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We reexamine the model of natural inflation, in which the inflaton potential is flat due to shift
symmetries. The original version of the model, where the inflaton is a pseudo–Nambu-Goldstone boson
with potential of the form V��� � �4�1 � cos��=f��, is studied in light of recent data. We find that the
model is alive and well. Successful inflation as well as data from the Wilkinson Microwave Anisotropy
Probe require f > 0:6mPl (where mPl � 1:22 � 1019 GeV) and � � mGUT (where mGUT � 1016 GeV),
scales which can be accommodated in particle physics models. The detectability of tensor modes from
natural inflation in upcoming microwave background experiments is discussed. We find that natural
inflation predicts a tensor=scalar ratio within reach of future observations.
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1For example, in ‘‘invisible’’ axion models [9] with Peccei-
Quinn scale fPQ � 1015 GeV, the axion self-coupling is 
a �
��QCD=fPQ�

4 � 10�64. [This simply reflects the hierarchy be-
tween the QCD and grand unified theory (GUT) scales, which
arises from the slow logarithmic running of �QCD.] Because of
the nonlinearly realized global symmetry, the potential for
PNGBs is exactly flat at tree level. The symmetry may be
explicitly broken by loop corrections, as in schizon [10] and
axion [11] models. In the case of axions, for example, the
PNGB mass arises from nonperturbative gauge-field configu-
rations (instantons) through the chiral anomaly. When the
associated gauge group becomes strong at a mass scale �,
I. INTRODUCTION

The inflationary Universe model was proposed [1] to
solve several cosmological puzzles, the horizon, flatness,
and monopole problems, via an early period of acceler-
ated expansion. To satisfy a combination of constraints on
inflationary models, in particular, sufficient inflation and
microwave background anisotropy measurements [2] of
density fluctuations, the potential for the inflaton field
must be very flat. For a general class of inflation models
involving a single slowly rolling field (including new [3],
chaotic [4], and double field inflation [5]), the ratio of the
height to the �width�4 of the potential must satisfy [6]

� 	 �V=����4 
 O�10�6–10�8�; (1)

where �V is the change in the potential V���, and �� is
the change in the field � during the slowly rolling portion
of the inflationary epoch. Thus, the inflaton must be
extremely weakly self-coupled, with effective quartic
self-coupling constant 
� <O��� (in realistic models,

� < 10�12). The small ratio of mass scales required by
Eq. (1) quantifies how flat the inflaton potential must be
and is known as the ‘‘fine-tuning’’ problem in inflation.

Three approaches have been taken toward this required
flat potential characterized by a small ratio of mass
scales. First, some simply say that there are many as yet
unexplained hierarchies in physics, and inflation requires
another one. The hope is that all these hierarchies will
someday be explained. In these cases, the tiny coupling

� is simply postulated ad hoc at tree level, and then must
be fine-tuned to remain small in the presence of radiative
corrections. This merely replaces a cosmological natural-
ness problem with unnatural particle physics. Second,
models have been attempted where the smallness of 
�

is protected by a symmetry, e.g., supersymmetry. In these
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cases (e.g., [7]), 
� may arise from a small ratio of mass
scales; however, the required mass hierarchy, while sta-
ble, is itself unexplained. In addition, existing models
have limitations. It would be preferable if such a hier-
archy, and thus inflation itself, arose dynamically in
particle physics models.

Hence, in 1990 we proposed a third approach, natural
inflation [8], in which the inflaton potential is flat due to
shift symmetries. Nambu-Goldstone bosons (NGB) arise
whenever a global symmetry is spontaneously broken.
Their potential is exactly flat due to a shift symmetry
under � ! �  const. As long as the shift symmetry is
exact, the inflaton cannot roll and drive inflation, and
hence there must be additional explicit symmetry break-
ing. Then these particles become pseudo-Nambu-
Goldstone bosons (PNGBs), with ‘‘nearly’’ flat potentials,
exactly as required by inflation. The small ratio of mass
scales required by Eq. (1) can easily be accommodated.
For example, in the case of the QCD axion, this ratio is of
order 10�64. While inflation clearly requires different
mass scales than the axion, the point is that the physics
of PNGBs can easily accommodate the required small
numbers.1
instanton effects give rise to a periodic potential of height
��4 for the PNGB field [12]. Since the nonlinearly realized
symmetry is restored as � ! 0, the flatness of the PNGB
potential is natural in the sense of ’t Hooft [13].
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We first proposed this model and performed a simple
analysis in [8]. Then, in 1993, we followed with a second
paper which provides a much more detailed study [14].
The results of Sec. III of the second paper, which presents
a careful analysis of the dynamics of the natural inflaton,
are of particular relevance here.

Many types of candidates have subsequently been ex-
plored for natural inflation. For example, [15] used shift
symmetries in Kahler potentials to obtain a flat potential
and drive natural chaotic inflation in supergravity.
Additionally, [16] examined natural inflation in the con-
text of extra dimensions and [17] used PNGBs from little
Higgs models to drive hybrid inflation. Also, [18,19] use
the natural inflation idea of PNGBs in the context of
brane-world scenarios to drive inflation. Freese [20] sug-
gested using a PNGB as the rolling field in double field
inflation [5] (in which the inflaton is a tunneling field
whose nucleation rate is controlled by its coupling to a
rolling field). We will focus in this paper on the original
version of natural inflation, in which there is a single
rolling field; we will comment further on other variants
of natural inflation in Sec. VI.

In the current paper, we show that the original proposal
of natural inflation is live and well, contrary to recent
criticisms (which we address in Sec. III). In particular, the
single-field version of the model is successful for f >
0:6mPl (and does not require f � mPl, contrary to the
claims of [16]). A second focus of the current paper is to
discuss tests of natural inflation from existing and up-
coming data from microwave background experiments.
Recent results from theWilkinson Microwave Anisotropy
Probe (WMAP) [2] are used to constrain our model, and
predictions are made for upcoming experiments such as
the PLANCK satellite which will begin taking data in
2007.

We begin in Sec. II by reviewing the basic idea of
natural inflation. In Sec. III we present results of the
evolution of the scalar field driving inflation, including
explicit numerical calculation of the evolution of the
scalar field in its potential. In Sec. IV we discuss density
fluctuations, and find the constraint on the potential due
to comparison with WMAP data. In Sec. V we compute
the tensor modes from natural inflation, and discuss their
detectability in upcoming microwave background experi-
ments. In Sec. VI, we conclude with a discussion of the
pros and cons of having a model in which the width of the
potential is of the order of the Planck scale.
II. INFLATION DUE TO SHIFT SYMMETRIES

Here we review the original variant of natural inflation
[8], in which a single rolling field has a flat potential due
to a shift symmetry and drives inflation. Whenever a
global symmetry is spontaneously broken, Nambu-
Goldstone bosons arise, with a potential that is exactly
flat due to a remaining shift symmetry under � ! � 
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const. If there is additional explicit symmetry breaking,
these particles become pseudo-Nambu-Goldstone bosons
(PNGBs), with nearly flat potentials. The resulting PNGB
potential in single-field models (in four spacetime dimen-
sions) is generally of the form

V��� � �4�1 � cos�N�=f��: (2)

We will take the positive sign in Eq. (2) (this choice has
no effect on our results) and take N � 1, so the potential,
of height 2�4, has a unique minimum at � � �f (we
assume the periodicity of � is 2�f).

We show below that, for appropriately chosen values of
the mass scales, namely f � mPl and � �mGUT �
1015 GeV, the PNGB field � can drive inflation. This
choice of parameters indeed produces the small ratio of
scale required by Eq. (1), with � � ��=f�4 � 10�13.

We shall assume that inflation is initiated from a state
that is at least approximately thermal. In general, this is a
dangerous assumption, since there is no a priori reason to
expect homogeneity or thermal equilibrium prior to in-
flation. However, this assumption is in keeping with the
motivation of a PNGB potential arising from a phase
transition associated with spontaneous symmetry break-
ing. In addition, such a homogeneous, thermal initial
condition could naturally arise from an earlier period of
inflation associated with the breaking of the global sym-
metry at the scale f. For temperatures T 
 f, the global
symmetry is spontaneously broken, and the field � de-
scribes the phase degree of freedom around the bottom of
a Mexican hat. Since � thermally decouples at a tem-
perature T � f2=mPl � f, we assume it is initially laid
down at random between 0 and 2�f in different causally
connected regions. Within each Hubble volume, the evo-
lution of the field is described by

��  3H _�  ! _�  V0��� � 0; (3)

where ! is the decay width of the inflaton. In the tem-
perature range � 
 T 
 f, the potential V��� is dynami-
cally irrelevant, because the forcing term V0��� is
negligible compared to the Hubble-damping term. (In
addition, for axion models, � ! 0 as T=� ! 1 due to
the high-temperature suppression of instantons [12].)
Thus, in this temperature range, aside from the smooth-
ing of spatial gradients in �, the field does not evolve.
Finally, at T 
 �, in regions of the Universe with �
initially near the top of the potential, the field starts to
roll slowly down the hill toward the minimum. In those
regions, the energy density of the Universe is quickly
dominated by the vacuum contribution �V��� ’ 2�4 �
�rad � T4�, and the Universe expands exponentially.

To successfully solve the cosmological puzzles of the
standard cosmology, an inflationary model must satisfy a
variety of constraints.We describe these constraints in the
following sections.
-2
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III. EVOLUTION OF THE INFLATON FIELD

In this section, we present results for the evolution of
the scalar field driving natural inflation. First, we review
the standard slow roll (SR) analysis, and then turn to the
results of an exact calculation obtained by numerically
solving the equations of motion. As our result we find that
sufficient inflation takes place as long as

f > 0:06mPl: (4)

In Sec. IV we will derive stronger bounds on f from
constraints on the spectral index of density fluctuations.
Throughout, we take mPl � 1:22 � 1019 GeV. Hereafter,
we take the onset of inflation to take place at a field value
0 < �1=f < �, and the end of inflation to be at a field
value 0 < �2=f < �.

A. Standard slow roll analysis

A sufficient, but not necessary, condition for inflation
is that the field be slowly rolling, i.e., its motion is over-
damped, �� � 3H _�. The SR condition implies that two
conditions are met:

jV 00���j < 9H2; i:e:;

�����������������������������
2j cos��=f�j

1  cos��=f�

s
<

���������
48�

p
f

mPl
; (5)

and��������V 0���mPl

V���

��������<
���������
48�

p
; i:e:;

sin��=f�
1  cos��=f�

<

���������
48�

p
f

mPl
:

(6)

From Eqs. (5) and (6), the existence of a broad SR regime
requires f � mPl=

���������
48�

p
and ends when � reaches a value

�2, at which one of the inequalities (5) or (6) is violated.
For example, for f � mPl, �2=f � 2:98 (near the mini-
mum of the potential), while for f � mPl=

���������
24�

p
, �2=f �

1:9. Clearly, as f grows, �2=f approaches �. We note that
the conditions (5) and (6) are approximate relations. A
more precise calculation using the slow roll parameters �
and � gives similar bounds. Next we present exact nu-
merical solutions of the equations of motion to substan-
tiate our results.

B. Numerical evolution of the scalar field

In [14], we obtained exact numerical solutions to the
equations of motion for the inflaton in the natural infla-
tion model. We briefly recapitulate results from a numeri-
cal evolution of the scalar field found in Sec. III of [14],
which provides more precise results than the simple SR
analysis.

We find that the exact solution roughly reproduces the
results of the SR analysis presented previously. As long as
f > 0:1mPl, the results agree to within 10%. In particular,
the numerical results for the maximum field value at the
start of inflation, �max

1 , are nearly identical to the SR
083512
estimates for values of f near mPl; they differ by �10%
for f � mPl and deviate significantly as f approaches
mPl=

���������
24�

p
from above. Further details can be found in

[14].

C. Sufficient inflation

The expansion H � _a=a of the Universe is determined
by the Friedmann equation,

H2 �
8�

3m2
Pl

�
V��� 

1

2
_�2
�
: (7)

Inflationary expansion takes place when the potential V
dominates in the energy density. To solve the flatness and
horizon problems, we demand that the scale factor of the
Universe inflates by at least 60 e-foldings during the SR
regime,

Ne��1; �2; f� 	 ln�R2=R1�

�
Z t2

t1

H dt

�
�8�

m2
Pl

Z �2

�1

V���

V 0���
d�

�
16�f2

m2
Pl

ln
�

sin��2=2f�
sin��1=2f�

�
� 60: (8)

Using Eqs. (5) and (6) to determine �2 as a function of f,
the constraint (8) determines the maximum value (�max

1 )
of �1 consistent with sufficient inflation. The fraction of
the Universe with �1 2 �0; �max

1 � will inflate sufficiently.
The requirement that a reasonable fraction of the
Universe inflate sufficiently places a bound on f.

There are two conceptually different approaches to the
question of what fraction of the Universe inflates suffi-
ciently, and hence to the bound on the scale f. The first is
an ‘‘a priori probability.’’ In this (more restrictive) ap-
proach, one determines the fraction of the volume of the
Universe before inflation which will inflate sufficiently,
and requires this fraction to be reasonably large. If we
assume that �1 is randomly distributed between 0 and �f
from one horizon volume to another, the probability of
being in a region of the Universe that inflates enough is
�max

1 =�f. For example, for f � 3mPl, mPl, mPl=2, and
mPl=

���������
24�

p
, the probability is 0.7, 0.2, 3 � 10�3, and 3 �

10�41. The fraction of the Universe that inflates suffi-
ciently drops precipitously with decreasing f, and hence
restricts f to be near mPl. However, this approach is
unnecessarily restrictive.

The second approach, namely, ‘‘a posteriori probabil-
ity,’’ is more sensible. Here one examines the Universe
after inflation has taken place, and ascertains what frac-
tion of the final volume of the Universe has inflated
sufficiently to look like our own. After inflation, those
initial Hubble volumes of the Universe that did inflate end
up occupying a much larger volume than those that did
-3
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not. This second approach is much less restrictive and
allows a lower value of f, as shown below. We note that
neither of these approaches addresses the broader (and
unsolved) issue of how to rigorously define a measure on
the space of initial conditions for inflation, since we are
implicitly assuming homogeneity and thermal equilib-
rium. However, these arguments do serve to establish
the plausibility and naturalness of the model.

D. A Posteriori Probability of Sufficient Inflation

We now calculate the a posteriori probability of suffi-
cient inflation. We consider the Universe at the end of
inflation, and calculate the fraction P of the volume of the
Universe at that time which had inflated by at least 60 e-
foldings:

P � 1 �

R�f
�max

1
d�1 exp�3N��1��R�f

H=2� d�1 exp�3N��1��
: (9)

Here, the lower limit of integration in the denominator is
the limit of validity of the semiclassical treatment of the
scalar field; the initial value of � must exceed its quan-
tum fluctuations, �1 � �� � H=2�. This fraction P is
then the a posteriori probability of sufficient inflation.

Our basic result [14] is that the a posteriori probability
for inflation P is essentially unity for f larger than the
critical value fc ’ 0:06mPl. As f drops below this value,
the probability given by Eq. (9) rapidly approaches 0.
Hence, the requirement that a significant fraction of the
Universe inflate sufficiently places a lower bound on the
scale

f > fc ’ 0:06mPl: (10)

We have explicitly calculated the evolution of the scalar
field in natural inflation and found that the claim of [16]
that f � mPl is unnecessarily restrictive. The correct
bound due to sufficient inflation is given by Eq. (10).

IV. DENSITY FLUCTUATIONS

The amplitude and spectrum of density fluctuations
produced in the natural inflation model can be compared
with microwave background data in order to constrain the
height and width of the potential. Here we find the con-
straint on the potential due to comparison with WMAP
data.

A. Density fluctuation amplitude

Quantum fluctuations of the inflaton field as it rolls
down its potential generate adiabatic density perturba-
tions that may lay the groundwork for large-scale struc-
ture and leave their imprint on the microwave background
anisotropy [21–23]. In this context, a convenient measure
of the perturbation amplitude is given by the gauge-
invariant variable � , first studied in [24]. We follow [25]
in defining the power in � ,
083512
P1=2
� �k� �

15

2

�
��
�

	
HOR

�
3

2�
H2

_�
: (11)

Here, ���=��HOR denotes the perturbation amplitude (in
uniform Hubble constant gauge) when a given wave-
length enters the Hubble radius in the radiation- or
matter-dominated era, and the last expression is to be
evaluated when the same comoving wavelength crosses
outside the Hubble radius during inflation. For scale-
invariant perturbations, the amplitude at Hubble-radius
crossing is independent of perturbation wavelength.
Normalizing to the COBE [26] or WMAP [2] Cosmic
Microwave Background (CMB) anisotropy measurements
gives P1=2

� �k� � 10�5.We can use this normalization to get
an approximate fix on the scale �. Using the analytic
estimates of Sec. III A, the largest amplitude perturba-
tions on observable scales are produced 60 e-foldings
before the end of inflation, where � � �max

1 , and have
amplitude

P1=2
� ’

�2f

m3
Pl

9

2�

�
8�

3

	
3=2 �1  cos��max

1 =f��3=2

sin��max
1 =f�

: (12)

We can obtain an analytic estimate of � as a function of f
when f 
 �3=4�mPl; in this case, it is a good approxima-
tion to take �max

1 =�f � 1. As a result, in Eq. (12), we
have approximately

P1=2
� �

1:4�2f

M3
Pl

�
16�

3

	
3=2

�
f

�max
1

	
: (13)

Now the last term in this expression is obtained by using
Eq. (8) with N��max

1 ; �2; f� � 60:

�max
1

f
’ 2 sin

�
�2

2f

	
exp

�
�

15m2
Pl

4�f2

�
: (14)

Applying the CMB normalization constraint to Eq. (12)
gives � � 1015–1016 GeV for f � mPl. Thus, to generate
the fluctuations responsible for large-scale structure, �
should be comparable to the GUT scale, and the inflaton
mass m� � �2=f � �1011–1013� GeV. We note that this is
strictly only an upper bound on the scale �, since the
perturbations responsible for large-scale structure could
be formed by some other (noninflationary) mechanism.

B. Density fluctuation spectrum

Using the approximations above, we can investigate
the wavelength dependence of the perturbation amplitude
at Hubble-radius crossing and, in particular, study how it
deviates from scale invariance (usually associated with
inflation).

Let k denote the comoving wave number of a fluctua-
tion. The comoving length scale of the fluctuation, k�1,
crosses outside the comoving Hubble radius �Ha��1 dur-
ing inflation at the time when the rolling scalar field has
the value �k. This occurs NI�k� 	 N��k;�2; f� e-folds
-4
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before the end of inflation, where N��k;�2; f� is given by
Eq. (8) with �1 replaced by �k. The corresponding
comoving length scale (expressed in current units) is

k�1 ’ �3000h�1 Mpc� exp�NI�k� � 60�; (15)

where the horizon size today is ’ 3000h�1 Mpc. For
scales of physical interest for large-scale structure,
NI�k� � 50; for f 
 �3=4�mPl, these scales satisfy
�k=f � 1. In this limit, comparing two different field
values �k1

and �k2
, from Eq. (8) we have

�k2
’ �k1

exp
�
�

�NIm2
Pl

16�f2

	
; (16)

where �NI � NI�k2� � NI�k1�. Thus, using Eqs. (12) and
(13), we can compare the perturbation amplitude at the
two field values,

�P1=2
� �k1

�P1=2
� �k2

’
�k2

�k1

’ exp
�
�

�NIm2
Pl

16�f2

	
: (17)

Now, from Eq. (15), we have the relation �NI � ln�k1=k2�
[here we have approximated Hk1

’ Hk2
; more precisely,

�NI � ln�k1Hk2
=k2Hk1

�]. Substituting this relation into
(17), we find how the perturbation amplitude at Hubble-
radius crossing scales with comoving wavelength,�

��
�

	
HOR;k

� �P1=2
� �k � k�m2

Pl=16�f2
: (18)

By comparison, for a scale-invariant spectrum, the
Hubble-radius amplitude would be independent of the
perturbation length scale k�1; the positive exponent in
Eq. (18) indicates that the PNGB models with f 
 mPl

have more relative power on large scales than do scale-
invariant fluctuations.

It is useful to transcribe this result in terms of the
power spectrum of the primordial perturbations at fixed
time (rather than at Hubble-radius crossing). Defining the
Fourier transform �k of the density field, from Eq. (18)
the power spectrum is a power law in the wave number k,
j�kj

2 � kns , where the index ns is given by

ns � 1 �
m2

Pl

8�f2 �f 
 3mPl=4�: (19)

For comparison, the scale-invariant Harrison-Zel’dovich-
Peebles-Yu spectrum corresponds to ns � 1. For values of
f close to mPl, the spectrum is close to scale invariant, as
expected; however, as f decreases, the spectrum deviates
significantly from scale invariance —e.g., for f �

mPl=
�������
8�

p
� 0:2mPl, the perturbations have a white noise

spectrum, ns � 0.
Recently,WMAP has placed bounds on the spectrum of

density fluctuations. If we assume that inflationary per-
turbations are indeed responsible for what is being seen in
the WMAP data, then these spectral bounds can be trans-
lated into bounds on the parameter f in the potential. The
083512
precise formulation of the WMAP results depends on the
choice of priors. Here we take the bound on the deviation
of the spectrum from scale invariant from WMAP as
found by [27,28]:

jns � 1j < 0:1: (20)

Applying this bound to Eq. (19), we see that a strong
lower bound on the scale f results:

f � 0:6mPl: (21)

This is the strongest bound on the scale f.

V. TENSOR MODES

In addition to density fluctuation, inflation also predicts
the generation of tensor (gravitational wave) fluctuations
with amplitude

P1=2
T �

H
2�

: (22)

In this section we study these tensor modes and discuss
their detectability in upcoming microwave background
experiments. We also examine the possible running of the
scalar index and find that it is so small as to be observa-
tionally inaccessible.

For comparison with observation, the tensor amplitude
is conventionally expressed in terms of the tensor=scalar
ratio r, defined as2

r 	
P1=2

T

P1=2
�

� 16�; (23)

where � is the first slow roll parameter evaluated when the
fluctuation mode crosses the horizon, � � �max

1 :

� �
m2

Pl

16�2

�
V 0��max

1 �

V��max
1 �

	
2

�
1

16�2

�
mPl

f

	
2
�

sin��max
1 =f�

1  cos��max
1 =f�

�
2

’
1

32�2

�
mPl

f

	
2
�
�max

1

f

	
2
; � � f: (24)

In principle there are four parameters describing the
scalar and tensor fluctuations: the amplitudes and spectra
of both components. The amplitude of the scalar pertur-
bations is normalized by the height of the potential (the
energy density �4). The tensor spectral index nT is not an
independent parameter since it is related to the
tensor=scalar ratio by the inflationary consistency condi-
tion r � �8nT. The remaining free parameters are the
spectral index n of the scalar density fluctuations, and the
tensor amplitude (given by r).

Hence, a useful parameter space for plotting the model
predictions versus observational constraints is on the
-5
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�r; n� plane [30,31]. Natural inflation generically predicts
a tensor amplitude well below the detection sensitivity of
current measurements such as WMAP. However, the situ-
ation will improve markedly in future experiments with
greater sensitivity such as the Planck satellite, which will
start taking data in 2007, and proposed experiments such
as CMBPOL.

Figure 1 shows the predictions of natural inflation for
various choices of the number of e-folds NI and the mass
scale f, together with a variety of observational con-
straints. Fluctuations on observable scales (up to the scale
of the current horizon size) are expected to lie roughly in
the range NI � 50–60, depending on the reheat tempera-
ture (although the relevant range also depends on the
subsequent evolution of the Universe [32]). In general, a
lower value of f results in a ‘‘redder’’ (smaller n) spec-
trum and a smaller tensor fluctuation amplitude. The
current observational constraint from WMAP is given
by the shaded (green) region on the left-hand side of the
plot: The white region is still allowed by WMAP. We have
also forecast error bars for the PLANCK satellite based
on a Fisher matrix analysis (see Ref. [30] for details of the
calculation). Roughly, the PLANCK satellite is expected
to have 1% error bars �� 0:05 on the magnitude of r, and
FIG. 1 (color online). The predictions of natural inflation
compared with current and projected observational constraints,
plotted on the �r; ns� plane, where r is the tensor=scalar ratio
and ns is the spectral index of scalar fluctuations. The lines
show the predictions of natural inflation for varying choices of
the mass scale f and the number of e-folds NI . Length scales of
the order of the current horizon size correspond to NI ’ 60 for
high reheat temperature. In general, a lower value of f results
in a redder (smaller ns) spectrum and a smaller tensor fluctua-
tion amplitude. The shaded region at the left of the plot (green)
is excluded to 2% by WMAP [27]. The hatched (blue) error
ellipse is the 2% sensitivity expected for the Planck satellite.
The central value is arbitrary: Only the size of the error bar is
significant. The solid (black) error ellipse is the corresponding
result for a hypothetical experiment with the same angular
resolution as Planck but with a factor of 3 better temperature
sensitivity. Such a measurement would be capable of detecting
the gravitational wave fluctuations from natural inflation.

083512
1% errors bars �� 0:01 on n. The hatched (blue) region
indicates the 2% sensitivity of the PLANCK satellite if
the central value is (arbitrarily) chosen to be r� 0:01.
The central value is arbitrary; only the size of the error
bars is significant. Similarly, we have also forecast error
bars for a hypothetical experimental measurement with
the same angular resolution as Planck, but with sensitiv-
ity improved by a factor of 3; the solid (black) error
ellipse is the corresponding result (the 1% errors on r
here are roughly �5 � 10�3). Hence, PLANCK should be
able to detect the tensor signal from natural inflation if
f > 1:5mPl. The next generation of experiments should be
able to do so for f > 0:7mPl, the region allowed by
WMAP data.

One property of the potential to note is that the spectral
index is very weakly dependent on NI for f < mPl, in-
dicating that the ‘‘running’’ of the spectral index
dn=d lnk is negligible. A more careful calculation indi-
cates that the running of the spectral index is less than
10�3 for all parameter regions considered here, and there-
fore for all practical purposes unobservable. This provides
a powerful means of falsifying natural inflation. In par-
ticular, if indications of a strong negative running of the
spectral index [33] from small-scale CMB observations
such as CBI [34], ACBAR [35], and VSA [36] are borne
out, this will kill the model, at least in its simplest single-
field form of Eq. (2).
VI. DISCUSSION

In conclusion, natural inflation is alive and well. Recent
WMAP data constrain the width of the potential to be f >
0:6mPl, and our predictions show that upcoming CMB
observations such as the PLANCK satellite may be able to
see the tensor modes.

In this section, we discuss the pros and cons of f �mPl,
as well as comment on some of the literature of PNGB
models using shift symmetries.

Although it is not true that the original model of
natural inflation requires f � mPl for the width of the
potential, it does require f to be of order mPl � 1019 GeV.
In fact, virtually all 4D inflationary models require f �
mPl and the height of the potential �mGUT, in order to
satisfy the simultaneous requirements of sufficient infla-
tion and the right amplitude of density perturbations; this
fact is emphasized by the conclusions of Ref. [6].
However, the height of the potential is generically of
the order of the GUT scale, far enough below the
Planck scale that we can safely ignore quantum gravita-
tional effects on the background evolution. However, en-
ergy density is not the only issue.

In [37,38], it was argued that Planck-scale physics
results in the violation of all global symmetries, including
the Peccei-Quinn symmetry of the axion and the under-
lying symmetry from which we derive the PNGB inflaton.
Wormholes are suggested as one mechanism for this
-6
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violation, and black holes another (as a consequence of
black hole no-hair theorems, the global charge of a black
hole is not defined). The authors argue that, as a conse-
quence, one is required to add all higher dimension op-
erators (suppressed by powers of mPl) consistent with the
symmetries of the full theory, which then does not respect
global symmetries. One should include terms of the form

L �
1

2
m2�2  
�4 

X1
n�6


n

�
�n

mn�4
Pl

	
: (27)

Without a complete theory of quantum gravity, the valid-
ity of these arguments is not clear. If true, then the idea
of using a PNGB directly as the inflaton would fail;
however, the axion also could not exist and we would
have no theory at all to escape the strong CP problem in
QCD.

In [39], Lyth discussed the failure of effective field
theory if the width of an inflationary potential approaches
mPl. Again, if inflation is to be formulated as an effective
low-energy field theory, he argues that we expect addi-
tional nonrenormalizable operators in the Lagrangian to
be suppressed by inverse powers of mPl as above. Then if
observational constraints require the field to travel a
distance �� �mPl, the effective field theory will begin
to break down due to radiative corrections from the non-
renormalizable operators. Such a theory rapidly becomes
inconsistent as �� � mPl. Motivated by the desire to
evade these issues, in 1995 Kinney and Mahantappa
[40] constructed natural inflation models in which sym-
metries suppress the mass terms and the potential is of the
form V ’ 1 � sin4��=f� � 1 ��4. Then one automati-
cally obtains an effective width of the potential f � mPl

[41]. One does so, however, at the expense of an unob-
servably small tensor component in the CMB.

Natural inflation has been implemented in the context
of extra dimensions with varying degrees of success.
Recently, Arkani-Hamed et al. [16] examined natural
inflation in the context of extra dimensions, and also
found models for which the mass terms were suppressed
by a symmetry with f � mPl, similar to the work of [40].
Focusing on a Wilson line in a fifth dimension, Arkani-
Hamed et al. alternatively suggested that one might ob-
tain large f � mPl if the inflaton is the extra component
of a gauge-field propagating in the bulk.

However, Banks et al. examined the general question
of whether it is ever possible to obtain large values
of f � mPl in string theory [42]. While their study
was not exhaustive, it strongly suggests that it is
not possible. Generically there is a T-dual description
in which small radii become large and the value of f
is small (f � mPl); hence the model of Arkani-Hamed
et al. does not succeed in providing large f inflation.
In addition, in a variety of regions in moduli space
Banks et al. find that there are low action instantons
which give rise to rapidly varying contributions to
the potential that effectively rescale the value of f to
083512
the Planck scale. Although they do not provide an
exhaustive proof, Banks et al. suggest the very strong
statement that natural inflation cannot work in the con-
text of string theory for f � mPl. However, natural in-
flation with f � mPl, as discussed throughout this paper,
is fine.

Natural inflation has been implemented in brane-world
scenarios as well. Shift symmetries have been studied in
brane inflation by Firouzjahi and Tye [18] and in the work
of Hsu and Kallosh [19]. The four-dimensional effective
field theory description of some brane-world scenarios is
likely to be described by the physics in this paper.

The shift symmetries of natural inflation have
also been used in multiple field models. Freese [20]
suggested using a PNGB as the rolling field in dou-
ble field inflation [5] (in which the inflaton is a tunneling
field whose nucleation rate is controlled by its coupling
to a rolling field). Kaplan and Weiner have examined
natural inflationlike models in the context of ‘‘little’’
fields [17].

Kawasaki et al. proposed a supergravity inflation
model in which the inflaton potential is flat due to a shift
symmetry, again utilizing the basic idea of natural in-
flation. Choi et al. have discussed thermal inflation in the
context of the radiatively generated axion scale in super-
symmetric axion models [43].

While arguments based on theoretical prejudice are
useful guidelines for model building, the ultimate test is
an observational one. It is a remarkable coincidence that
the borderline between consistent and inconsistent effec-
tive field theory models for inflation is roughly the same
as the borderline between whether or not tensor modes
are, in a practical sense, observable [44]. In order for the
tensor=scalar ratio to be large enough to be measured by
foreseeable future experiments, the width of the potential
must be of order f � mPl or larger. Natural inflation is still
very much in the running as a candidate model for the
early Universe. These models are also especially attrac-
tive from a particle physics perspective because they
possess a hierarchy of scales which is stable against
radiative corrections. Such a hierarchy is necessary for
the suppression of density perturbations, but, in other
models, is typically left to a fine-tuning of the inflaton
self-coupling to order 
� 10�14. Finally, the simplest
models of natural inflation predict a large enough gravi-
tational wave component that a detection by advanced
CMB measurements will be possible.
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