�t�j
2

jfcl inf
k �t�j2

�
k�am

1�O

�
a5�t�m5

k5

�
�O

�
a2�t�

k2
�M2

!�t�
�

�O

�
a2�t�

k2
�M2

N�t�
�
: (3.43)

Using the above estimates for �M2
!�t� and �M2

N�t�
Eqs. (3.41)-(3.42) and expressing k in terms of the time
where the mode exited the horizon through k	 aH we
obtain,

jfk�t�j2

jfcl inf
k �t�j2

�
H*m

1�O

�
m5

H5

�
�O

�
!a2�t�m4

H2!2

�

�O

�
m2

NH2

�
: (3.44)

The ratio m
H is time dependent and depends on the infla-

tionary scenario considered. In chaotic inflation m
H de-

creases with time and takes a value m
H	 1

5 when
cosmologically relevant scales cross the horizon, that is
about 50 e-folds before the end of inflation. Hence, we can
make an order of magnitude estimate using the asymp-
totic approximation Eq. (3.43) at horizon crossing.
Explicit calculations have to be performed in order to
obtain the time dependence of these corrections. We can
however state that the corrections in Eq. (3.44) are multi-
plied by functions of time [which are O�1�].

The third and fourth terms in Eq. (3.43) and (3.44) give
k-dependent corrections when we replace the time depen-
dence present in both terms using k	 a�t�H�t� at horizon
crossing.

Since m
H	 1

5 , the second term in Eq. (3.44) yields
corrections of the order 	10�4 and can be neglected.
The third term gives very small corrections for times
about 50 e-folds before the end of inflation of the order
	10�9 m2

!2 where we used that !	 10�12 and ! � m. The
validity of the small k-large k decomposition [Eqs. (3.5)-
(3.11)] is confirmed by the smallness of this third contri-
bution, and by the smallness of the correction induced by
�M2

!�t� [Eq. (3.41)] in the metric background through
the Friedmann equations.
-8
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In conclusion, we find that the quantum inflaton cor-
rections to the power spectrum are of the order

m2

NH2
	 4%: (3.45)

This value corresponds to N � O�1� and gives an upper
estimate to the corrections.

Moreover, the corrections to the effective mass squared
given by Eqs. (3.41)-(3.42) induce changes in the metric
background through the Friedmann Eq. (3.15). Such
changes on H�t� and a�t� produce changes of the order 1

N
in the mode functions. Such effects are larger than those
in Eqs. (3.44) and (3.45). However, they could be similar
to those appearing in classical inflation since they arise
from a change of the metric background.

Indeed, detailed calculations are needed to obtain a
precise evaluation of the quantum inflation effects on
density fluctuations.

It must be noticed that a complete study of the cosmo-
logically relevant modes fk�t�; �k >!� must include the
graviton in a gauge invariant way. The order of magnitude
of the estimates given above [Eqs. (3.43)-(3.44)] is not
changed by that effect.

During the condensate period further quantum effects
can also come from the quantum interaction between the
quantum inflaton background and the quantum perturba-
tions. However, these effects are expected to be diluted
due to the large difference in k.

In addition, the precondensate period enters in the
computation of the cosmologically relevant perturbations
through the determination of the initial state for the
condensate at t � 0A.

In summary, we compute the scalar perturbations dy-
namics using the effective classical inflaton background
and considering initial quantum vacuum conditions for
the modes responsible of the formation of cosmic struc-
ture. As we have shown this treatment takes account of
the dominant quantum effects: the quantum nature of the
inflaton background (absent in classical inflation), and the
quantum nature of the inflaton and metric perturbations.

The most general scalar density perturbation is the sum
of an adiabatic and an isocurvature (or entropy) pertur-
bation [11,16].

)k � )k ad �)k iso: (3.46)

The fluctuations in the different field components gener-
ate entropy or isocurvature perturbations which is char-
acteristic of multi field models.

A generic multi field model has all three contributions:
adiabatic, isocurvature and mixture of them, all of the
same order. However, if the potential is completely sym-
metric for O�N� rotations in the internal space, the slow-
roll trajectories are straight lines in field space. We show
below that in this case the isocurvature density perturba-
083528
tions are negligible and the adiabatic contributions domi-
nate. The adiabatic density perturbations are then the
same as in the single-field case.

It is obvious that straight trajectories exists for O�N�
invariant interactions, that is, one can always assume a
solution moving in a fixed direction in internal space.
However, nonstraight trajectories can also exist for O�N�
invariant interactions. For such trajectories at least two
components of the field should be nonzero and therefore,
the ‘‘isospin’’ tensor �a1b

� � �b1a
� will be nonzero. We

have restricted ourselves to O�N� states with zero isospin
here as well as in refs.[6–8] since the universe as a whole
should be expected to be in a O�N� invariant state.

Adiabatic perturbations are produced by the field fluc-
tuations parallel to the background inflaton trajectory in
phase-space, and have nonzero total energy density. On
the other hand, isocurvature perturbations are related to
the field perturbations in other directions (thus, they
require a multicomponent inflaton), and have vanishing
total energy density.

In our case, due to theO�N� invariance of the potential,
the background inflaton solution does not change its
direction in field space. In this case, we show in
Appendix A that the isocurvature density perturbations
are negligible

)k iso � 0; (3.47)

implying

j��S�k iso�m
2; !�j2 �

2k3

9�2 h)
2
k isoi � 0; (3.48)

j��S�
kmix�m

2; !�j2 �
2k3

9�2 �h)k iso)k adi � h)k ad)k isoi� � 0:

(3.49)

The symmetric multi field models (as here invariant
under O�N�) are consistent with the last CMB data
from WMAP [3–5], as they indicate that the adiabatic
contribution dominates and give an upper bound for iso-
curvature contributions. Initial conditions are consistent
with being purely adiabatic.

It must be noticed that nonsymmetric models with
different masses or couplings for the different compo-
nents of the field, would lead to non negligible isocurva-
ture density perturbations, analogously to the classical
case.

As a consequence of the straight trajectory of the
background inflaton in field space (see Appendix A),
the power spectrum of adiabatic scalar perturbations
for the quantum field inflation is

j��S�k ad�m
2; !�j2 �

�������� ~��S�k ad

�
m2;

!
2N

���������2
; (3.50)

where j ~��S�
k �m2; ~!�j2 is the power spectrum of scalar per-
-9
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turbations for the single-field classical background infla-
tion [Eqs. (3.21)-(3.25)].

The result Eq. (3.50) express the scalar density pertur-
bations for the quantum field inflation in terms of the
associated effective classical background inflation, whose
action structure, parameters and initial conditions are
determined by the underlying quantum field inflation.
The relation [Eq. (3.50)] allows to link to the primordial
perturbations from classical field inflation. In terms of the
slow-roll parameters,
083528
8 � 2M2
Pl

�
H0

H

�
2
�

1

2
M2

Pl

�
V 0

V

�
2
; 9 � 2M2

Pl

H00

H
;

9V � M2
Pl

V 00

V
� 9� 8; : � 4M4

Pl

H0H000

H2 ;

:V � M4
P
V 0V 000

V2 � :� 389; : (3.51)
the adiabatic scalar perturbations can be expressed as
j ~��S�k ad�m
2; ~!�j2 �

1

8�2M2
Pl

H2
H

8H
�1� 28H � 2�2� <� ln2��28H � 9H � �O�82

H
; 92

H
; 9H 8H ��

�
1

12�2M6
Pl

V3

V 02

�
1�

5

6
M2

Pl

�
V 0

V

�
2
�M2

Pl�2� <� ln2�
��
V 0

V

�
2
� 2

V 00

V

�
�O

��
MPl

V 0

V

�
4
��
: (3.52)
with < � 0:57721 . . . the Euler constant. All quantities
are evaluated at the time of horizon crossing, when H �
k; i:e:; Ha � k. This is stressed by the subscript H .Here,
M2

Pl �
1

8�G �
m2

Pl

8� and primes denote derivatives with re-
spect to the inflaton field ~’eff which satisfies,

_~’ eff � �2M2
PlH

0�~’eff�; H2

�
1�

8
3

�
�

1

3M2
Pl

V�~’eff�:

(3.53)

Using the relation Eq. (3.50) also allows to express the
scalar spectral index and its running [Eq. (3.38)] in terms
of the slow-roll parameters as

nS � 1� 48H � 29H � 1� 68H � 29V;

dnS
d lnk

� 108H9H � 882
H

� 2:H

� 168H9V � 2482
H

� 2:V;

(3.54)

or in terms of the effective classical potential as

nS � 1� 3M2
Pl

�
V 0

V

�
2
� 2M2

Pl

V 00

V
;

dnS
d lnk

� �2M4
Pl

V 0V 000

V2 � 6M4
Pl

�
V 0

V

�
4
� 8M4

Pl

V00V 02

V3 :

(3.55)

taken at the value of the field when the scale of interest
exited the horizon.

Expressions (3.52), (3.54) and (3.55) get in addition
quantum inflaton corrections of the order 4% [see
Eq. (3.45)].

For example, in chaotic inflation when ~’� m=
����
!

p
; the

potential [Eq. (3.22)] is dominated by the quadratic term,
while for ~’� m=

����
!

p
the quartic term dominates. Thus,

for these limiting cases the potential has the form

V � 6~’b; (3.56)

(where6 and b are positive constants) implying that atNe
e-folds before the end of inflation ~’Ne has the value

~’ 2
Ne

’ 2NebM
2
Pl: (3.57)

where we have used Eq. (3.26), i. e., Ne �
1
M2

Pl

R~’
~’end

V
V0 d~’

with ~’end � ~’.
Our convention for the amplitude of scalar perturba-

tions j��S�k ad�m
2; !�j2 Eqs. (3.50)-(3.52) is the same as the

one used by theWMAP collaboration [3–5] (called 42
R�k�

by them,WMAP only uses the leading order). The quoted
WMAPext � 2dFGRS� Lyman � data [3–5] for the
overall primordial spectrum amplitude is

A�k0 � 0:002 Mpc�1� � 0:75�0:08
�0:09�68%CL�:

or 0:71�0:10
�0:11�68%CL� using WMAP data alone. A�k� is

related to j��S�k ad�m
2; !�j2 by

j��S�k ad�m
2; !�j2 � 42

R�k� � 800�2�
5

3
�2

1

T2
CMB

A�k�

’ 2:95� 10�9A�k�:

where TCMB � 2:725K. This factor comes from the rela-
tion between the CMB multipole coefficients (Cl) and
j��S�
k ad�m

2; !�j2. They are connected in the conventions of
the CMBFAST code used by WMAP as

Cl � 4�T2
CMB

Z 9

25
j��S�k ad�m

2; !�j2�gl�k��2
dk
k
;

with gl�k� being the radiation transfer function.
Using Eq. (3.52), this implies,

V3

V 02
�
6

b2
~’b�2 ’ 2:62 � 10�7M6

Pl; (3.58)

for the scale when k0 � 0:002 Mpc�1 exited the horizon.
For example, when the potential is dominated by the

quadratic term, Eq. (3.58) implies
-10
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m � 6:02 � 10�6MPl ’ 1:45 � 1013 GeV;

’Ne � 15:5MPl ’ 3:72 � 1019 GeV;
(3.59)

while if the potential is dominated by the quartic term,
Eq. (3.58) implies

! � 3:34 � 10�13N;

’Ne � 21:9MPl ’ 5:26 � 1019 GeV:
(3.60)

Here the potentials have been evaluated at the field value
Eq. (3.57) for Ne � 60 e-folds and MPl �

mPl�����
8�

p �

2:4 � 1018 GeV.
Plugging Eqs. (3.56)-(3.57) in Eqs. (3.55), we obtain

nS � 1�
b� 2

2Ne
;

dnS
d lnk

� �
1

2N2
e
�b� 2�: (3.61)

Evaluating these expressions Ne � 60 e-folds before the
end of inflation (which correspond to a typical scale of
astrophysical interest), if the quadratic term dominates
we obtain

nS � 0:97;
dnS
d lnk

� �5:5 � 10�4; (3.62)

while if the quartic term dominates we have

nS � 0:95;
dnS
d lnk

� �8:3 � 10�4; (3.63)

The values obtained from these examples are compatible
with the current WMAP data [3–5]. An exact scale-
invariant spectrum (i.e., nS � 1; dnSd lnk � 0) is not yet ex-
cluded at more than 2@ level by WMAP data.

2. Vector perturbations

The vector metric perturbations [Eq. (3.31)] do not
have any source in their evolution equation, because the
energy-momentum tensor for a scalar field does not lead
to any vector perturbation. The �0i� components of the
Einstein equations, in the absence of vector perturbation
sources, gives

4Si � 0; (3.64)

implying that there cannot be any space-dependent vector
perturbations [in Fourier space k2Si�k� � 0]. Therefore,
the vector perturbations are negligible (as for classically
driven inflation [16]).

j��V�k �m2; !�j2 � 0: (3.65)
3. Tensor perturbations

As the energy-momentum tensor of a scalar field do not
have tensor perturbations, the tensor metric perturbations
[Eq. (3.32)] do not have any source in their equation.
Therefore, the amplitude of tensor perturbations is deter-
mined only by the background evolution, which after the
083528
condensate formation has an effective single-field classi-
cal description. Thus, the tensor perturbations for the
quantum inflation scenario are

j��T�k �m2; !�j2 �
�������� ~��T�k

�
m2;

!
2N

���������2
(3.66)

where j ~��T�
k � ~m2; ~!�j2 is the power spectrum of tensor

perturbations for single-field classical inflation.
It can be expressed in terms of the slow-roll parameters

[see Appendix] as

j ~��T�k � ~m2; ~!�j2 �
2

�2M2
Pl

H2
H
�1� 2�1� <� ln2�8H �

�
2

3

V

�2M4
Pl

�
1�

�
7

6
� <� ln2

�
M2

Pl

�
V0

V

�
2
�
:

(3.67)

Using the relation Eq. (3.66) we can compute the tensor
spectral index from the single-field classical inflation
result, which in terms of the slow-roll parameters is:

nT � �28;

dnT
d lnk

� 489V � 882 � �nT�nS � 1� nT�;

nT � �M2
Pl

�
V0

V

�
2
;

dnT
d lnk

� �2M4
Pl

�
V0

V

�
2
��
V 0

V

�
2
�
V 00

V

�
:

(3.68)

taken at the value of the field when the scale of interest
exited the horizon.

The tensor perturbations (3.67) and (3.68) only get
quantum inflaton corrections from the changes in the
metric background. These corrections, induced by �M2

[Eqs. (3.41)-(3.42)] through the Friedmann equation, are
of the order 1=N. They could be similar to those appear-
ing in classical inflation since they arise from a change of
the metric background.

For example, for chaotic inflation in the limiting cases
~’� m=

����
!

p
and ~’� m=

����
!

p
, the potential and the infla-

ton field are given by Eqs. (3.56) and (3.57), respectively.
Plugging these results in Eq. (3.68) yields,

nT � �
b

2Ne
;

dnT
d lnk

� �
b

2N2
e
: (3.69)

Evaluating this expression at Ne � 60 e-folds before the
end of inflation, if the quadratic term dominates we
obtain

nT � �0:017;
dnT
d lnk

� �0:0003; (3.70)

while if the quartic term dominates we have

nT � �0:033;
dnT
d lnk

� �0:0005: (3.71)
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Future measurements for the amplitude and spectral in-
dex of tensor perturbations are important because the
relation between nT and the tensor to scalar amplitude
ratio is model dependent, and therefore it will allow to
discriminate between inflationary models (see below).

4. Tensor to scalar amplitude ratio

The tensor to scalar ratio r is defined as

r �
j��T�k j2

j��S�k adj
2
: (3.72)

From the previous expressions for the spectra of tensor
[Eq. (3.66)] and adiabatic scalar perturbations [Eq. (3.50)
and (3.66)], respectively, it follows that

r�m2; !� �
j��T�k �m2; !�j2

j��S�k ad�m
2; !�j2

�
j ~��T�k �m2; !2N�j

2

j ~��S�k ad�m
2; !2N�j

2
� ~r�m2;

!
2N

�

(3.73)

where ~r�m2; !� is the tensor to scalar amplitude ratio for
single-field classical inflation.

Expressing this result in terms of the slow-roll parame-
ters Eqs. (3.51) we obtain

r � 168H �1� 2�2� <� ln2��8H � 9H ��

�O�82
H
; 9H 8H ; 92

H
�

� 8M2
Pl

�
V 0

V

�
2
�
1� 2�2� <� ln2�M2

Pl

V 00

V

�
; (3.74)

and the following consistency relation at leading order

nT � �
r
8
;

dnT
d lnk

�
r
8

�
nS � 1�

r
8

�
; (3.75)

which is the same as for single-field classical inflation
[16].

This consistency relation is model dependent, therefore
simultaneous measurement of r and nT will select be-
tween inflationary models. In particular the consistency
relation Eq. (3.75) will change when isocurvature scalar
perturbations are present.

For example, for chaotic inflation in the limiting cases
~’� m=

����
!

p
and ~’� m=

����
!

p
, the potential and the field

are given by Eqs. (3.56) and (3.57), respectively. Using the
relation (3.75) and the result in Eq. (3.69) yields,

r �
8b
2Ne

: (3.76)

Evaluating this expression 60 e-folds before the end of
inflation, if the quadratic term dominates we obtain

r � 0:13; (3.77)

while if the quartic term dominates we have

r � 0:27: (3.78)

From the WMAPext � 2dFGRS� Lyman � data[3–5],
083528
the upper bound for r is

r�k0 � 0:002 Mpc�1�< 0:90 �95%CL�:

The maximum likelihood single-field inflationary model
for the WMAPext � 2dFGRS� Lyman � data set has
r � 0:42. Detection and measurement of gravity wave
power spectrum will be a further key test for inflation.

The no-prior r-limit r < 0:90 along with the 2� @
upper limit on the amplitude A�k0 � 0:002 Mpc�1� �
0:75�0:08

�0:09�68%CL�, implies that the energy scale of infla-
tion is:

V
1
4 < 3:3� 1016GeV

at 95% confidence level.
The two limiting examples of the quadratic and quartic

potentials (for which 9V � 8 � 2�MPl

’ �2 and 9V � 3
2 8 re-

spectively), fall in the class B potentials models �0 �
9V � 28� in WMAP classification[3–5]. TheWMAP data
analysis give for this class

0:94 � nS � 1:01; �0:02 �
dnS
d lnk

� 0:01;

0:007 � r � 0:26:

A pure monomial quartic potential (minimally coupled)
is disfavored at more than 3� @ by WMAP data [3–5]
since a too large r is produced.

We want to stress that excluding the quadratic mass
term in the potential V�’� implies a nongeneric choice
which is only justified at isolated points (critical points in
statistical mechanics). Therefore, from a purely theoreti-
cal point of view, the pure quartic potential is a weird
choice implying to fine tune to zero the coefficient of the
quadratic term.

As stated at the beginning of the Introduction, the
inflaton field must be considered an effective description
of matter in the GUT scale in a Ginsburg-Landau ap-
proach. Therefore, in this context the inflaton potential
V�’� should be generically a polynomial of degree four.
[Higher degree terms should be irrelevant]. Moreover,
shifting the minimum of V�’� to the origin implies that
the lowest order term must be quadratic. A cubic term
cannot be excluded in general but most potentials are
assumed to be even for symmetry. This argument lefts
us with a quadratic plus quartic polynomial as in
Eq. (2.5).
IV. CONCLUSIONS

We present in this article, both for the background and
the perturbations, a complete quantum field treatment of
inflation that takes into account the nonperturbative
quantum dynamics of the inflaton consistently coupled
to the dynamics of the (classical) metric. We avoid in
quantum inflation the unnatural requirements of an initial
state with all the energy in the zero mode and breaking
-12
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the ~’! � ~’ symmetry of the potential. For new inflation
this quantum framework allows a consistent treatment of
the explosive particle production due to spinodal
instabilities.

Quantum field inflation (under conditions that are the
quantum analog of slow-roll) leads, upon evolution, to the
formation of a condensate starting a regime of effective
classical field inflation. That is, the N-component quan-
tum inflaton becomes an effective N-component classical
inflaton, which can be directly expressed in terms of an
effective single-field classical inflation scenario. The ac-
tion structure, parameters (mass and coupling) and initial
conditions for the effective classical field description are
fixed by those of the underlying quantum field inflation.

We show that this effective description allows an easy
computation of the primordial perturbations which takes
into account the dominant quantum effects (quantum
inflaton background and quantum inflaton and metric
perturbations). The computation gives the primordial
perturbations for quantum field inflation in terms of the
classical inflation results.

In particular, isocurvature scalar perturbations are
absent (at first order of slow-roll) due to the O�N� invari-
ance of the potential in agreement with the WMAP data.
More general nonsymmetric potentials with different
masses or couplings for the different components of the
field would lead to non negligible isocurvature density
perturbations. It is thus the presence of a large symmetry
in multi field models that make them compatible with the
present observations.

Quantum field inflation provides enough e-folds of
inflation provided the generalized slow-roll condition is
fulfilled. In the case of chaotic quantum field inflation the
number of e-folds is lower than in classical inflation when
modes with nonzero wavenumber are excited initially as
shown in Eq. (3.27). As in classical inflation, the primor-
dial spectrum of perturbations turns to be independent of
the details of the initial quantum state. Quantum correc-
tions to the power spectrum turn to be approximately of
the order of m2

NH2 	 4% for chaotic inflation. [This value is
an upper estimate corresponding to N � O�1�].

In summary, the classical inflationary scenario
emerges as an effective description of the post-
condensate inflationary period both for the background
and for the perturbations. Therefore, this generalized
inflation provides the quantum field foundations for clas-
sical inflation, which is in agreement with CMB anisot-
ropy observations [3–5,17].
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APPENDIX A: SCALAR PERTURBATIONS IN
MULTIPLE-FIELD INFLATION

We treat here the generation of scalar density pertur-
bations by multi field inflatons.

The approach of Ref. [16] is particularly useful in the
model under study. The procedure begins defining a basis
in the internal ~’ field space which allows a physical
interpretation of the various scalar field components.
The first basis vector, ~e1, is the direction of the velocity
of the field

~e 1 �
_~~’

j
_~~’j
; (A1)

where the dot stands for the derivative with respect of the
cosmic time.

Next, ~e2 is the direction of that part of the field accel-

eration �~~’which is perpendicular to ~e1, and this procedure
is extended to higher order derivatives to define the other
basis vectors. The most important projectors defined by
this basis are

P k � ~e1 ~eT1 ; P? � 1� Pk; (A2)

(superindex T meaning dual).
In multifield inflation the leading slow-roll functions

are given by

8 � �
_H

H2 ; ~9 �
�~~’

Hj
_~~’j
: (A3)

The later can be decomposed in the components of ~9

parallel and perpendicular to the field velocity ( _~~’), i.e.,

9k � ~e1 � ~9 and 9? � ~e2 � ~9 (A4)

(by construction there are no other components).
Next, it is convenient to define the gauge invariant

variable ~q,

~q � a
�
� ~~’�

)

H

d ~~’

dT

�
; (A5)

where � ~~’ is the inflaton perturbation, ) is the scalar
metric perturbation [Eq. (3.30)], and H � aH. In terms
of ~q the evolution equation for the perturbations in terms
of the conformal time takes the form [16]

d2 ~q ~k
dT 2

� �k2 �H,� ~q ~k � 0; (A6)

where ~q ~k is defined by

~q �
1

�2��3=2

Z
d3k� ~q ~ke

�i ~k� ~x � ~q�~ke
�i ~k� ~x�;
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and

, �
1

H2

@2V

@’a@’b
� �2� 8�1� 28��3� 8�Pk

� ~e1 ~9
T � ~9~eT1 � (A7)

8, P and ~9 are defined by Eqs. (A2) and (A3).
After quantizing the fields we can expand ~̂qk as

~̂q ~k � Q�T � ~̂cy~k �Q��T � ~̂c ~k; (A8)

with ~̂cy~k ; ~̂c ~k constant creation and annihilation operator
vectors and Q�T � a matrix function of time T which
satisfies Eq. (A6). The initial conditions for the cosmo-
logical relevant modes are vacuum initial conditions.

Applying this procedure, the adiabatic and isocurva-
ture contributions to )̂ ~k � )̂ ~k ad � )̂ ~k iso at leading order
of the slow-roll approximation are

)̂ ~k ad �
3

5

A

2k3=2
HH��������
8H

p � ~eT1 � ~UT
Pe�EH

~̂cy~k � c:c:; (A9)

)̂ ~k iso �
1

6

3

5

A

2k3=2
HH��������
8H

p ~VTeEH
~̂cy~k � c:c: (A10)
083528
(c.c. meaning the adjoint of the previous terms) where,

EH � �1� 8H �1� �2� <� ln2��H ;

� � 81�
1

3H2

@2V

@~’a@~’b
� 28~e1 ~eT1 ;

(A11)

~UT
Pe � 2

��������
8H

p Z te

tH

dt0H
9?���
8

p
aH
a
~eT2QQ�1

H
;

~VTe �
��������
8H

p
�����
8e

p
9?

8e � 9k

aH
ae

~eT2QeQ�1
H
;

(A12)

with < � 0:57721 . . . the Euler constant, A2 � 8�G �
8�=m2

Pl, the subscript e meaning that the quantity has
to be evaluated at the end of inflation, at a time, te, while
the subscript H means it has to be evaluated at the time
of horizon crossing, tH , when H � k (i.e., Ha � k)
during inflation.

Scalar density perturbations in multi field inflation has
been considered in refs. [16,18,19]. In the general case, the
spectra of scalar perturbations arising from adiabatic,
isocurvature and mixture of adiabatic and isocurvature
contributions, are
j ~��S�
~k ad

j2 �
2k3

9�2 h)̂
2
~k ad

i

�
A2

50�2

H2
H

8H
��1� 28H ��1� ~UT

Pe
~UPe� � 2�2� <� ln2��28H � 9k

H
� 29?

H
eT2 ~UPe � ~UT

Pe�H
~UPe��:

j ~��S�k mixj
2 �

2k3

9�2 �h)̂k iso)̂k adi � h)̂k ad)̂k isoi�

�
1

6

A2

50�2

H2
H

8H
��1� 28H � ~UT

PeVe � 2�2� <� ln2��9?
H
eT2Ve � ~UT

Pe�HVe��j ~�
�S�
k isoj

2

�
2k3

9�2 h)̂
2
k isoi

�
1

36

A2

50�2

H2
H

8H
��1� 28H �VTe Ve � 2�2� <� ln2�VTe �HVe�:

(A13)
Coupling between perturbations in the different field
components generate entropy or isocurvature
perturbations.

A generic multi field model has all three contributions
of the same order. However, if the potential is completely
symmetric for O�N� rotations in the internal space, the
slow-roll trajectories are straight lines in field space. We
show below that in this case the isocurvature density
perturbations are negligible and the adiabatic contribu-
tions dominate. The adiabatic density perturbations are
then the same as in the single-field case.
Scalar perturbations for a straight trajectory of the
background field

We particularize in this section the previous results to
the case when the trajectory of the background field is a
straight trajectory in the internal field space. In this case
~9 Eqs. (A3) and (A4) has

9? � 0; 9k � 9; (A14)

that implies

~U T
Pe � 0; ~VTe � 0; (A15)
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using Eq. (A9)-(A10),

)̂ ~k ad �
3

5

A

2k3=2
HH��������
8H

p ~eT1EH
~̂cy~k � c:c:; (A16)

)̂ ~k iso � 0: (A17)

Therefore, the scalar isocurvature perturbations are neg-
ligible at leading order of slow-roll when the bulk inflaton
trajectory is a straight line, and we have

j ~��S�
k isoj

2 �
2k3

9�2 h)̂
2
k isoi � 0; (A18)

j ~��S�
kmixj

2 �
2k3

9�2 �h)̂k iso)̂k adi � h)̂k ad)̂k isoi� � 0:

(A19)

From Eqs. (A11), (A15) and (A16), the scalar adiabatic
perturbations are

j ~��S�~k adj
2 �

25k3

18�2 h)̂
2
~k adi

�
1

8�2M2
Pl

H2
H

8H
f1� 28H � 2�2� <� ln2�

� �28H � 9H � �O�82
H
; 92

H
; 9H 8H �g;

(A20)

i.e., the adiabatic perturbations are the same as for a
single-field inflation which only takes into account the
field component in the direction of ~e1. (Recall that the
subscript H means that the quantity has to be evaluated
at the time of horizon crossing, when Ha � k.) We used
here the same normalization convention as the WMAP
collaboration [3–5]. j ~��S�k ad� ~m

2; ~!�j2in Eq. (3.52) corre-
sponds to the WMAP amplitude 42

R�k�. WMAP only
uses the leading order in slow-roll.

APPENDIX B: TENSOR PERTURBATIONS IN
MULTIPLE-FIELD INFLATION

In the general multi field inflaton case, the energy-
momentum of the inflaton does not have tensor perturba-
tions, therefore the equation for the tensor metric pertur-
bations do not have any source [16]. Thus, the tensor
perturbations are determined only by the background
evolution.
083528
The Einstein equations for the tensor perturbations
are:

h00ij � 2Hh0ij �4hij � 0: (B1)

hij is symmetric, transverse and traceless. Thus, each of
its Fourier modes only has two independent components,
and they can be decomposed as

hij� ~k� � h�� ~k�e�ij � ~k� � h�� ~k�e�ij � ~k�; (B2)

where e�ij and e�ij are the polarization tensors. (In a

coordinate system where ~k points along the z-axis, the
nonzero components are e�xx � �e�yy � 1 and
e�xy � e�yx � 1.)

hij� ~k� can be quantized and expressed as

hij� ~k� �
X

A��;�

���
2

p
A
a

eAij� ~k�� A� ~k�a
y

A ~k
� c:c:�; (B3)

with the creation and annihilation operators satisfying
the relations,

�aA ~k; a
y

B ~k0
� � �AB�� ~k� ~k0�: (B4)

The equation of motion for the mode functions  A� ~k� is,

d2 A ~k
dT 2

�

�
k2 �

1

a
d2a

dT 2

�
 A ~k � 0: (B5)

After imposing vacuum initial conditions for these
modes at large k, the previous equations give [16]

hij� ~k� �
A

k3=2
HH �1� 8H �1� <� ln2��

�
X

A��;�

eAija
y

A ~k
� c:c:: (B6)

Therefore, the spectrum of tensor perturbations for multi
field inflation results

j ~��T�
k � ~m2; ~!�j2 �

�
9

4

�
2k3

9�2 hhij�k�h
ij�k�i

�
2H2

H

�2M2
Pl

�1� 2�1� <� ln2�8H �; (B7)

where the factor 9
4 corresponds to the WMAP normaliza-

tion convention.
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