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The modified Newtonian dynamics (MOND) paradigm of Milgrom can boast of a number of
successful predictions regarding galactic dynamics; these are made without the assumption that dark
matter plays a significant role. MOND requires gravitation to depart from Newtonian theory in the
extragalactic regime where dynamical accelerations are small. So far relativistic gravitation theories
proposed to underpin MOND have either clashed with the post-Newtonian tests of general relativity, or
failed to provide significant gravitational lensing, or violated hallowed principles by exhibiting
superluminal scalar waves or an a priori vector field. We develop a relativistic MOND inspired theory
which resolves these problems. In it gravitation is mediated by metric, a scalar, and a 4-vector field, all
three dynamical. For a simple choice of its free function, the theory has a Newtonian limit for
nonrelativistic dynamics with significant acceleration, but a MOND limit when accelerations are small.
We calculate the � and � parameterized post-Newtonian coefficients showing them to agree with solar
system measurements. The gravitational light deflection by nonrelativistic systems is governed by the
same potential responsible for dynamics of particles. To the extent that MOND successfully describes
dynamics of a system, the new theory’s predictions for lensing by that system’s visible matter will agree
as well with observations as general relativity’s predictions made with a dynamically successful dark
halo model. Cosmological models based on the theory are quite similar to those based on general
relativity; they predict slow evolution of the scalar field. For a range of initial conditions, this last result
makes it easy to rule out superluminal propagation of metric, scalar, and vector waves.
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I. INTRODUCTION

In the extragalactic regime, where Newtonian gravita-
tional theory would have been expected to be an excellent
description, accelerations of stars and gas, as estimated
from Doppler velocities and geometric considerations,
are as a rule much larger than those due to the
Newtonian field generated by the visible matter in the
system [1,2]. This is the ‘‘missing mass’’ problem [3] or
‘‘acceleration discrepancy’’ [4]. It is fashionable to infer
from it the existence of much dark matter in systems
ranging from dwarf spheroidal galaxies with masses
�106 M� to great clusters of galaxies in the 1013 M�

regime [3,5]. And again, galaxies and clusters of galaxies
are found to gravitationally lense background sources.
When interpreted within general relativity (GR), this
lensing is anomalously large unless one assumes the
presence of dark matter in quantities and with distribution
similar to those required to explain the accelerations of
stars and gas. Thus extragalactic lensing has naturally
been regarded as confirming the presence of the dark
matter suggested by the dynamics.

But the putative dark matter has never been identified
despite much experimental and observational effort [6].
This raises the possibility that the acceleration discrep-
ancy as well as the gravitational lensing anomaly may
address: bekenste@vms.huji.ac.il
://www.phys.huji.ac.il/~bekenste/

04=70(8)=083509(28)$22.50 70 0835
reflect departures from Newtonian gravity and GR on
galactic and larger scales. Now alternatives to GR are
traditionally required to possess a Newtonian limit for
small velocities and potentials; thus the acceleration dis-
crepancy also raises the possibility that the correct rela-
tivistic gravitational theory may be of a kind not
generally considered hitherto.

In the last two decades, Milgrom’s modified
Newtonian dynamics (MOND) paradigm [7–9] has
gained recognition as a successful scheme for unifying
much of extragalactic dynamics phenomenology without
invoking ‘‘dark matter.’’ In contrast with earlier sug-
gested modifications of Newton’s law of universal gravi-
tation [10–13], MOND is characterized by an
acceleration scale a0, not a distance scale, and its depar-
ture from Newtonian predictions is acceleration depen-
dent:

~��jaj=a0�a � �r�N: (1)

Here �N is the usual Newtonian potential of the visible
matter, while ~��x� � x for x	 1 and ~��x� ! 1 for x�
1. Milgrom estimated a0 � 1� 10

�8 cm s�2 from the
empirical data. In the laboratory and the solar system
where accelerations are strong compared to a0, formula
(1) goes over to the Newtonian law a � �r�N.

Milgrom constructed formula (1) to agree with the fact
that rotation curves of disk galaxies become flat outside
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their central parts. That far out a galaxy of mass M
exhibits an approximately spherical Newtonian potential.
The scales are such that jr�Nj � GMr�2 	 a0 in this
region, and so Eq. (1) with ~��x� � x gives jaj �
�GMa0�

1=2r�1 which has the r dependence appropriate
for the centripetal acceleration v2c=r of a radius indepen-
dent rotational velocity vc—an asymptotically flat rota-
tion curve. In fact one obtains the relation
M � �Ga0�

�1v4c which leads to the prediction that for
any class of galaxies with a constant mass to luminosity
ratio� in a specified spectral band, the luminosity in that
band should scale as v4c. And indeed, there exists an
empirical law of just this form: the Tully-Fisher law
[14] (TFL) relating near infrared (H-band) luminosity
LH of a spiral disk galaxy to its rotation velocity LH / v4c
with the proportionality factor being constant within
each galactic morphology class.

This version of the TFL was established only after
MOND was enunciated [15]. It is in harmony with the
MOND prediction in two ways. First, the infrared light of
a galaxy comes mostly from cool dwarf stars which make
up most of its mass (hence giving a tight correlation
between M of the predicted relation and LH of the em-
pirical law). Second, the proportionality coefficient varies
from class to class as would be expected from the ob-
served correlation between � of a galaxy and its
morphology.

In the alternative dark matter paradigm (which casts no
doubt on standard gravity theory), flat rotation curves are
explained by assuming that every disk galaxy is nested
inside a roundish spherical halo of dark matter [16] whose
mass density drops approximately like r�2. The halo is
supposed to dominate the gravitational field in the outer
parts of the galaxy. This makes the Newtonian potential
approximately logarithmic with radius in those regions,
thereby leading to an asymptotically flat rotation curve.
In practice the dark halo resolution works only after fine
tuning. It is an observational fact that for bright spiral
galaxies the rotation curve in the optically bright region is
well explained in Newtonian gravity by the observed
matter [17]. But, as mentioned, in the outer regions the
visible matter’s contribution must be dwarfed by the
halo’s. So fine tuning is needed between the dark halo
parameters (velocity dispersion and core radius) and the
visible disk ones [18,19].

This fine tuning problem is exacerbated by the TFL
LH / v4c. Because the infrared luminosity comes from the
visible matter in the galaxy, but the rotation velocity is
mostly set by the halo, the TFL also requires fine tuning
between halo and disk parameters. The standard dark
matter explanation of the r�2 profile of a halo is that it
arises naturally from primordial cosmological perturba-
tions [20]. The visible galaxy is regarded as forming by
dissipational collapse of gas into the potential well of the
halo. The fine tuning mentioned is then viewed as result-
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ing from the adjustment of the halo to the gravitation of
the incipient disk [19,21]. But the TFL is observationally
a very sharp correlation; in fact, it is the basis for one of
the most reliable methods for gauging distances to spiral
galaxies. Such sharpness is hardly to be expected from
statistical processes of the kind envisaged in galaxy for-
mation, a point emphasized by Sanders [22]. So in the
dark matter picture the TFL is something of a mystery.

There are other MOND successes. Milgrom predicted
early that in galaxies with surface mass density well
below a0G

�1, the acceleration discrepancy should be es-
pecially large [8]. In dwarf spirals this property was
established empirically years later [23], and it is now
known to be exhibited by a large number of low surface
brightness galaxies [24]. Another example: MOND suc-
cessfully predicts the detailed shape of a rotation curve
from the observed matter (stars and gas) distribution on
the basis of a single free parameter � down to correlating
features in the velocity field with those seen in the light
distribution [25–28]. This is especially true in the case of
low surface mass density disk galaxies for which
MOND’s predictions are independent of the specific
choice of ~��x� [29], and these MOND theoretical rotation
curves fit the observed curves of a number of low surface
brightness dwarf galaxies [27,30,31] very well. By con-
trast, the dark halo paradigm requires one or two free
parameters apart from � to approximate the success of
the MOND predictions [32]. In fact, even when the em-
pirical data is analyzed within the dark halo paradigm, it
displays the preferred acceleration scale a0 of MOND
[33].

Occasionally doubt has been cast on MOND’s ability to
describe clusters of galaxies properly [34]. Many of these
exhibit accelerations not small on scale a0, yet conven-
tional analysis suggests they contain much dark matter in
opposition to what MOND would suggest. Sanders has
recently reanalyzed the problem [35] with the conclusion
that these clusters may contain much as yet undiscovered
baryonic matter in the core which should be classed as
‘‘visible’’ in connection with MOND. Other MOND suc-
cesses, outside the province of disk galaxies, have been
reviewed elsewhere [22,32,36].

So the simple MOND formula (1) is very successful.
But it is not a theory. Literally taken, the MOND recipe
for acceleration violates the conservation of momentum
(and of energy and of angular momentum) [7]. And
MOND entails a paradox: why does the center of mass
of a star orbit in its galaxy with anomalously large
acceleration given by Eq. (1) with ~�	 1, while each
parcel of gas composing it is subject to such high accel-
eration that it should, by the same formula, be accelerated
Newtonially [7]? In short, the MOND formula is not a
consistent theoretical scheme. Neither is MOND, as ini-
tially stated, complete. For example, it does not specify
how to calculate gravitational lensing by galaxies and
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clusters of galaxies. As is well known, in standard gravity
theory light deflection is well described only by relativ-
istic theory (GR). And whereas Newtonian cosmological
models work well for part of the cosmological evolution,
MOND cosmological models built in analogy with their
Newtonian counterparts, though sometimes agreeing
with phenomenology [34], can yield peculiar predictions
[37] (but see Ref. [38]). In short, a complete, consistent
theoretical underpinning of the MOND paradigm which
accords with observed facts, and is also relativistic, has
been lacking.

This lack is being resolved in measured steps. A first
step was the Lagrangian reformulation of MOND [39]
called AQUAL (aquadratic Lagrangian theory) (see
Sec. II A). AQUAL cures the nonconservation problems
and resolves the paradox of the galactic motion of an
object whose parts accelerate strongly relative to one
another; it does so in accordance with a conjecture of
Milgrom [7]. And for systems with high symmetry,
AQUAL reduces exactly to the MOND formula (1).

A relativistic generalization of AQUAL is easy to con-
struct with help of a scalar field which together with the
metric describes gravity [39] (see Sec. II C 1 below). It
reduces to MOND approximately in the weak acceleration
regime, to Newtonian gravity for strong accelerations,
and can be made consistent with the post-Newtonian
solar system tests for GR. But relativistic AQUAL is
acausal: waves of the scalar field can propagate super-
luminally in the MOND regime (see the appendix of
Ref. [39] or Appendix A here). The problem can be traced
to the aquadratic kinetic part of the Lagrangian of the
theory which mimics that in the original AQUAL. A
theory involving a second scalar field, phase coupled
gravity theory (PCG), was thus developed to bypass the
problem [4,40,41] (see Sec. II C 2 below). PCG may be
better behaved causally than relativistic AQUAL [42], but
it brings woes of its own. It is marginally in conflict with
the observed perihelion precession of Mercury [4], and in
common with relativistic AQUAL, PCG predicts extra-
galactic gravitational lensing which is too weak if there is
indeed no dark matter. This last problem is traceable to a
feature common to PCG and relativistic AQUAL: the
physical metric is conformal to the metric appearing in
the Einstein-Hilbert action [43].

One way to sidestep this problem without discarding
the MOND features is to exploit the direction defined by
the gradient of the first scalar field to relate the physical
metric to the Einstein metric by a disformal transforma-
tion (see Ref. [43] or Sec II C 3 below). But it turns out
that with this relation the requirement of causal propaga-
tion acts to depress gravitational lensing [44], rather than
enhancing it as is observationally required. The persis-
tence of the lensing problem in modified gravitational
theories has engendered a folk theorem to the effect that it
is impossible for a relativistic theory to simultaneously
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incorporate the MOND dynamics, observed gravitational
lensing and correct post-Newtonian behavior without
calling on dark matter [45–48].

Needless to say, this theorem cannot be proved [49].
Indeed, by the simple device of relating the physical and
Einstein metrics via a disformal transformation based on
a constant time directed 4-vector, Sanders [50] has con-
structed an AQUAL-like ‘‘stratified’’ relativistic theory
which gives the correct lensing while ostensibly retaining
the MOND phenomenology and consistency with the
post-Newtonian tests. Admittedly Sanders’s stratified
theory is a preferred frame theory and as such is outside
the traditional framework for gravitational theories. But it
does point out a trail to further progress.

The present paper introduces TeVeS, a new relativistic
gravitational theory devoid of a priori fields, whose non-
relativistic weak acceleration limit accords with MOND
while its nonrelativistic strong acceleration regime is
Newtonian. TeVeS is based on a metric and dynamic
scalar and 4-vector fields (one each); it naturally involves
one free function, a length scale, and two positive dimen-
sionless parameters, k and K. TeVeS passes the usual
solar system tests of GR, predicts gravitational lensing
in agreement with the observations (without requiring
dark matter), does not exhibit superluminal propagation,
and provides a specific formalism for constructing cos-
mological models.

In Sec. II we summarize the foundations on which a
workable relativistic formulation of MOND must stand.
We follow this with a brief critical review of relativistic
AQUAL, PCG and disformal metric theories, some of
whose elements we borrow. Sec. III A builds the action
for TeVeS while Sec. III B derives the equations for the
metric, scalar, and vector fields. In Sec. III C we demon-
strate that TeVeS has a GR limit for a range of small k
and K. This is shown explicitly for cosmology
(Sec. III C 1) and for quasistatic situations like galaxies
(Sec. III C 2). All the above applies for any choice of the
free function; in Sec. III E we make a simple choice for it
which facilitates further elaboration. For spherically sym-
metric systems the nonrelativistic MOND limit is derived
in Sec. IV B, while the Newtonian limit is recovered for
modestly small k in Sec. IV C. The above conclusions are
extended to nonspherical systems in Sec. IV D. Sec. V
shows that the theory passes the usual post-Newtonian
solar system tests if the K parameter is chosen small.
Sec. VI demonstrates that for given dynamics, TeVeS
gives the same gravitational lensing as does a dynami-
cally successful dark halo model within GR. In Sec. VII
we discuss TeVeS cosmological models with flat spaces
showing that they are very similar to the corresponding
GR models (apart from the question of cosmological dark
matter which is left open), and demonstrating that the
scalar field evolves little and so can be taken to be small
and positive. As discussed next in Sec. VIII, this last
-3
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conclusion serves to rule out superluminal propagation in
TeVeS.
II. THEORETICAL FOUNDATIONS FOR THE
MOND PARADIGM

A. AQUAL: Nonrelativistic field reformulation of
MOND

However successful empirically when describing mo-
tions of test particles, e.g., stars in the collective field of a
galaxy, formula (1) is not fully correct. It is easily
checked that a pair of particles accelerating one in the
field of the other according to (1) does not conserve
momentum. Thus the MOND formula by itself is not a
theory. It is, however, a simple matter to construct a fully
satisfactory nonrelativistic theory for MOND ([39]).
Suppose we retain the Galilean and rotational invariance
of the Lagrangian density which gives Poisson’s equation,
but drop the requirement of linearity of the equation.
Then we come up with

L � �
a20
8�G

f
�
jr�j2

a20

�
� ��: (2)

Here � is the mass density, a0 is a scale of acceleration
introduced for dimensional consistency, and f is some
function. Newtonian theory (Poisson’s equation) corre-
sponds to the choice f�y� � y. From Eq. (2) follows the
gravitational field equation

r � � ~��jr�j=a0�r�� � 4�G�; (3)

where ~��
p
y� � df�y�=dy. Because of its AQUAdratic

Lagrangian, the theory has been called AQUAL [4].
The form of f and the value of a0 must be supplied by
phenomenology. We assume

f�y� ���!
�
y y� 1;
2
3 y
3=2 y	 1: (4)

For systems with spherical, cylindrical or planar ge-
ometry, Eq. (3) can be integrated once immediately. With
the usual prescription for the acceleration,

a � �r�; (5)

the solution corresponds precisely to the MOND for-
mula (1). This is no longer true for lower symmetry.
However, numerical integration reveals that Eq. (1) is
approximately true, in most cases to respectable accuracy
[51].

The mentioned inexactness of Eq. (1) for systems such
as a discrete collection of particles is at the root of the
mentioned violation of the conservation laws. Because
AQUAL starts from a Lagrangian, it respects all the
usual conservation laws (energy, momentum and angular
momentum), as can be checked directly [39]. This sup-
plies the appropriate perspective for the mentioned fail-
ings of MOND. AQUAL also supplies the tools for
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showing that Newtonian behavior of the constituents of
a large body, e.g., a star, is consistent with non-
Newtonian dynamics of the latter’s center of mass in
the weak collective field of a larger system, e.g., a galaxy.

To summarize, whenever parts of a system devoid of
high symmetry move with accelerations weak on scale
a0, the field r� which defines their accelerations is to be
calculated by solving the AQUAL Eq. (3). AQUAL then
becomes the nonrelativistic field theory on which to
model the relativistic formulation of the MOND
paradigm.

B. Principles for relativistic MOND

A relativistic MOND theory seems essential if gravi-
tational lensing by extragalactic systems and cosmology
are to be understood without reliance on dark matter.
What principles should the relativistic embodiment of
the MOND paradigm adhere to? The following list is
culled from those suggested by Bekenstein [4,43],
Sanders [52], and Romatka [53].

1. Principles

Action principle.— The theory must be derivable from
an action principle. This is the only way known to guar-
antee that the necessary conservation laws of energy,
linear, and angular momentum are incorporated auto-
matically. It is simplest to take the action as an integral
over a local Lagrangian density. A nonlocal action has
been tried [47], but the resulting theory fails on account of
gravitational lensing.

Relativistic invariance.—Innumerable elementary par-
ticle experiments provide direct evidence for the univer-
sal validity of special relativity. The action should thus be
a relativistic scalar so that all equations of the theory are
relativistically invariant. Implied in this is the correspon-
dence of the theory with special relativity when gravita-
tion is negligible. This proviso rules out preferred frame
theories.

Equivalence principle.—As demonstrated with great
accuracy (one part in 1012) by the Eötvös-Dicke experi-
ments [54], free particles with negligible self-gravity fall
in a gravitational field along universal trajectories (weak
equivalence principle). For slow motion (the case tested
by the experiments), the equation a � �r�, which en-
capsulates the universality, is equivalent to the geodesic
equation in a (curved) metric ~g�� with ~gtt � �1� 2�.
For light propagating in a static gravitational field, such a
metric would predict that all frequencies as measured
with respect to (w.r.t.) observers at rest in the field
undergo a redshift measured by�. This is experimentally
verified [55] to one part in 104. It thus appears that a
curved metric ~g�� describes those properties of space-
time in the presence of gravitation that are sensed by
material objects. According to Schiff ’s conjecture
[54,56], this implies that the theory must be a metric
-4
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theory, i.e., that in order to account for the effects of
gravitation, all nongravitational laws of physics, e.g.,
electromagnetism, weak interactions, etc., must be ex-
pressed in their usual laboratory forms but with the
metric ~g�� replacing the Lorentz metric. This is the
Einstein equivalence principle [54].

Causality.—So as not to violate causality and thereby
compromise the logical consistency of the theory, the
equations deriving from the action should not permit
superluminal propagation of any measurable field or of
energy and linear and angular momenta. Superluminal
here means exceeding the speed which is invariant under
the Lorentz transformations. By Lorentz invariance of
Maxwell’s equations this is also the speed of light. In
curved space, where curvature can cause waves to develop
tails, the maximal speed is that of wave fronts, typically
that of the high frequency components.

Positivity of energy.—Fields in the theory should never
carry negative energy. From the quantum point of view
this is a precaution against instability of the vacuum. This
principle is usually taken to mean that the energy density
of each field should be nonnegative at each event (local
positivity). The fact that the gravitational field itself
cannot be generically assigned an energy density shows
that this popular conception is overly stringent. A more
useful statement of positivity of energy is that any
bounded system must have positive energy (global pos-
itivity instead of the stronger local positivity). For ex-
ample, the gravitational field can carry negative energy
density locally (at least in the Newtonian conception), yet
for pure gravity and in some cases in the presence of
matter, a complete gravitating system is subject to the
positive energy theorems [57]. Also, there are examples
of scalar fields whose local energy density is of indefinite
sign, yet a complete stationary system of such fields with
sources has positive mass [58]. Of course, local positivity
implies global positivity.

Departures from Newtonian gravity.—The theory
should exhibit a preferred scale of acceleration below
which departures from Newtonian gravity should set in,
even at low velocities.

2. Requirements

The relativistic embodiment of MOND should predict a
number of well-established phenomena. For example, we
expect the following:

Agreement with the extragalactic phenomenology.—
The nonrelativistic limit of the theory should make pre-
dictions in agreement with those of the AQUAL equation,
which is known to subsume much extragalactic phenome-
nology. This is checked for TeVeS in Sec. IV B.

Agreement with phenomenology of gravitational
lenses.—The theory should predict correctly the lensing
of electromagnetic radiation by extragalactic structures
which is responsible for gravitational lenses and arcs. In
083509
particular, it should give predictions similar to those of
GR within the dark matter paradigm. This point is estab-
lished for TeVeS in Sec. VI.

Concordance with the solar system.—The theory
should make predictions in agreement with the various
solar system tests of relativity [54]: deflection of light
rays, time delay of radar signals, precessions of the peri-
helia of the inner planets, the absence of the Nordtvedt
effect in the lunar orbit, the nullness of aether drift, etc.
TeVeS is confronted with the first three tests in Sec. V.

Concordance with binary pulsar tests.—The theory
should make predictions in harmony with the observed
pulse times of arrival from the various binary pulsars.
These contain information about relativistic time delay,
periastron precession, and the orbit’s decay due to gravi-
tational radiation. They thus constitute a test of the strong
potential limit of the theory.

Harmony with cosmological facts.—The theory should
give a picture of cosmology in harmony with basic em-
pirical facts such as the Hubble expansion, its time scales
for various eras, existence of the microwave background,
light element abundances from primordial nucleosynthe-
sis, etc., The similarity of cosmological evolution in GR
and in TeVeS is established in Sec. VII, though the
problem of how to eliminate cosmological dark matter
with TeVeS is left open.

C. Some antecedent relativistic theories

It is now in order to briefly review some of the previous
attempts to give a relativistic theory of MOND. This will
introduce the concepts to be borrowed by TeVeS and help
to establish the notation and conventions that we shall
follow. A metric signature �2 and units with c � 1 are
used throughout this paper. Greek indices run over four
coordinates while Latin ones run over the spatial coor-
dinates alone.

1. Relativistic AQUAL

It is well known that theories constructed, for example,
by using a local function of the scalar curvature as
Lagrangian density, have a purely Newtonian limit for
weak potentials. So if we steer away from nonlocal
actions, then AQUAL behavior cannot arise from merely
modifying the gravitational action. The theory one seeks
has to involve degrees of freedom other than the metric.

In the first relativistic theory with MOND aspirations,
relativistic AQUAL [39], the physical metric ~g�� was
taken as conformal to a primitive (Einstein) metric
g��, i.e., ~g�� � e2 g�� with  a real scalar field. In order
not to break violently with GR, which is well tested in the
solar system (and to some extent in cosmology), the
gravitational action was taken as the Einstein-Hilbert’s
one built out of g��. The MOND phenomenology was
implanted by taking for the Lagrangian density for  
-5
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L  � �
1

8�GL2
~f�L2g�� ;�  ;� �; (6)

where ~f is some function (not known a priori), and L is a
constant with dimensions of length introduced for di-
mensional consistency. Note that when ~f�y� � y, L is
just the Lagrangian density for a linear scalar field, but in
general L is aquadratic.

To implement the universality of free fall, one must
write all Lagrangians of matter fields using a single
metric, which is taken as ~g�� (not g�� which choice
would make the theory GR). Thus, for example, the action
for a particle of mass m is taken as

Sm � �m
Z
e ��g��dx

�dx��1=2: (7)

Hence test particle motion is nongeodesic w.r.t. g�� but, of
course, geodesic w.r.t. ~g��. Evidently this last is the
metric measured by clocks and rods, hence the physical
metric. Addition of a constant to  merely multiplies all
masses by a constant (irrelevant global redefinition of
units), so that the theory is insensitive to the choice of
zero of  .

For slow motion in a quasistatic situation with nearly
flat metric g��, and in a weak field  ,
e ��g��dx�dx��1=2 � �1��N �  � v2=2�dt, here
�N � ��gtt � 1�=2 is the Newtonian potential deter-
mined by the mass density � through the linearized
Einstein equations for g��, and v is the velocity defined
w.r.t. the Minkowski metric which is close to g��. Thus
the particle’s Lagrangian is m�v2=2��N �  �; this
leads to the equation of motion

a � �r��N �  �: (8)

How is  determined? For stationary weak fields the
Lagrangian density for  , including a point source of
physical mass M at r � 0, is from the above discussion
and Eqs. (6) and (7),

L  � �
1

8�GL2
~f�L2�r �2� �  M��r�: (9)

Comparing Eqs. (9) and (2) we conclude that  here
corresponds to � of mass M as computed from
AQUAL’s Eq. (3), provided we take ~f � f and L �
1=a0. Whenever jr j � jr�N (�N is the Newtonian
potential of the same mass distribution), the equation of
motion (8) reduces to (5), and we obtain MOND-like
dynamics. For the choice of MOND function (4) the
said strong inequality is automatic in the deep MOND
regime, jr j 	 a0, because ~�	 1 there.

In the regime jr j � a0, ~� � 1 and f�y� � y so that  
reduces to�N . It would seem from Eq. (8) that a particle’s
acceleration is then twice the correct Newtonian value.
However, this just means that the measurable Newton’s
constant GN is twice the bare G appearing in L or in
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Einstein’s equations. It is thus clear, regarding dynamics,
that the relativistic AQUAL theory has the appropriate
MOND and Newtonian limits depending on the strength
of r .

But relativistic AQUAL has problems. Early on
[4,39,42] it was realized that  waves can propagate
faster than light. This acausal behavior can be traced to
the aquadratic form of the Lagrangian, as explained in
Appendix A. A second problem [43,53] issues from the
conformal relation ~g�� � e2 g��. Light propagates on
the null cones of the physical metric; by the conformal
relation these coincide with the light cones of the Einstein
metric. This last is calculated from Einstein’s equations
with the visible matter and  field as sources. Thus so long
as the  field contributes comparatively little to the
energy-momentum tensor, it cannot affect light deflec-
tion, which will thus be due to the visible matter alone.
But in reality, galaxies and clusters of galaxies are ob-
served to deflect light stronger than the visible mass in
them would suggest. Thus relativistic AQUAL fails to
accurately describe light deflection in situations in which
GR requires dark matter. It is thus empirically falsified.

Relativistic AQUAL bequeaths to TeVeS the use of a
scalar field to connect Einstein and physical metrics, a
field which satisfies an equation reminiscent of the non-
relativistic AQUAL Eq. (3).

2. Phase coupling gravitation

The Phase Coupled Gravity (PCG) theory was pro-
posed [4,40,42] in order to resolve relativistic AQUAL’s
acausality problem. It retains the two metrics related by
~g�� � e2 g��, but envisages  as one of a pair of mu-
tually coupled real scalar fields with the Lagrangian
density (our definitions here differ slightly from those
in Ref. [4])

L  ;A � �
1

2
�g���A;�A;� �  �2A2 ;� ;�� �V �A2��

(10)

Here  is a real parameter and V a real valued function.
The coupling between A and  is designed to bring about
AQUAL-like features for small j j. The theory receives
its name because matter is coupled to  , which is propor-
tional to the phase of the self-interacting complex field
! � Ae{ = .

Variation of L ;A w.r.t. A leads to (all covariant deriva-
tives and index raising w.r.t. g��)

A;�;� �  �2A ;� 
;� � AV 0�A2� � 0: (11)

In the variation w.r.t.  we must include the Lagrangian
density of a source, say a point mass M at rest at r � 0
[c.f. Sm in Eq. (7)]:

�A2g�� ;��;� �  2e M��r�: (12)
-6
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The connection with AQUAL is now clear. For suffi-
ciently small j j the A;�;� term in Eq. (11) becomes
negligible, and the other two establish an algebraic rela-
tion between  ;� ;� and A2. Substituting this in Eq. (12)
gives the AQUAL type of equation for  that would
derive from L in Eq. (6).

The PCG Lagrangian’s advantage over that of the
relativistic AQUAL’s is precisely that it involves first
derivatives only in quadratic form. This would seem to
rule out the superluminality generating X� dependent
terms discussed in Appendix A. In practice things are
more complicated. A detailed local analysis employing
the eikonal approximation [42] shows that there are
superluminal  perturbations, for example, when V 00 <
0. However, the same analysis shows that such super-
luminality occurs only when the background solution is
itself locally unstable. This makes the said causality
violation moot.

One way to obtain MOND phenomenology from PCG
is to choose V �A2� � � 1

3"
�2A6 with " a constant with

dimension of energy. Although with this choice V 00 < 0
which makes for unstable backgrounds, we only need this
form for small A; V can take different form for large
argument. Then in a static situation with nearly flat g��
and weak  , Eqs. (11) and (12) reduce to

r2A�  �2A�r �2 � "�2A5 � 0; (13)

r � �A2r � �  2M��r�: (14)

The spherically symmetric solution of Eqs. (13) and (14)
is

A � �&"=r�1=2; d =dr � � $=4&r�; (15)

$ � � M=�"�; & � 2�3=2
�
1�

������������������
1� 4$2

p �
1=2
: (16)

One may evidently still use Eq. (8):

ar � �GM=r2 � � 2M=4�"&r�: (17)

Thus a 1=r force competes with the Newtonian one. For
smallM it starts to dominate at a fixed radius scale rc, just
as in Tohline’s [59] and Kuhn-Kruglyak’s [60] non-
Newtonian gravity theories. Here rc � 2�G"= 2. By
contrast for M � Mc �

1
2�"= , & � 1

2

p
$ and the 1=r

force scales as M1=2 and begins to dominate when the
Newtonian acceleration drops below the fixed accelera-
tion scale

a 0 �  3=�4�G"�: (18)

For ar 	 a0 the circular velocity whose centripetal
acceleration balances the 1=r force is vc � �Ga0M�1=4,
precisely as in MOND. Thus a0 here is to be identified
with Milgrom’s constant a0. We conclude that, with a
suitable choice of parameters, PCG with a sextic potential
083509
recovers the main features of MOND: asymptotically flat
rotation curves and the TFL for disk galaxies.
Specifically, the choice  � 10�8 and " � 1053 erg gives
a0 � 8:7� 10�9 cm s�2, Mc � 8:7� 106M� and rc �
5:2� 1019 cm. Now since rc is larger than the Hubble
scale, the Tohline-Kuhn-Kruglyak 1=r force is compara-
tively unimportant. Hence for M � 107M� we should
have MOND, and for low masses almost Newtonian
behavior. This is about right: globular star clusters at
104 � 105M� show no missing mass problem.

However, the above parameters are bad from the point
of view of the solar system tests of gravity, as summa-
rized in Appendix B. But the gravest problem with PCG
is that it, just as AQUAL, provides insufficient light
deflection [43]. Here again, the conformal relation be-
tween Einstein and physical metric is to blame. TeVeS
incorporates PCG’s Lagrangian density (10) in the limit
of small  in which A becomes nondynamical.

3. Theories with disformally related metrics

The light deflection problem can be solved only by
giving up the relation ~g�� � e�2 g��. It was thus sug-
gested [43] to replace this conformal relation by a dis-
formal one, namely

~g �� � e�2 �Ag�� �BL2 ;� ;��; (19)

with A and B functions of the invariant g�) ;� ;) and L
a constant length unrelated, of course, to that in Eq. (6).
This relation already allows  to deflect light via the
 ;� ;� term in the physical metric. However, it was found
[44] that if one insists on causal propagation of both light
and gravitational waves w.r.t. the light cones of the physi-
cal metric, then the sign required of B is opposite that
required to enhance the light deflection coming from the
metric g�� alone. Thus the cited disformal relation be-
tween metrics, if respecting causality, will give weaker
light deflection than would g�� were it the physical
metric.

This last observation of Ref. [44] has given rise to a
folk belief that relativistic gravity theories which attempt
to supplant dark matter’s dynamical effects necessarily
reduce light deflection rather than enhancing it [34,46–
48]. However, as remarked by Sanders, the mentioned
problem disappears if the term  ;� ;� is replaced by
U�U�, where U� is a constant 4-vector which, at least
in the solar system and within galaxies, points in the time
direction [50]. Specifically Sanders takes
~g�� � e�2 g�� � 2U�U� sinh�2 �.

This stratified gravitation theory is reported to do well
in the confrontation with the solar system tests and to
possess the right properties to explain the coincidence
between a0 of MOND and the Hubble scale [7]. But its
vector U� is an a priori nondynamical element whose
direction is selected in an unspecified way by the cosmo-
-7
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logical background. This means the theory is a preferred
frame theory (although it is reported to be protected on
this account against falsification in the solar system and
other strong acceleration systems by its AQUAL behavior
[50]). This is obviously a conceptual shortcoming which
TeVeS removes, but the latter’s debt to the stratified
theory should be underlined.
III. FUNDAMENTALS OF TeVeS

A. Fields and actions

TeVeS is based on three dynamical gravitational fields:
an Einstein metric g�) with a well defined inverse g�), a
timelike 4-vector field U� such that

g��U�U� � �1; (20)

and a scalar field *; there is also a nondynamical scalar
field + (the acronym TeVeS recalls the theory’s Tensor-
Vector-Scalar content). The physical metric in TeVeS,
just as in Sanders’s stratified theory, is obtained by
stretching the Einstein metric in the spacetime directions
orthogonal to U� � g��U� by a factor e�2* while
shrinking it by the same factor in the direction parallel
to U�:

~g �� � e�2*�g�� � U�U�� � e2*U�U�; (21)

� e�2*g�� � 2U�U� sinh�2*�: (22)

It is easy to verify that the inverse physical metric is

~g �� � e2*g�� � 2U�U� sinh�2*�; (23)

where U� will always mean g��U�.
The geometric part of the action Sg is formed from the

Ricci tensor R�� of g�) just as in GR:

Sg � �16�G��1
Z
g��R����g�1=2d4x: (24)

Here g means the determinant of metric g��. This choice
is made in order to keep TeVeS close to GR in some sense
to be clarified below.

In terms of two constant positive parameters k and ‘
the action for the pair of scalar fields is taken to be of
roughly PCG form,

Ss � �
1

2

Z �
+2h��*;�*;� �

1

2
G‘�2+4F�kG+2�

	

���g�1=2d4x; (25)

where h�� � g�� � U�U� and F is a free dimensionless
function (it is related to PCG’s potential V ). No overall
coefficient is required for the kinetic term; were it in-
cluded, it could be absorbed into a redefinition of + and
thereby in k and ‘. Because* is obviously dimensionless,
the dimensions of +2 are those of G�1. Thus k is a
dimensionless constant (it could be absorbed into the
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definition of F, but we choose to exhibit it) while ‘ is a
constant length.

Because no kinetic + terms appear, the ‘‘equation of
motion’’ of + takes the form of an algebraic relation
between it and the invariant h��*;�*;�, and when this
is substituted for + in Ss, the phenomenologically suc-
cessful AQUAL type action for * appears. We could, of
course, have written this last action directly. The present
route is more suggestive of the possible origin of the
action; for example, Ss resembles the action for a complex
self-interacting scalar field  + exp�{*= � in the limit of
small  . The term �+2U�U�*;�*;� here included in the
scalar’s action is new; its role is to eliminate superluminal
propagation of the * field, a recalcitrant problem in
AQUAL-type theories.

The action of the vector U� is taken to have the form

Sv � �
K

32�G

Z
�g��g�)U��;��U��;)� � 2�1=K�

� �g�)U�U) � 1����g�
1=2d4x; (26)

where antisymmetrization in a pair of indices is indicated
by surrounding them by square brackets, e.g. A��B)� �
A�B) � A)B�. In Eq. (26) 1 is a spacetime dependent
Lagrange multiplier enforcing the normalization Eq. (20)
(we shall calculate 1 later), while K is a dimensionless
constant since U� is dimensionless. Thus TeVeS has two
dimensionless parameters k and K in addition to the
dimensional constants G and ‘. The kinetic terms in
Eq. (26) are chosen antisymmetric not because of any
desire for gauge symmetry, which is broken by the form
of the physical metric anyway, but because this choice
precludes appearance of second derivatives of U� in the
energy-momentum tensor of TeVeS (see next subsection).
The action Sv is a special case of that in Jacobson and
Mattingly’s generalization of GR with a preferred frame
[61].

In accordance with the equivalence principle, the mat-
ter action in TeVeS is obtained by transcribing the flat
spacetime Lagrangian L� �); f

�; @�f
�; � � �� for fields

written schematically f� as

Sm �
Z

L�~g�); f
�; f�

j�; � � ����~g�
1=2d4x; (27)

where the covariant derivatives denoted by j are taken
w.r.t. ~g�). This has the effect that the spacetime de-
lineated by matter dynamics has the metric ~g�). The
appearance of ��~g�1=2 here requires us to specify its
relation to ��g�1=2. In Appendix C we show that

��~g�1=2 � e�2*��g�1=2: (28)

By coupling to matter only through ~g��, the field U� is
totally different from the Lee-Yang 4-vector field with
gravitation strength interaction [62], whose existence is
-8
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ruled out by the equivalence principle tests as well as by
cosmological symmetry arguments [62,63].

B. Basic equations

We shall obtain the basic equations by varying the total
action S � Sg � Ss � Sv � Sm with respect to the basic
fields g��, *, + and U�. To this end we must be explicit
about how ~g��, which enters into Sm, varies with the basic
fields. Taking increments of Eq. (23) we get

�~g�� � e2*�g�� � 2 sinh�2*�U��g
���U��

�2�e2*g�� � 2U�U�cosh�2*���*

�2 sinh�2*�U��g����U�; (29)

where symmetrization in a pair of indices is indicated by
surrounding them by round brackets, e.g. A��B)� �
A�B) � A)B�.
1. Equations for the metric

When varying S w.r.t. g�� we recall that �Sg �
�16�G��1G����g�

1=2�g�� (G�� denotes the Einstein
tensor of g��) while

�Sm � �
1

2
~T����~g�1=2�~g�� � . . . ; (30)

where the ellipsis denotes variations of the f� fields and
~T�� stands for the physical energy-momentum tensor
defined with the metric ~g��. We get

G���8�G� ~T����1�e�4*�U� ~T���U�� �5���� ��;

(31)

where

5�� � +2
�
*;�*;� �

1

2
g�)*;�*;)g��

� U�*;��U��*;�� �
1

2
U)*;) g���

	

�
1

4
G‘�2+4F�kG+2�g��; (32)

 �� � K
�
g�)U��;��U�);�� �

1

4
g+5g�)U�+;��U�5;)�g��

�

�1U�U�; (33)

When varying g�� in Sv we have used Eq. (20) to drop a
term proportional to g��.

2. Scalar equation

Variation of + in Ss gives the relation between + and
*;� [F0 � dF���=d�],

�kG+2F� 1=2�kG+2�2F0 � k‘2h��*;�*;�: (34)

In carrying out the variation w.r.t. * it must be remem-
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bered that this quantity enters in Sm exclusively through
~g��, so that use must be made of Eqs. (29) and (30):

�+2h��*;��;� � �g�� � �1� e�4*�U�U�� ~T��; (35)

In view of Eq. (34) this is an equation for * only, with
~T�� as source.

Suppose we define a function ��y� by

��F��� �
1

2
�2F0��� � y; (36)

so that kG+2 � ��k‘2h��*;�*;��. We may now recast
Eq. (35) as

���k‘2h�)*;�*;)�h
��*;��;�

� kG�g�� � �1� e�4*�U�U�� ~T��: (37)

This equation is reminiscent of the relativistic AQUAL
scalar equation [see Appendix A, Eq. (A1)], albeit with
the replacement g�� � h�� in the left-hand side (l.h.s.)
In quasistatic situations we may replace h�� by g�� so
that Eq. (37) has the same structure as the AQUAL
equation.

3. Vector equation

Variation of S w.r.t. U� and use of Eq. (29) gives the
vector equation

KU��;��
;� � 1U� � 8�G+2U�*;�g

��*;�

� 8�G�1� e�4*�g��U� ~T��: (38)

As mentioned, 1 here is a Lagrange multiplier. It can be
solved for by contracting the previous equation with U�.
Substituting it back gives

K�U��;��
;� � U�U�U��;��

;�� � 8�G+
2�U�*;�g��*;�

� U��U�*;��
2�

� 8�G�1� e�4*��g��U� ~T�� � U�U�U� ~T���:

(39)

This equation has only three independent components
since both sides of it are orthogonal to U�. It thus deter-
mines three components of U� with the fourth being
determined by the normalization (20). Like any other
partial differential equation, the vector equation does
not by itself determine U� uniquely.

C. General relativity limit

TeVeS has three parameters: k; ‘ and K. Here we show
first that in several familiar contexts the limit k! 0, ‘ /
k�3=2, K / k of it corresponds to standard GR for any
form of the function F. Many of the intermediate results
will be useful in Sec. V and VII. We then expand on a
remark by Milgrom that the GR limit actually follows
under more general circumstances: K ! 0 and ‘! 1.
-9
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Whenever a specific matter content is needed, we shall
assume the matter to be an ideal fluid. Its energy-
momentum tensor has the familiar form

~T �� � ~�~u�~u� � ~p�~g�� � ~u�~u��; (40)

where ~� is the proper energy density, ~p the pressure and
~u� the 4-velocity, all three expressed in the physical
metric. We may profitably simplify Eq. (37) in any case
when for symmetry reasons ~u� is collinear with U�. In
order that the velocity be normalized w.r.t. ~g��, we must
take in that case ~u� � e*U� from which follows

~g �� � ~u�~u� � e�2*�g�� � U�U��: (41)

Substituting this in ~T�� allows us to rewrite Eq. (37) as

���k‘2h�)*;�*;)�h
��*;��;� � kG�~�� 3~p�e�2*: (42)

This form is suitable for the analysis of cosmology as well
as static systems.

1. Cosmology

Not only important in itself, cosmology is relevant for
setting boundary conditions in the study of TeVeS in the
solar system and other localized weak gravity situations.
We shall confine our remarks to Friedmann-Robertson–
Walker (FRW) cosmologies, for which the metric can be
given the form

g��dx
�dx� � �dt2 � a�t�2�d!2 � f�!�2�d82

� sin28d’2��: (43)

Here f�!� � sin!; !; sinh! for closed, flat, and open
spaces, respectively.

In applying Eq. (37) we shall assume that the fields *,
+ and U� partake of the symmetries of the FRW space-
time. Thus we take these fields to depend solely on t. Also
since there are no preferred spatial directions, U� must
point in the cosmological time direction: U� � �t� (that
this is possible distinguishes U� from the Lee-Yang field
which is ruled out in FRW cosmology [63]). Obviously
this is a case where ~u� � e*U�; the scalar equation then
takes the form

a�3@t�a3���2k‘2 _*
2� _*� � �

1

2
kG�~�� 3~p�e�2*; (44)

where an overdot signifies @=@t. The first integral is

���2k‘2 _*2� _* �
�k

2a3
Z t

0
G�~�� 3~p�e�2*a3dt: (45)

As is customary in scalar-tensor theories, we have
dropped an additive integration constant; this has the
effect of ameliorating any divergence of _* as a! 0. In
fact we can see that the right-hand side (r.h.s.) of the
equation behaves there as k�~�� 3~p�e�2*t. We observe
that as k! 0 with ‘ / k�3=2, _* will behave as k with
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the argument of � staying constant. Thus regardless of
the form of �, we have _*� k. It is thus consistent to
assume that * itself is of O�k� throughout cosmological
history. This despite the possible divergence of _* at the
cosmological singularity, since the rate of that divergence
is also proportional to k, as we have just seen. Recalling
that kG+2 � �, we conclude that +2 is of O�k�1� in the
cosmological solutions (otherwise � would vary with k
whereas its argument stayed constant).

Let us check whether our assumption that U� � �t
� is

consistent with the vector Eq. (38). The choice U� � �t
�

makes U��;�� � 0. For a comoving ideal fluid U� ~T�� �

�e2* ~�U�. Thus the spatial components of the vector
Eq. (38) vanish identically, while the temporal one in-
forms us that

1 � 8�G�+2 _*2 � 2~� sin�2*��: (46)

Our previous comments make it clear that 1 is of O�k�.
Turning to the gravitational Eqs. (31)–(33) we first note

that in the limit fk! 0, ‘ / k�3=2, K / kg, 5�� and  ��

are both O�k�. It follows that G�� � 8�G ~T�� �O�k�.
Since the difference between ~g�� and g�� is also of O�k�,
it is obvious that ~G�� � 8�G ~T�� �O�k� so that any
cosmological model based on TeVeS differs from the
corresponding one in GR only by terms of O�k�. In
FRW cosmology TeVeS has GR as its limit when k! 0
with ‘ / k�3=2 and K / k.

2. Quasistatic localized system

We now turn to systems such as the solar system, or a
neutron star, which may be thought of as quasistatic
situations in asymptotically flat spacetime (at least up
to subcosmological distances). We shall idealize them as
truly static systems with time-independent metrics of the
form

g��dx�dx� � gtt�xk�dt2 � gij�xk�dxidxj; (47)

and no energy flow. The scalar and vector equations have
a variety of joint solutions. We shall single out the physi-
cal one by requiring the boundary condition that *!
const: at spatial infinity, the constant being just the value
of* from the cosmological model in which our localized
system is embedded. Likewise, we shall require that
U� ! �t

� so that the vector field matches the cosmologi-
cal field at ‘‘spatial infinity’’.

We first show that U� � N<�, with <� � �t
� the

Killing vector associated with the static character of the
spacetime, is an acceptable solution (with N �

��g��<
�<���1=2, U� is properly normalized). Let us

consider the expression g��U� ~T�� � U�U�U� ~T�� ap-
pearing in the source of the vector Eq. (39) for this choice
of U�. Its � � t component is N� ~Ttt � UtU

t ~Ttt� � 0,
while the � � i component is N�gij ~Tjt � Ui�Ut�2 ~Ttt�
-10
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which also vanishes because ~Tjt � 0 (no energy flow).
Turn now to the l.h.s. of Eq. (39). Because U� has only a
(time-independent) temporal component, U�*;� � 0,
and the only nonvanishing components of U��;�� are the
jt ones, and they depend only on the xj. Hence U�i;��

;� � 0

so that the � � i components of the l.h.s. of the equation
vanish. What is left of the � � t component is
K�U�t;��

;� � UtUtU
�t;��

;�� which vanishes by the normal-
ization of U�. Hence U� � N<� satisfies the vector equa-
tion for any k and K. We have not succeeded in proving
that this is the unique solution, but this seems to be a
reasonable supposition.

Now, as k! 0, the scalar Eq. (37) reduces to
��h��*;��;� � 0. Multiplying this by*��g�1=2, discard-
ing all time derivatives, and integrating over space gives,
after an integration by parts and application of the bound-
ary condition at infinity, thatR
�g��*;�*;���g�

1=2d3x � 0. Because for any static
metric, gij is positive definite and, when defined, �> 0,
this equation is satisfied only by * � const: throughout.
But for k! 0, the cosmological model has*! 0. Hence
as k! 0, *! 0 in all the space.

Returning to the full scalar Eq. (37) and recalling that
‘ / k�3=2, it is easy to see that for small but finite k the
gradient of * scales as k. From the last paragraph it then
follows that * � O�k�. These last conclusions are ac-
tually independent of the form of � because its argument
goes to a nonzero constant in the limit k! 0. We recall
[see Eq. (34)] that as k! 0, +2 / k�1. Thus the scalars’
energy-momentum tensor 5�� is of O�k� (recall ‘ /
k�3=2). From the � � t component of Eq. (38) we see
that 1 � O�k� �O�K�. Hence  �� � O�k� �O�K�. In
addition, the term in the gravitational Eqs. (31) propor-
tional to 1� e�4* is itself of O�k�; hence we have G�� �

8�G ~T�� �O�k� �O�K�. Since the difference between
~g�� and g�� is of O�*�, namely O�k�, it is obvious that
~G�� � 8�G ~T�� �O�k� �O�K�. Thus for quasistatic
situations also, TeVeS has GR as its limit when k! 0
with ‘ / k�3=2 and K / k.

In conclusion, the limit fk! 0, ‘ / k�3=2, K / kg of
TeVeS is GR, both in cosmology and in quasistatic lo-
calized systems.

D. Generic general relativity limit

Milgrom [64] has remarked that GR actually follows
from TeVeS in the more general limit K ! 0 and ‘! 1
with k arbitrary. This is easily seen after the change of
variables * � *� � ‘*, + � +� �

p
k+, whereby only

~g�� and Ss are changed:
FIG. 1. The function y��� as relevant for quasistationary
systems 0<�< 1 and for cosmology 2<�<1.
~g �� � e�2*�=‘g�� � 2U�U� sinh�2*�=‘�; (48)
083509
Ss � �
1

2k2‘2
Z �

k+�
2h��*�;�*�;� �

1

2
G+�

4F�G+�
2�

	

���g�1=2d4x; (49)

Thus as ‘! 1 the scalar action disappears and *� de-
couples from the theory. In addition, with K ! 0, the
vector’s action Sv disappears apart from the term with
1. All this means that the r.h.s. of the Einstein Eqs. (31)
retains only the ~T�� and 1U�U� terms. But according to
the vector Eq. (38), from which the terms with differ-
entiated *� and U� have dropped out, 1! 0 because
�1� e�4*�=‘� ! 0. Accordingly, we get the usual Einstein
equations. Since g�� and ~g�� coincide as ‘! 1, we get
exact GR.

In this paper we shall assume that k	 1 and K 	 1
without restricting ‘. Empirical bounds on k and K are
discussed in Secs. IV C and V.

E. The choice of F

Because we have no theory for the functions F��� or
y���, there is great freedom in choosing them. In this
paper we shall adopt, as an example, the form

y �
3

4

�2��� 2�2

1��
; (50)

plotted in Fig. 1. As y ranges from 0 to 1 , ��y� in-
creases monotonically from 0 to unity; for small y,
��y� �

��������
y=3

p
. For negative y the function ��y� is

double-valued. As y decreases from 0, one branch de-
creases monotonically from � � 2 and tends to unity as
y! �1, while the second increases monotonically from
� � 2 and diverges as y! �1. We adopt the second (far
right) branch as the physical one.

What features of the above y��� are essential for the
following sections? The denominator in Eq. (50) is in-
cluded so that � shall asymptote to unity for y! 1 (the
Newtonian limit, c.f. Sec. IV C). The factor �2 ensures
-11
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that the MOND limit is contained in the theory (see
Sec. IV B), while the factor ��� 2�2 ensures there exists
a monotonically decreasing branch of ��y� which covers
the whole of the range y 2 �0;�1� (relevant to cosmol-
ogy, c.f. Sec. VII) and only it.

Integrating Eq. (36) with y��� we obtain (see Fig. 2)

F �
3

8

��4� 2�� 4�2 ��3� � 2 ln��1���2�

�2
; (51)

where we ignore a possible integration constant (which
will, however, be useful in Sec. VII F below). Obviously
F < 0 in the range � 2 �0; 1� (relevant for quasistation-
ary systems) but F > 0 for �> 2 (the cosmological
range). Where negative, F contributes negative energy
density in the energy-momentum tensor (32). Despite
this there seems to be no collision with the requirement
of positive overall energy density (see Secs. Vand VII A).
IV. NONRELATIVISTIC LIMIT OF TeVeS

Sec. III C 2 shows that in quasistatic systems TeVeS
approaches GR in the limit fk! 0, ‘� k�3=2,K � kg. But
in what limit do we recover standard Newtonian gravity?
And where is MOND, which is antagonistic to Newtonian
gravity, in all this? This section shows that with our
choice of F, both Newtonian and MOND limits emerge
from TeVeS for small gravitational potentials, but that
MOND requires in addition small gravitational fields, just
as expected from Milgrom’s original scheme.

A. Quasistatic systems

We are here concerned with a quasistatic, weak poten-
tial and slow motion situation, such as a galaxy or the
solar system. As in Sec. III C 2, quasistatic means we can
neglect time derivatives in comparison with spatial ones.
Let us assume that the metric g�� is nearly flat and that
j*j 	 1. Then linearization of Eq. (31) in terms of the
Newtonian potential V generated by the energy content
1 2 3 4
µ

-8

-6

-4

-2

F

FIG. 2. The function F��� as relevant for quasistationary
systems, 0<�< 1, and for cosmology, 2<�<1.

083509
on its r.h.s. gives gtt � ��1� 2V� �O�V2�. From the
prescription given in Sec. III C 2, U� � ��1� V �
O�V2���t�. It follows from Eq. (22) that to O�*� and
O�V�, ~gtt � ��1� 2V � 2*�. Thus in TeVeS the total
potential governing all nonrelativistic motion is � �
V �*. We should remark that if asymptotically *!
*c � 0, the ~gtt does not there correspond to a
Minkowski metric. This is remedied by rescaling the
time (or spatial) coordinates by factors e*c ( or e�*c ).
With respect to the new coordinates the metric is then
asymptotically Minkowskian. In this paper we assume
throughout that j*cj 	 1; Sec. VII shows this is consis-
tent with cosmological evolution of *.

How is � related to �N , the Newtonian gravitational
potential generated by the mass density ~� according to
Poisson’s equation with gravitational constant G? To re-
late * to �N we first set temporal derivatives in Eq. (42)
to zero which means replacing h��*;� ! g��*;�:

���k‘2g�)*;�*;)�g��*;��;� � kG�~�� 3~p�e�2*: (52)

This equation is still exact. Next we replace g�� !  ��

as well as e�2* ! 1. This is the nonrelativistic approxi-
mation. Further, to be consistent we must neglect ~p com-
pared to ~�; keeping the former would be tantamount to
accepting that V is not small. Thus

r �

�
�
�
k‘2�r*�2

�
r*

	
� kG~p: (53)

This is just the AQUAL Eq. (3) with a suitable reinter-
pretation of the function�. Now comparing Eq. (53) with
Poisson’s equation we see that

k�1�jr*j � O�jr�Nj�; (54)

This will be made more precise below in situations with
symmetry.

We now show that it is consistent to take V � C�N,
with C a constant close to unity (to be determined). The
starting point are the modified Einstein Eqs. (31). With F
as in (51), F < 0 simultaneously with F0 < 0 for 0<�<
1; it follows from Eq. (36) that �jFj< y. Now the F term
on the r.h.s. of Eq. (31) is �2�G2‘�2+4F�kG+2�g�� �

�2�k�2‘�2�2F���g��. Similarly, since *;t � 0 here,
the terms on the r.h.s. involving *;� are of order
8�G+2h��*;�*;�g�� � 8�k�2‘�2�y���g��. Thus by
our earlier remark the* derivative terms in 5�� dominate
the F term, and by Eq. (54) they are of order
8�k��1�r�N�

2. But �r�N�
2 is precisely the type of

source (Newtonian gravitational energy or stress density)
needed to compute the first nonlinear or O��2N� contri-
butions to the metric. As we shall see in Sec.VII, we need
k� 10�2, so that if all we desire is to compute the metric
to O��N�, and� is not very small, then all of 5�� may be
neglected.
-12
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Further, since U� � ��1� V �O�V2���t�, the U
��;��

2

terms in  �� have the form �Cr�N�
2; we drop them for

the same reason that we dropped the O��2N� term in 5��.
It follows that in the weak potential approximation the
spatio-temporal and spatial-spatial components of
Einstein’s equations are exactly the same as in GR be-
cause the term proportional to 1� e�4* can be dropped
by virtue of the slow motion condition which suppresses
the spatio-temporal components of T��. The temporal-
temporal component of Einstein’s equations depends on
1, and is thus another story. From Eqs. (38) and (40) and
the observation that U�*;� � 0,

1 � KU�U��;��
;� � 16�G~� sin�2*�: (55)

With our U� the first term is KUtU
�t;��

;� � KCr2�N �

KC2O�r�N
2�, where by Poisson’s equation r2�N �

4�G~�. Further, as we shall see in Sec. V, * is always
very close to its aforementioned asymptotic value *c
(which is just *’s very slowly varying cosmological
value). Dropping the C2O�r�N

2� contribution for the
same reason as above gives

1 � 8�G�KC=2� 2 sin�2*c��~�: (56)

Substituting this in Eq. (33) and combining the result
with the �1� e�4*c� term in the Gtt equation Eq. (31), we
see that �e�2*c � KC=2�~� replaces the source ~� appro-
priate in the weak potential approximation to GR. By
linearizing the Gtt equation as done in GR, we conclude
that

V � �e�2*c � KC=2��N; (57)

which verifies the claim that V is proportional to �N .
Indeed, since the proportionality constant here must be
identical with C, we have C � �1� K=2��1e�2*c . Since
we shall show in Sec. V that K 	 1 and in Sec. VII that it
is consistent to assume j*cj 	 1, we shall replace C
everywhere by $ � 1� K=2� 2*c. In particular

� � $�N �*: (58)

In summary, Eq. (58), which is subject to corrections
of O��N

2�, quantifies the difference at the nonrelativistic
level between TeVeS and GR, a difference which is in
harmony with our conclusion in Sec. III C 2. We shall use
it until we turn to post-Newtonian corrections. The con-
dition ‘‘� is not very small’’ which we imposed above to
be able to neglect the 5�� contribution to the gravitational
equations is not restrictive. For the Newtonian limit we
shall see that � � 1. And when �	 1 (extreme MOND
limit relevant for extragalactic phenomena), the conse-
quent corrections of O��N

2� (with large coefficient) to V
are entirely ignorable because this potential is then domi-
nated by * in the expression for �, c.f. Eq. (59).
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B. The MOND limit: spherical symmetry

First for orientation we assume a spherically symmet-
ric situation. Then from Eq. (53) together with Gauss’s
theorem we infer that

r* � �k=4���r�N: (59)

In view of Eq. (58) we have

~�r� � r�N; (60)

with

~� � �$� k=4����1: (61)

Consider the case �	 1 for which ��k‘2�jr*j�2� �
�k=3�1=2‘jr*j (see Sec. III E). Eliminating r�N between
Eqs. (59) and (60) and defining

a 0 �
�3k�1=2

4�$‘
; (62)

we obtain a quadratic equation for � with positive root

� � �k=8�$���1�
������������������������������
1� 4jr�j=a0

q
�: (63)

This is obviously valid only when jr�j 	 �4�=k�2a0
since otherwise � is not small. From Eq. (61) we now
deduce the MOND function

~� �
1

$

�1�
������������������������������
1� 4jr�j=a0

p
1�

������������������������������
1� 4jr�j=a0

p : (64)

For jr�j 	 a0 (which is consistent with the above re-
striction since k	 1) this equation gives to lowest order
in K and *c

~� � jr�j=a0: (65)

Thus if we identify our a0 with Milgrom’s constant,
Eq. (60) with this ~� coincides with the MOND formula
(1) in the extreme low acceleration regime. Therefore,
TeVeS recovers MOND’s successes in regard to low
surface brightness disk galaxies, dwarf spheroidal gal-
axies, and the outer regions of spiral galaxies. For all
these the low acceleration limit of Eq. (1) is known to
summarize the phenomenology correctly.

Now suppose jr�j varies from an order below a0 up to
a couple of orders above it. This respects the condition
jr�j 	 �4�=k�2a0. Then Eq. (64) shows ~� to grow
monotonically from about 0:1 to 0:9. Then Eq. (60) is
essentially formula (1) in the intermediate MOND re-
gime. This regime is relevant for the disks of massive
spiral galaxies well outside the central bulges but not
quite in their outer reaches. It is known that the precise
form of ~� makes little difference for the task of predict-
ing detailed rotation curves from surface photometry.

We see that TeVeS reproduces the MOND paradigm
encapsulated in Eq. (1) for not too large values of
jr�j=a0. What happens for very large jr�j=a0?
-13
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C. The Newtonian limit: spherical symmetry

According to our choice of y���, Eq. (50), the limit
�! 1 corresponds to y! 1, that is to say jr*j ! 1.
By Eqs. (59)–(61) we simultaneously have jr�j ! 1 and
~�! �$� k=4���1. Defining the Newtonian gravita-
tional constant by

GN � �$� k=4��G; (66)

we see from Eq. (60) that r� is obtained from r�N by
just replacing G! GN in it. In other words, in the non-
relativistic and arbitrarily large jr�j regime, TeVeS is
equivalent to Newtonian gravity but with a ‘‘renormal-
ized’’ value of the gravitational constant. Now$ is really
a surrogate ofC � �1� K=2��1e�2*c , a positive quantity.
Hence GN is always positive.

But how close are dynamics to Newtonian for large but
finite jr�j=a0? Expanding the r.h.s. of Eq. (50) in the
neighborhood of � � 1 gives

y �
3=4
1��

�O�1���: (67)

We also have by Eqs. (59) and (60) that
y � k‘2jr*j2 � �k3‘2=16�2�jr�j2 where we have
dropped corrections of higher order in �k=4��.
Dropping the O�1��� term in y��� and eliminating ‘
in favor of a0 (with $ � 1) we get

� � 1�
64�4

k4
a0
2

jr�j2
: (68)

Thus to trust the approximation � � 1 we must have
jr�j=a0 � 8�2k�2. Using Eqs. (68) and (61) we obtain,
again after dropping higher order terms in k, that

~� �
G
GN

�
1�

16�3

k3
a20

jr�j2

�
: (69)

Here the factor �G=GN� just reflects the mentioned ‘‘re-
normalization’’ of the gravitational constant; it is the next
factor which interests us as a measure of departures from
strict Newtonian behavior. For example, if k � 0:03 there
is a 5:3� 10�9 fractional enhancement of the Sun’s
Newtonian field at Earth’s orbit where
jr�j � 0:59 cm s�2. This is probably unobservable to-
day. At Saturn’s orbit where jr�j � 0:0065 cm s�2 the
fractional correction is 4:3� 10�5, corresponding to an
excess acceleration 2:8� 10�7 cm s�2 (at this point �
departs from unity by only 0.018 so that Eq. (68) is still
reliable). Although this departure from Newtonian pre-
dictions seems serious, it should be remembered that
navigational data from the Pioneer 10 and 11 spacecrafts
seem to disclose a constant acceleration in excess of
Newtonian of about 8� 10�8 cm s�2 between Uranus’s
orbit and the trans-Plutonian region [65]. It is, however,
unclear whether the correction in Eq. (69), sensitive as it
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is to the choice ofF, has anything to do with the ‘‘Pioneer
anomaly.’’

D. Nonspherical systems

We now consider generically asymmetric systems.
Since any system has a region where � differs from unity
and is variable, Eq. (59) is not the general solution of
Eq. (53) and must be replaced by
r* � �k=4����r�N � r� h�; (70)
where h is some regular vector field which is determined
up to a gradient by the condition that the curl of the r.h.s.
of Eq. (70) vanish.

The freedom inherent in h allows it to be made diver-
genceless. Then by Gauss’s theorem h must fall off faster
than 1=r2 and r� h faster than 1=r3 at large distances.
On physical grounds jr� hj is expected to be of the same
order as jr�Nj well inside the matter. But since the latter
quantity falls off as 1=r2 well outside the matter, the curl
term in Eq. (70) must rapidly become negligible well
outside the system. We thus expect the discussion in
Sec. IV B to apply well outside any nonspherical galaxy
just as it applies anywhere inside a spherical one. The
interior and near exterior of such a galaxy, where r� h is
still important, must be treated by numerical methods
which would be no different than those developed by
Milgrom within the old AQUAL theory [51].

Needless to say, an asymmetric system so dense that
the Newtonian regime (� approximately constant) ob-
tains in its interior, e.g., an oblate globular cluster like !
Centauri, can be described everywhere without an h. For
in the interior h is not needed since even in its absence the
curl of the r.h.s. of Eq. (70) vanishes (approximately). And
� begins to differ substantially from unity only well
outside the system where we know from our previous
argument that any h is becoming negligible. Hence both
Newtonian and MOND regimes of the system may be
described as in Secs. IV B and IV C.

In summary, we see that the extragalactic predictions
of the MOND Eq. (1) are recovered from TeVeS; at the
same time TeVeS hints at non-Newtonian behavior in the
reaches of the solar system, though the effect is sensitive
to the choice of F in the theory.
V. THE POST-NEWTONIAN CORRECTIONS

The upshot of the discussion at the end of Sec. III C 2 is
that in the solar system (regarded as a static system—
with rotation neglected—embedded in a FRW cosmo-
logical background), ~G�� � 8�G ~T�� �O�k� �O�K�.
Here we compute the consequent O�k� �O�K� correc-
tions to the Schwarzschild metric
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g��dx
�dx� � �

�1�Gm=2%�2

�1�Gm=2%�2
dt2 � �1�Gm=2%�4

��d%2 � %2�d82 � sin28d’2��; (71)

that describes the exterior of a spherically mass m, and
determine the post-Newtonian parameters of TeVeS
which we compare with those of GR.

Rather than just extending the Newtonian limit calcu-
lation of Sec. IV C, we start from scratch. First we write
the spherically symmetric and static metric of the Sun
(inside and outside it) as

g��dx�dx� � �e)dt2 � e&�d%2 � %2�d82 � sin28d’2��;

(72)

with ) � )�%� and & � &�%�. Just as for metric (71), out-
side the Sun these functions should admit the expansions
(�i and �i are dimensionless constants)

e) � 1� rg=%� �2�rg=%�2 � � � � ; (73)

e& � 1� �1rg=%� �2�rg=%�2 � � � � ; (74)

where rg is a length scale to be determined (see
Appendix D). The magnitude of the coefficient of the
rg=% term in Eq. (73) has been absorbed into rg; its
sign must be negative, as shown, because gravity is at-
tractive. From the fact that TeVeS approaches GR for
small k and K, we may infer that rg is close to 2G times
the system’s Newtonian mass. This is made precise below.

Taking * � *�%� and ~T�� from Eq. (40), we may
write the scalar Eq. (42) as

%�2e��)�3&�=2��e�)�&�=2%2*0�0 � kGe�2*�~�� 3~p�:

(75)

Here 0 stands for d=d%. The first integral of Eq. (75) is

*0 �
kGe��)�&�=2

�%2
Z %

0
�~�� 3~p�e)=2�3&=2�2*%2d%; (76)

where the integration constant has been chosen so that *
is regular at % � 0.

Supposing the matter’s boundary is at % � R, we define
the (positive) ‘‘scalar mass’’

ms � 4�
Z R

0
�~�� 3~p�e)=2�3&=2�2*%2d%: (77)

Because for a nonrelativistic fluid ~p	 ~�, ms must be
close to the Newtonian mass. In fact, as shown in
Appendix D, ms and an appropriately defined gravita-
tional mass mg differ only by a fraction of O�Gmg=R�
which amounts to 10�5 for the inner solar system. For
% > R we may expand *0 as

*0 �
kGms

4��

�
1

�2
�

�1� �1�rg
2%3

�O�%�4�

	
: (78)
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It is obvious from this that * decreases inward. Its
asymptotic value, as will be explained in Sec. VII, is
positive and of O�k�. The decrement in * down to ‘‘ra-
dius’’ % is, according to Eq. (76), or its integral Eq. (92)
below, of O�kGms=4�%�. In any weakly gravitating sys-
tem, Gms=%	 1 and for strongly gravitating systems
like a neutron star,Gms=% is still well below unity (black
holes require a special discussion which we defer to
another occasion). Thus * remains positive and small
throughout space for all systems, and for the solar system,
in particular. This will have repercussions for the cau-
sality question examined in Sec. VIII.

Since we are not here interested in purely MOND
corrections, we shall take � � 1 in Eq. (78) as well as
in the terms in 5��, Eq. (32), which explicitly involve *
derivatives. The � in the F term of 5�� is not so easily
disposed of because with our choice of F, and indeed with
any viable one, F must be singular at� � 1. If neglecting
the F term in 8�G5�� can be justified, then using Eq. (78)
we may compute from Eq. (32) that for % > R

8�G5tt � 8�G5%% �
kG2m2s
4�%4

�O�%�5�: (79)

Now by the approximation (68) the ratio of the F term in
8�G5�� to these last terms is

8�2�2jF���j%4

k3‘2G2ms
2

�
128�4a20�

2jF���j

3k4jr�Nj
2

�
2

3
�1���jF���j; (80)

which numerically does not exceed 0.04 for �> 0:99.
This justifies Eq. (79) in any region where MOND effects
are totally negligible. However, as pointed out in
Sec. IV C, at Saturn’s orbit � already departs from unity
by 2%. In such cases the contribution of the F term to 5��
must be taken into account, and its post-Newtonian ef-
fects compared with the MOND departure from strict
Newtonian behavior calculated in Sec. IV C. Here we
shall only be concerned with inner solar system dynamics
where � is very close to unity. Because 5tt is dominated
by the derivative terms, the energy density contributed by
the scalar fields is evidently positive.

Clearly in our situation (see Sec. III C 2)

U � � fe�)=2; 0; 0; 0g: (81)

Using this in Eqs. (33) and (38) we find for % > R that

1 �
K�2� �1 � 4�2�rg2

4%4
�O�%�5�; (82)
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 tt �
K�2�1 � 3� 8�2�rg2

8%4
�O�%�5�; (83)

 %% � �
Krg

2

8%4
�O�%�5�: (84)

With this we now turn to Einstein’s Eqs. (31) for all %.
By virtue of U� ’s form here, the tt and %% components
simplify to

�e)�&
�
&00 �

1

4
&02 � 2&0=%

�
� 8�G��2e�4* � 1� ~Ttt

�5tt� � tt; (85)

1

4
&02 �

1

2
&0)0 � �&0 � )0�=% � 8�G� ~T%% � 5%%� � %%:

(86)

First we solve these for % > R where ~T�� � 0. From
Eqs. (73) and (74) it follows that

)0 � rg=%
2 � �1� 2�2�rg

2=%3 � � � � ; (87)

&0 � ��1rg=%2 � ��1
2 � 2�2�rg2=%3 � � � � : (88)

Substituting these together with Eqs. (73), (74), (79) and
(83) in Eqs. (84)–(86), matching coefficients of like
powers of 1=%, and solving the three resulting algebraic
conditions gives to lowest order in k and K

�1 � 1; (89)

�2 �
1

2
�
1

4
K; (90)

�2 �
3

8
�
3

16
K �

kG2ms
2

8�rg
2 : (91)

Using these results we show in Appendix D that rg �
2Gmg�1�O�kGmg=R� �O�KGmg=R�� with mg, the
gravitational mass, defined by Eq. (D4). The relative
correction here is 	 10�5 for the inner solar system. We
also remark that with the values (89)–(91) the energy
density contributed by  tt is positive [see Eq. (83)].

For solar system tests of TeVeS we must know the
physical metric ~g�). According to Eqs. (22) and (81),
~gtt � �e2*�), ~g%% � ~g88=%

2 � g’’=%
2sin28 � e�2*�&,

so we need *. Integration of Eq. (78) in light of
Eq. (89) gives

*�%� � *c �
kGms

4�%
�O�%�3�; (92)

whereupon

e�2* � e�2*c

�
1�

kGms

2�%
�
k2G2m2s
8�2%2

�O�%�3�

	
: (93)
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The integration constant*c is evidently the cosmological
value of * at the epoch in question. This value changes
slowly over solar system time scales, so we can ignore its
drift for most purposes. Thus by taking the advantage of
the isotropic form of the metric (72), and rescaling the t
and % coordinates appropriately, we absorb the factors
e2*c and e�2*c that would otherwise appear in ~g�) so that
it can asymptote to Minkowskian form as expected. With
this precaution one can calculate as if *c vanished. It
must be stressed that this strategy works at a particular
cosmological era.

Accordingly,

~g tt��1�2GNm%
�1�2�GN

2m2%�2�O�%�3�; (94)

~g %% � 1� 2�GNm%�1 �O�%�2�; (95)

GNm � rg=2� �kGms=4��; (96)

� � 1�
Krg

2

8GN
2m2

� 1� K=2; (97)

� � 1: (98)

As previously, GN is defined by Eq. (66). Recalling the
relations between rg, mg and ms (Appendix D), we find
that m � mg�1�O�kGmg=R� �O�KGmg=R��, i.e., in
the inner solar system m and mg differ fractionally by 	

10�5. Setting rg � 2Gmg � 2Gm gives the second form
of �. Our results for � and � are consistent with those
obtained by Eling and Jacobson [66] for the relevant case
of the Jacobson-Mattingly theory.

The � and � are the standard post-Newtonian coeffi-
cients measurable by the classical tests of gravity [54].
They are both unity in GR. The light deflection and time
delay tests are sensitive only to � which is also unity in
TeVeS, so that these effects cannot distinguish between
TeVeS and GR. The perihelion precession of the planets
is proportional to 13 �2� 2�� �� which is unity in GR but
1� K=6 in TeVeS. The measured precession is known to
agree with GR’s prediction to about three parts in 103.
Thus K must be smaller than 10�2. There seems to be no
observation that prevents us from taking K much smaller,
but it must be nonzero so that the U� dynamics can act to
align this vector with the time direction.

The � and � are not the only parameterized post-
Newtonian coefficients. Future work should look at those
coefficients having to do with preferred frame effects, as
well as at the Nortvedt effect, which should not be null in
TeVeS.

VI. GRAVITATIONAL LENSING IN TeVeS

In Sec. V we touched upon gravitational lensing in the
Newtonian regime. Here we show that in the low accel-
eration regime, TeVeS predicts gravitational lensing of
the correct magnitude to explain the observations of
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intergalactic lensing without any dark matter. First by
following the essentially exact method of Ref. [44], we
show this for a spherically symmetric structure; in nature
many elliptical galaxies and galaxy clusters are well
modeled as spherically symmetric.We then use linearized
theory to give a short proof of the same result for asym-
metric systems. Our discussion refers to lensing of both
rays that pass through the system and those that skirt it,
and is thus a generalization of the implicit result about
light deflection in Sec. V in more than one way.

A. Spherically symmetric systems

We adopt the Einstein metric (72); the physical metric
is obtained by replacing e) ! e)�2* and e& ! e&�2* in it.
Consider a light ray which propagates in the equatorial
plane of the metric (which may, of course, be chosen to
suit any light ray). The 4-velocity _x� of the ray (derivative
taken with respect to some suitable parameter) must
satisfy

�e)�2* _t2 � e&�2*� _%2 � %2 _’2� � 0: (99)

From the metric’s stationarity follows the conservation
law e)�2* _t � E where E is a constant characteristic of the
ray. From spherical symmetry it follows that e&�2*%2 _’ �
L where L is another constant property of the ray. Let us
write _% � �d%=d’� _’. Now eliminating _t and _’ from
Eq. (99) in favor of E and L and dividing by E2 yields

�e�)�2*��b=%�2e�&�2*�%�2�d%=d’�2�1��0; (100)

where b � L=E. By going to infinity where the metric
factors approach unity one sees that b is just the ray’s
impact parameter with respect to the matter distribution’s
center at % � 0. This last equation has the quadrature

’ �
Z %

�
e&�)�4’

�
%
b

�
2
� 1

	
�1=2 d%

%
: (101)

Were the physical metric exactly flat, this relation would
describe a line with’ varying from 0 to � as % decreased
from infinity to its value %turn at the turning point and
then returned to infinity. Hence the deflection of the ray
due to gravity is

&’ � 2
Z 1

%turn

�
e&�)�4’

�
%
b

�
2
� 1

	
�1=2 d%

%
� �: (102)

This last integral is difficult. So let us take advantage of
the weakness of extragalactic fields which allow us to
assume that ), & and * are all small compared to unity.
Then the above result is closely approximated by

&’ � �4
@
@�

Z 1

%turn

�
�1� &� )� 4’�

�
%
b

�
2
� �

	
1=2

�
d%
%

����������1
��: (103)

The rewriting in terms of an � derivative allows us to
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Taylor expand the radical in the small quantity &� )�
4’ without incurring a divergence of the integral at its
lower limit. The zeroth order of the expansion yields a
well-known integral which cancels the �. Thus, to first
order in small quantities

&’ � �
2

b
@
@�

Z 1

b
p
�

�&� )� 4*�%d%

�%2 � �b2�1=2

����������1
: (104)

At this point it pays to integrate by parts:

&’ � �
2

b
@
@�

�
lim
%!1

�&� )� 4*��%2 � �b2�1=2

�
Z 1

b
p
�
�&0 � )0 � 4*0��%2 � �b2�1=2d%

	����������1
:

(105)

Since ), & and * all decrease asymptotically as %�1, the
integrated term, being � independent, contributes noth-
ing. Carrying out the � derivative, and introducing the
usual Cartesian x coordinate along the initial ray by x �
��%2 � b2�1=2, we have

&’ �
b
2

Z 1

�1

)0 � &0 � 4*0

%
dx: (106)

A factor 1=2 appears because we have included the in-
tegral in Eq. (105) twice, once with % decreasing to, and
once with % increasing from b. The integral is now
performed over an infinite straight line following the
original ray.

The difference between GR with dark matter and
TeVeS in this respect is that with dark matter one would
have * � 0 and would compute ) and & from Einstein’s
equations including dark matter as source, whereas in
TeVeS one has a nontrivial * and computes ) and & on
the basis of the visible matter alone.

We may simplify the above result by means of
Einstein’s Eq. (86). We shall neglect the &02 and &0)0 terms
because they are of second order, and thus smaller than
)0=% by a factor G �mass=% which amounts to v2, with v
the typical orbital velocity in the system. Using the
residual terms we eliminate &0 from Eq. (106):

&’ � b
Z 1

�1

)0 � 2*0

%
dx� 4�Gb

Z 1

�1
� ~T%% � 5%%

� %%=8�G�dx:

(107)

Now by Sec. IVA, ) � 2V �O�V2� and � � V �*.
Hence with fractional corrections of O�V2�,

&’ � 2b
Z 1

�1

�0

%
dx� 4�Gb

Z 1

�1
� ~T%% � 5%%

� %%=8�G�dx: (108)

The first integral here depends exclusively on the poten-
tial � which determines nonrelativistic motion. That is,
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the observed stellar or galactic dynamics will uniquely fix
this part of &’. For this reason the first term makes the
same predictions for lensing by nonrelativistic systems in
TeVeS as in GR (where � � �N , the last calculated
assuming dark matter). We next show that for nonrelativ-
istic systems the second integral is negligible.

In astrophysical matter the radial pressure ~T%% is of
order ~� times the local squared random velocity of the
matter particles (stars, gas clouds, galaxies). ThusR
~T%%dx � hv2i

R
~�dx with hv2i a suitably averaged v2.

But by Poisson’s equation 4�G~� � r � r�N ��N
0=%

� ~��0=% where we have also used Eq. (60). Thus the
term with the integral over ~T%% is smaller than the first
term in Eq. (108) by a factor of O� ~�hv2i�. In GR (for
which effectively ~� � 1) this factor is no larger than
10�5 for all extragalactic systems which have a missing
mass problem; inTeVeS it is even smaller because typi-
cally ~�	 1 for such systems.

Turning now to 5%% we recall from Sec. IVA that in the
quasistatic situation in question, the F part is dominated
by the term quadratic in * derivatives. Using Eqs. (59)
and (60) we work out that 4�G5%% � �k ~�=8����0�N

0.
Evidently �0 ��=%, and since � � O�v2� and
�k ~�=8���< 1

2 , the contribution of 5%% to the second
term of Eq. (108) is no larger than that coming from ~T%%.

Finally we note that the 1 term in  %% vanishes in a
quasistatic situation because then U� � ��1��N���t.
And from this last formula we estimate j %%j �
1
2K��N

0�2 � K ~�2j��0j=%. Since ~�< 1 and by Sec. V
we must take K < 10�2, it is clear that the contribution
of %% is much smaller than that coming from ~T%%. From
all the above the light ray deflection in TeVeS is

&’ � 2b�1�O� ~�v2��
Z 1

�1

�0

%
dx: (109)

In GR with dark matter the same formula is valid with
O� ~�v2� replaced by O�v2�. Since these corrections are
beyond foreseeable accuracy of extragalactic astronomy,
it is clear that for given dynamics (given�), both theories
predict identical lensing. We shall elaborate on this state-
ment shortly.

B. Asymmetric systems

We now turn to systems with no particular spatial
symmetry. The weakness of the gravitational potentials
typical of nonrelativistic systems entitles us to use line-
arized theory [67] in which the metric is viewed as a
perturbed Lorentz metric:

g�� �  �� � (h�� �
1

2
 �� 

�� (h��; (110)

with j (h��j 	 1. By small coordinate transformations one
enforces the gauge conditions  �� (h��;� � 0; as a conse-
quence to first order in the (h fields
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G�� � �
1

2
 ��@�@� (h��; (111)

so that Einstein’s equations take the form of wave equa-
tions in flat spacetime with the r.h.s. of Eq. (31) as sources.
Of course there are motions and changes in galaxies and
clusters of galaxies, but the associated changes in the
metric are mostly very slow. Thus we confine ourselves
to quasistationary situations where we can drop time
derivatives (but not yet the gti components since galaxies
do rotate). This tells us that

Gtt � �
1

2
r2 (htt

� 8�G� ~Ttt � 2�1� e�4*�U� ~T�tUt � 5tt� � tt:

(112)

The various parts of the source here were explored in
Sec. IVA; from that discussion it follows that

(h tt � �4V � �4$�N: (113)

In regard to the spatio-temporal source components of
Eq. (31), we observe that the ~Tit is an O�v� below ~Ttt
(momentum density is velocity times mass density).
Further, the dominant contributions to 5ti are (hti multi-
plied by +2 jk*;j*;k and by �G=‘2�+4F. Of these the first
dominates (see Sec. IVA), and it is small on the scale of ~�
both because it is of second order (c.f. Sec.V), and because
j (htij 	 1. We can guess that Ui is at most of order (hti (it
would vanish in a truly static situation), and since by
Eq. (56) 1 is below 8�G~� by factors of O�K� and
O�*c�, we see that the 1UtUi term contribution to  ti is
small compared to 8�G~�. Similarly, the Kg�)U��;t�U�);i�

contribution to  ti, being of second order in V;i and first
order in (hti, or first order in V;i and first order in (hti;j (aside
of carrying the small coefficient K), must be very small.
We conclude that the source of the spatio-temporal
Einstein equation can be neglected, so that to the accu-
racy of Eq. (113), (hti � 0.

Things are similar for the spatial-spatial components.
We have already remarked that ~Tij is an O�v2� below ~Ttt.
The 5ij consists of a term quadratic in*;i and one with a F
factor which has been argued to be smaller. Hence 5ij is
small. Again the Kg�)U��;i�U�);j� contributions to ij are
quadratic in V;i and suppressed by the K coefficient, so
they are also small. And the 1, which we remarked above
to be small, is multiplied by two factors (hti, and so is also
small. So by the same logic as above we neglect the
sources of the spatial-spatial components (hij and conclude
that (hij � 0.

Substituting all these results in Eq. (110) we obtain

g�� � �1� 2V� �� � 4V��t��t: (114)

The absence of gti in this approximation makes the situ-
ation truly static (rather than just stationary); hence U� �
��t . Calculating the physical metric from Eq. (22) with
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e�2* � 1� 2* we have

~g �� � �1� 2V � 2*� �� � 4�V �*���t��t; (115)

which is equivalent to

~g ��dx�dx� � ��1� 2��dt2 � �1� 2���ijdxidxj;

(116)

with � � V �* as in Sec. IVA.
Metric (116) has the same form as the GR metric for

weak gravity [67]. Thus in TeVeS just as in GR the same
potential governs dynamics and gravitational lensing.
This accords with the conclusion of Sec. VI A for the
spherically symmetry case. What does this mean in prac-
tice? In GR�’s role is played by the Newtonian potential
due to the visible matter together with the putative dark
matter; in TeVeS � is the sum of the scalar field and the
renormalized Newtonian potential generated by the vis-
ible matter alone. These two prescriptions for � need not
agree a priori, but as we argued in Sec. IV B, nonrelativ-
istic dynamics in TeVeS are approximately of MOND
form, and MOND’s predictions have been found to agree
with much of galaxy dynamics phenomenology. We thus
expect TeVeS’s predictions for gravitational lensing by
galaxies and some clusters of galaxies to be as good as
those of dark halo models within GR. But, of course, the
early MOND formula (1), and TeVeSwith our choice (51)
for F��� both claim that asymptotically the potential �
of an isolated galaxy grows logarithmically with distance
indefinitely. Dark halo models do not. So TeVeS for a
specific choice of F is in principle falsifiable. Dark matter
is less falsifiable because of the essentially unlimited
choice of halo models and choices of their free parame-
ters. One should also remember that gravitational lensing
affords the opportunity to map the � to greater distances
than can dynamics; for unlike the latter, lensing can be
measured outside the gas or galaxy distribution. Using
this � both GR and TeVeS would predict the same
dynamics for stars or galaxies, while disagreeing on the
implied distribution of mass.
VII. COSMOLOGICAL EVOLUTION OF �

A. Persistence of cosmological expansion

This section (where we write * rather than *c) shows
that for a range of initial conditions, FRW cosmological
models with flat spaces in TeVeS expand forever, have
0 � *	 1 throughout, and their law of expansion is
very similar to that in GR. The second point is crucial
for our discussion of causality in Sec. VIII.

First using Eq. (22) we transform metric (43) to the
physical metric

~g ��dx�dx� � �d~t2 � ~a�~t�2�d!2 � f�!�2�d82

� sin28d’2��; (117)
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d~t � e*dt; ~a � e�*a: (118)

In what follows we take the initial moment, convention-
ally written as ~t � 0, at the end of the quantum era with
~a�0� a very small scale; furthermore we take the zero of t
to coincide with ~t � 0. For illustration we assume the
initial conditions _*�0� � 0 (an overdot always denotes
@=@t) and 0<*0 � *�0� 	 1. Hence a also starts off
from a very small scale, a0, and can only increase
initially.

We now show that the spatially flat (f�!� � !) FRW
models in TeVeS persist and cannot recollapse, i.e., ~a has
no finite maximum. As in Sec. III C 1 we have U� � �t�

which causes U��;�� to vanish. As a consequence  �� �

�1�t��
t
� with 1 given by Eq. (46). Since * � *�t�,

Eq. (32) gives 5tt � 2+2 _*
2 �G�4‘2��1+4F���. As men-

tioned in Sec. III C 1, U� ~T�� � �~�e2*U�. Using
g��U�U� � �1 gives us ~Ttt � �1� e�4*�U� ~T��tUt� �

�2e�4* � 1�~�e2*. Substituting all the above in the tt
component of Eq. (31), we get the following analog of
Friedmann’s equation:

_a2

a2
�
8�G
3
~�e�2* �

8�G+2 _*2

3
�
2�

3k2‘2
�2F���

�
8�G
3
~�e�2* �

4�

3k2‘2
���y��� �

1

2
�2F����:

(119)

With the choice (50) for y��� we have �> 0, y���< 0
and F > 0 in the cosmological domain. Thus the scalar
fields contribute positive energy density and the r.h.s. of
Eq. (119) is positive definite (~� < 0 is physically unac-
ceptable). It follows that _a cannot vanish for any t, so that
by our earlier remark it must always be positive. Now the
relations (118) imply that

d~a=d~t � e�2*� _a� a _*�: (120)

We shall show in the sequel that although _* can be
positive, it is always the case that j _*j 	 _a=a. As a con-
sequence d~a=d~t is always strictly positive: in TeVeS a
FRW model with flat spaces cannot recollapse.

The fact that _* is given by an integral over time [see
Eq. (45)] means that in a cosmological phase transition,
where ~� may change suddenly, _* (and of course *) will
nevertheless evolve continuously in time. It follows that F
will also evolve continuously in time [see Eq. (36)]. A
consequence of Eq. (119) is that any jump in ~� will be
reflected in a similar jump in � _a=a�2 or in the square of
the Hubble function ~H � ~a�1d~a=d~t.

B. The proto-radiation era

Contemporary cosmology regards the inflationary era
as preceded by a brief radiation dominated era, the proto-
radiation era, in which the physical scale factor ~a expands
by just a few orders following the quantum gravity re-
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gime. As in any radiation dominated regime, here the
equation of state is ~� � 3~p with both ~p and ~� varying as
~a�4. It follows from Eq. (45) that throughout the era

� _* � �
k

a3
Z t

0
G~�e�2*a3dt: (121)

Because in the cosmological regime �> 2, we have _*<
0 throughout this era. Thus as promised d~a=d~t in
Eq. (120) is positive. Using the constancy of
�G~��1=2a2e�2* we can now write

� _* � �
k�G~��1=2e�2*

a

Z t

0
�G~��1=2adt: (122)

Tentatively assuming that j*j 	 1 throughout the era we
may, according to Eq. (119), bound both instances of
�G~��1=2 from above by �3=8��1=2 _a=a. The consequent
integral is then trivial, and since a0 is essentially zero
we get

�j _*j< �3k=8��� _a=a�: (123)

Thus j _*j< �3k=16��� _a=a�; since k	 1, we have by
Eq. (120) that d~a=d~t � _a.

We can now show that the cosmological evolution
during the proto-radiation era is very similar to that
within GR. For the choice (51) both F and F0 are positive
in the cosmological domain (see Fig. 2). It follows from
Eq. (36) that �2F <��y (recall that y < 0), so the last
term on the r.h.s. of the Friedmann equation is less than
half the second. Next we use y � �2k‘2 _*2 to infer from
Eq. (123) that

4�

3k2‘2
�jyj<

3k
8��

�
_a
a

�
2
: (124)

But this means that the scalar field contributions to the
Friedmann equation are small compared to its l.h.s.
Specifically, to within a fractional correction of
O�k=16� (actually smaller than this because � will turn
out to be large), the relation between ~H and ~� is the same
as in GR.

The fact that the scalar field contributions to the
Friedmann equation are small compared to its l.h.s. also
means that inequality (123) is nearly saturated, as must be
its kin (124). Then

�2jy���j �
1

6
�3k=4��4� _a=a�2a0

�2: (125)

But a= _a is a very short scale (in standard cosmological
models ~H�1 � 10�35 s in the proto-radiation era) while
a�1
0 � 3� 1018 s. Thus �2y��� � 1. Since by Eq. (50)

this is possible only for �� 1, we can sharpen our
earlier conclusion from Eq. (123): j _*j 	 �3k=8�� _a=a.
Now it is even clearer that a and ~a (as well as t and ~t)
are essentially equal, so that the expansion in this era
proceeds just as in GR. Further, integrating this last
083509
inequality gives

j*pr �*0j 	 �3k=8�� ln�apr=a0�; (126)

where the subscript ‘‘pr’’ stands for the end of the proto-
radiation era. Since this era spans just a few e-foldings of
the scale a, the logarithm here is of order unity. Hence *
is almost frozen at its initial value*0, provided this last is
not extremely small. By choosing as initial condition 0<
*0 	 1, as we proposed, but avoiding extremely small
*0, we get 0<*	 1 throughout the proto-radiation era,
as assumed earlier. Thus our assumption was consistent.

C. The inflationary era

The equation of state during inflation is ~p � �~� �
const: Then (45) tells us that

� _* �
k

a3
Z t

tpr
G~�e�2*a3dt��pr

_*pr

�apr
a

�
3
: (127)

The integration constant prefacing the last term is fixed
by the condition that � and _* be continuous through the
proto-radiation inflation divide. It is clear that after rapid
expansion has suppressed the last (negative) term here, _*
becomes positive. Because ~� is constant, we may pull a
factor �G~��1=2 out of the integral. Then by Eq. (119) and
assuming everywhere that e�* � 1 (which we verify
below), we have �G~��1=2e�2* < �3=8��1=2 _a=a both in
and outside the integral. Thus

� _*<
3k _a

8�a4
Z t

tpr
a2 _adt��pr

_*pr

�apr
a

�
3

(128)

�
k _a
8�a

�
1�

a3pr
a3

�
�
3k
8�

�
_a
a

�
pr

�apr
a

�
3
: (129)

where we have used Eq. (123) as an equality as the end of
the proto-radiation era. Thus during inflation

��3k=8��� _a=a�pr < � _*< �k=8��� _a=a�: (130)

The l.h.s. here comes from the last term in Eq. (127) in
light of inequality (123). In the passage from the proto-
radiation era, which involves a phase transition, ~� can
change by a factor of order unity, but then settles down to
a constant. Thus by Eq. (119) _a=a remains at least of the
same order of magnitude as � _a=a�pr. Hence inequality
(130) translates into one of the same form as (123) but
valid during inflation. As in Sec. VII B, this tells us that
d~a=d~t � _a also during inflation. And the argument fol-
lowing inequality (123) can now be repeated to show that
the ��y and�2F terms in Friedmann’s equation amount
to relative corrections of O�k=16� (actually smaller), so
that inflation in TeVeS proceeds very much like in GR.

Repeating the argument leading to Eq. (129) in light of
this last conclusion and the added realization that the a�3

terms disappear very rapidly, we conclude that during the
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_*> 0 part of inflation, inequality (123) is very nearly
saturated. One can then rederive Eq. (125) as in
Sec. VII B. Because the inflation timescale is again very
short compared to a�1

0 , the argument yielding Eq. (126)
can be repeated with slight modifications to show that
during inflation �� 1, and consequently

*i �*pr 	 �3k=8�� ln�ai=apr�; (131)

where a subscript ‘‘i’’ stands for the end of inflation. Thus,
although in standard models inflation can span up to 70
e-foldings of a, the r.h.s. of this inequality is very small
compared to unity. We conclude that inflation manages to
raise * above its value at the end of the proto-radiation
era by a very small fraction of unity. This justifies our
replacement of e�* by unity in deriving Eq. (129).

In what follows we shall denote by ~Hi, �i, *i and _*i

the values of the Hubble parameter, ���2k‘2 _*2�, * and
_*, respectively, at the end of inflation, t � ti, where
a � ai.

D. The radiation era

In the ensuing radiation era the equation of state
switches back to 3~p � ~� with both ~p and ~� varying as
~a�4. Thus the integral in Eq. (45) is

� _* � �
k

a3
Z t

ti
G~�e�2*a3dt��i

_*i

�
ai
a

�
3
; (132)

with the integration constant �i
_*i set so � _* at the

radiation’s era outset equals that at inflation’s end.
Although initially _*> 0, clearly the integral will even-
tually dominate the last term making _* negative
thereafter.

Now according to Eq. (129), �i
_*i < �k=8��� _a=a�i.

Because of the approximate continuity of � _a=a� across
the inflation-radiation eras divide [which itself follows
from the approximate continuity of ~� and Eq. (119)], and
from the fact that � _a=a� falls off no faster than �ai=a�

2 in
the radiation era, Eq. (132) gives

� _*< �k=8��� _a=a�i�ai=a�3 < �k=8��� _a=a�: (133)

On the other hand, from ~�~a4 � const: we can move a
factor �G~��1=2a2e�2* out of the integral in Eq. (132).
Using again �G~��1=2 < �3=8��1=2 _a=a from Eq. (119) (if
we assume provisionally that e�* � 1) both in and out-
side the integral, we have

� _*>�

�
3k _a

8�a2

�Z t

ti
� _a=a�adt��i

_*i

�
ai
a

�
3
: (134)

The integral is a�t� � ai. Hence

� _*> ��3k=8���1� ai=a�� _a=a� ��i
_*i�ai=a�3

>��3k=8��� _a=a�: (135)

In view of Eqs. (133) and (135), inequality (123) is again
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valid here. Because �> 2 we get again from Eq. (120)
that d~a=d~a � _a=a. We may now reproduce inequality
(124) and show as in Sec.VII B that to within a fractional
correction of O�k=16�, the relation between ~H and ~� is the
same as in GR.

Because of this last result, Eq. (133) and the rapid
decay of ai=a in Eq. (135), we may conclude that when
_*< 0, inequality (123) is nearly saturated. We may then

rederive Eq. (125) as before. Now in conventional cos-
mology at redshift z during the radiation era ~H � 3�
10�20�1� z�2s�1, which by previous inference closely
approximates _a=a in our model. We thus obtain
�2jy���j � 5� 10�6k4�1� z�4. Taking k� 0:03 on the
basis of Sec. IV C we see that at the end of the radiation
era (z � 104), �2jy���j � 4� 104 which corresponds to
� � 10. For earlier times� / �1� z�4=5 so that it rises to
1019 at the beginning of the era at z � 1027. Going back to
inequality (123) we see that in the last three e-foldings of
the era *�t� �*i >�8� 10�4 with the previous 50
e-foldings contributing an even smaller decrease. Our
assumption that e�* � 1 was evidently justified if *0 is
taken small compared to unity, yet sufficiently positive to
keep *�t� positive throughout the era.

We shall denote by �r, *r and _*r the values of
���2k‘2 _*2�, * and _*, respectively, at the end of the
radiation era, t � tr where a � ar.

E. The matter era

In the matter era ~p � 0 and ~� varies as ~a�3. Integrating
Eq. (45) gives, c.f. Eq. (132)

� _* �
�k

2a3
Z t

tr
G~�e�2*a3dt��r

_*r

�
ar
a

�
3
: (136)

It is clear that _* continues to be negative throughout the
matter era. Using ~�a3e�3* � const: and setting hence-
forth e* � 1 (whose consistency will be checked below),
we explicitly perform the integral in Eq. (136) from tr to
t:

� _* � �
1

2
kG~��t� tr� ��r

_*r�ar=a�
3: (137)

Integrating the inequality �G~�a3�1=2 < �3=8��1=2a1=2 _a
coming from Eq. (119) we get �G~��1=2�t� tr�< �2=3��
�3=8��1=2. Both together give G~��t� tr�< � _a=4�a�,
which when substituted in Eq. (137) finally gives

� _*> ��k=8��� _a=a� ��r
_*r�ar=a�3: (138)

Now according to Eq. (135) �r
_*r > ��3k=8��� _a=a�r.

Thus at the beginning of the matter era, where a � ar, the
lower bound on the second term on the r.h.s. of inequality
(138) maybe as much as 3 times larger in magnitude than
the first term, yet it decays as a�3 while the first term
cannot do so faster than a�3=2 [see Friedmann’s
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Eq. (119)]. Hence within about one e-folding of a, the first
term comes to dominate the r.h.s., and over most of the
matter era

�j _*j< �k=8��� _a=a�: (139)

From this follows a tighter version of bound (124) which
again demonstrates that the scalar field terms in
Einstein’s equations are rather negligible. The fact that
(139) may be exceeded by a factor of a few early in the
matter era is no reason to exclude that epoch from the just
mentioned conclusion: the rather large � at the end of the
radiation era (�� 10 ) —and a bit beyond—acts to sup-
press that factor. Using by now well worn logic we con-
clude that in the matter era as well, the relation between ~H
and ~� is almost the same as in GR.

Integrating inequality (139) with the use of �> 2 (the
first e-folding’s relatively larger contribution is suppressed
by the larger � which holds sway then), we get

*�t� �*r >��k=16�� ln�a=ar�: (140)

Because the matter era thus far has spanned nine
e-foldings, * has decreased by less than 0.0054 during
this era.

Note that we have not addressed the cosmological
matter problem. In TeVeS the expansion is driven by
just ~�, the visible matter’s density, whereas the observa-
tions require that the source of Friedmann’s equation
which falls off like ~a�3 should be larger by a factor of
perhaps 6. There are at least two possible avenues for
dealing with this embarrassment. First, we have stuck
to a particular F���; possibly a more realistic F��� would
change late cosmological evolution enough to resolve the
problem. Second, we have insisted on * being small. This
is a consistent solution as we have shown, but it is perhaps
not the unique solution. Plainly non-negligible values of
* can affect the Friedmann equation significantly.

F. The accelerating expansion

Lately data from distant supernovae indicate that in
recent times (z < 0:5) the cosmological expansion has
began to accelerate, namely, that d ~H=d~t >� ~H2. The
data are best interpreted in GR by accepting the existence
a positive cosmological constant ) � 2 ~H2today [68]. One
can incorporate such accelerating epoch in the TeVeS
Einstein Eqs. (31) by adding to �2F���—purely phe-
nomenologically—a constant (�-independent) term of
magnitude � )k2‘2=2�. Such constant part, which cor-
responds to the integration constant involved in solving
Eq. (36), leaves y��� unchanged, merely shifting the
curve for F��� in Fig. 2 up. Furthermore, according to
Eq. (62) and the empirical connection a0 �H0 [7], the
added constant is �3k3=16�2, that is very small. It cannot
thus affect the discussion in earlier sections, and in
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particular F continues to make a positive contribution
to the energy both in static systems and in cosmology.

The appearance of the cosmological constant in F has
almost no effect on the value of*. To see why note that)
does not directly affect the scalar Eq. (42), but only the
Friedmann Eq. (119). Hence Eq. (137) is still valid. As the
expansion accelerates, a begins to grow exponentially
with t. Both terms on the r.h.s. of Eq. (137) thus fall off
drastically, and * becomes ‘‘stuck’’ at the value it had
soon after the onset of acceleration. Consolidating the
results of Secs. VII B, VII C, VII D, and VII E with our
conclusion we see that the range of initial conditions
0:007<*0 	 1 insures that *> 0 and e* � 1 through-
out cosmological evolution.
VIII. CAUSALITY IN TeVeS

TeVeS’s predecessors, AQUAL and PCG, permitted
superluminal propagation of scalar waves on a static
background. In the case of PCG with a convex potential
this occurs hand in hand with an instability of the back-
ground, so it is unclear if true causality violation occurs.
How does TeVeS handle causality issues?

The question is complicated here by the existence of
two metrics, g�� and ~g��, whose null cones do not coin-
cide (except where * � 0). Which of the two cones is the
relevant one for causal considerations? We shall take the
view that since common rods and clocks are material
systems with negligible self-gravity, the coordinates to
which the Lorentz transformations of special relativity
refer are those of local orthonormal frames of the physi-
cal metric ~g�� and not of g��. It is by ascertaining that in
no such physical Lorentz frame can physical signals
travel back in time that we shall certify the causal be-
havior of TeVeS. Now Lorentz transformations involve a
parameter, the critical speed ‘‘c’’. We shall identify this
with the speed of electromagnetic disturbances so that, as
customary, the speed of light is the same in all Lorentz
frames. Since we have built special relativity into TeVeS
by insisting that all nongravitational physics equations
(including Maxwell’s equation) take their standard form
when written with ~g��, this procedure is consistent. In
fact, all signals associated with particles of all sorts are
subluminal or travel at light’s speed with respect to ~g��.

There remains the question of whether gravitational
perturbations (tensor, vector or scalar) can ever exit
~g��’s null cone. The analysis given below is quite differ-
ent for tensor and vector perturbations on the one hand,
and scalar perturbations on the other. One point in com-
mon, however, is that causality is guaranteed only in
spacetime regions for which *> 0. As shown in
Sec. VII, there is gamut of reasonable cosmological mod-
els for which * is indeed positive throughout the
expansion.
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A. Propagation of tensor and vector disturbances
is causal

The characteristics of both Einstein’s Eqs. (31) and the
vector Eq. (38) lie on the null cone of g�� because all
terms in them with two derivatives are the usual ones in
Einstein’s and gauge field’s equations. Accordingly, we do
not expect metric and vector perturbations to travel out-
side the null cone of the Einstein metric g��. However,
the interesting question is rather what is the speed of a
wave of this class in terms of the physical metric ~g��?

In the eikonal approximation the wavevector &� of
metric perturbations, that is the four-gradient of the
characteristic function, will satisfy g��&�&� � 0.
Hence Eq. (23) gives

~g ��&�&� � 2�U�&��2 sinh�2*� � 0: (141)

We consider a generic situation where U� may have both
temporal and spatial components. The normalization (20)
implies by Eq. (22) that ~g��U�U� � �e2*. Thus in an
appropriately oriented local Lorentz frame L of the met-
ric ~g�� we may parametrize U� by

U � � e*�1� V2��1=2f1;�V; 0; 0g; (142)

with �1<V < 1. This V is actually the ordinary veloc-
ity (measured by the physical metric) of L w.r.t. the
privileged frame in which the matter is at rest (whether
in cosmology or in a local static configuration), namely,
that in which U� � fe*; 0; 0; 0g. This is evident by con-
sidering a Lorentz transformation from the matter rest
frame to the coordinates appropriate to frame L.

In view of the above, Eq. (141) reduces to

0 � A!2 � 2B�k!�D�
k
2 � �1� V2��?

2; (143)

A � e4* � V2; (144)

B � V�e4* � 1�; (145)

D � �1� V2e4*; (146)

with ! � �&t and �k and �? the spatial components of
&� collinear and normal to Ui (the space part of U�),
respectively. For arbitrary V (143) is an anisotropic in-
homogeneous dispersion relation (! depends on position
through * as well as on direction of the wave vector).
However, in the rest frame of the matter (V � 0), it is
isotropic (though still position dependent through*) with
group (or phase) speed equal to

v0 � e�2*: (147)

The condition for tensor and vector perturbations not
to propagate superluminally (v0 � 1 as judged in the
physical metric) is thus that *> 0, which as we saw, is
satisfied in a wide range of cosmological models (see
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Sec. VII) as well as quasistatic systems embedded in
them (Sec. V). Normally this conclusion could be carried
over to all Lorentz frames without further calculations.
But because TeVeS admits a locally privileged frame,
that in which U� � e*f1; 0; 0; 0g, we investigate this con-
clusion in more detail for any V2 < 1.

Solving Eq. (143) for ! gives

! � ��B�k � S�A�1; (148)

S � �C�2
k
� A�1� V2��2?�

1=2; (149)

C � B2 � AD � �1� V2�2e4*: (150)

The condition *> 0 makes A here strictly positive. It is
possible for the above expression for ! to change sign, so
for given � we must agree to always choose the branch of
the square root that makes ! positive (negative ! with
opposite sign � is the same mode, of course). In what
follows we call the modes with upper (lower) signs of the
square root � ( � ) modes. For the components of group
velocity collinear and orthogonal to Ui, respectively, we
derive

v k � @!=@�k � ��B� CS�1�k�A
�1; (151)

v? � @!=@�? � ��1� V2�S�1�?: (152)

Since these expressions are homogeneous of degree zero
in �, there is no dispersion, but for V � 0 the propagation
is anisotropic. For small * one has analytically

v � 1� 2�1� V cos#�2�1� V2��1*�O�*2�; (153)

where v � �v2
k
� jv?j2�1=2 and # is the angle between �

and Ui. Thus for moderate V the group speed v is sub-
luminal, but obviously formula (153) becomes unreliable
for V close to unity.

For arbitrary V it is profitable, as remarked by
Milgrom, to write v in terms of !. In fact a straightfor-
ward calculation gives

1� v2 � S�2C��2
k
� �2? �!2�; (154)

from which it is clear that v can become superluminal
only if the (isotropic) phase speed !��2

k
� �2?�

�1=2 does
the same simultaneously. Since the latter was found sub-
luminal at V � 0, we have only to ask if there is some
V < 1 for which ! � ��2

k
� �2?�

1=2; we might then sus-
pect there is superluminal propagation for larger V.
Suppose we substitute this last value of ! in Eq. (143)
together with those of A, B, and D. Collecting terms one
can put the condition for the transition to superluminality
in the form

�e4* � 1�
�
V�k �

������������������
�2
k
� �2?

q �
2
� 0: (155)
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FIG. 3. The logarithmic slope <��� as relevant for quasista-
tionary systems, 0<�< 1, and for cosmology, 2<�<1.
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As we saw in Sec. VII, for a broad class of cosmological
models *> 0 throughout the expansion, and as Sec. V
testifies, variation of* in the vicinity of localized masses
embedded in such a cosmology is far short of what is
required to turn the sign of *. It is thus clear that even in
the case �k < 0, condition (155) cannot be satisfied for
V < 1. Hence superluminal propagation of vector and
tensor perturbations is forbidden.

How does v vary with V? When �? � 0, we find
numerically the following behavior. For the � mode
with �k � 0, vk < 0 for all V, and after experiencing a
shallow maximum at modest V, v reaches a minimum at
V very near unity, which is the deeper and farther from
V � 1 the larger j�?=�kj. As V grows further, v rises and
approaches unity for V ! 1. If �k > 0, vk starts positive
for small V but eventually turns negative at a rather large
V which grows with j�?=�kj. As V grows further, v
reaches a minimum, which gets shallower with growing
j�?=�kj, and then begins to rise. At a critical V the
positive �k � mode terminates. However, the � mode
with negative �k takes over onward from the critical V;
it features vk < 0, and for it v rises with V and approaches
unity as V ! 1. The � mode with �k > 0 is always
unphysical.

For �? � 0 and �k < 0 the � mode has vk < 0
throughout, and v rises monotonically with V approach-
ing unity as V ! 1. For �k > 0 that same mode has vk >
0 and v decreasing with increasing V up to a V � Vc �
e�2* at which point both vk and v vanish. The terminated
sequence is continued by the � mode with �k < 0 for
which vk < 0 and v rises monotonically with V from zero
at V � Vc and approaches unity as V ! 1.

B. Propagation of scalar perturbations is also causal

The terms with second derivatives in the scalar Eq. (37)
have a nonstandard form reminiscent of those in relativ-
istic AQUAL (see Appendix A). Do scalar perturbations
propagate across ~g��’s null cone, that is do they travel
faster than electromagnetic waves? We now show that the
answer is negative. In the scalar Eq. (37) in free space we
break * into background and perturbation * �
*B � �*, but ignore perturbations of g�� and U�. For
convenience we shall call *B simply *. To first order in
�* we get [c.f. Eqs. (A2)–(A4)]

0 � �h�� � 2<H�H���*;�� � � � � ; (156)

H� � �h�)*;�*;)�
�1=2h��*;�; (157)

< � d ln��y�=d lny; (158)

where the ellipsis denotes terms with �* differentiated
only once.We have temporarily assumed thatH� is space-
like. Using Eq. (23) we reexpress (156) in terms of the
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physical metric:

�e�2*~g�� � �2� e�4*�U�U� � 2<H�H���*;�� � � � �

� 0: (159)
1. Quasistatic background

For a quasistatic background, e.g., a quiescent galaxy,
H� is indeed a purely space vector in coordinates that
reflect the time symmetry. By (157) H� is normalized to
unity w.r.t. metric g�� and to e�2* w.r.t. ~g��. In a local
Lorentz frame of ~g�� at rest w.r.t. to those coordinates and
appropriately oriented, a generic H� will have the form
e�*f0; s; 0;

��������������
1� s2

p
g, with s the cosine of the angle be-

tween Hi and the positive x axis. Then in a Lorentz frame
moving w.r.t. the first one at velocity V in the positive x
direction

H� � e�*�1� V2��1=2f�Vs; s; 0;
�����������������������������������
�1� s2��1� V2�

q
g:

(160)

In this same frame U� is given by Eq. (142).
In the eikonal approximation (c.f. Appendix A) one

replaces in a Lorentz frame �*;�� � �K�K��* and
drops first derivatives. Again interpreting �&t as ! this
gives a generalization of (143), namely

0 � Â!2 � 2�Bk�k � B?�?�!� D̂�
k
2

��1� V2���2
b
� E�2?� � 2B?V

�1�k�?; (161)

Â � 2e4* � �1� 2<s2�V2; (162)

Bk � V�2e4* � 1� 2<s2�; (163)

B? � �2V<s
�����������������������������������
�1� s2��1� V2�

q
; (164)

D̂ � 2V2e4* � �1� 2<s2�; (165)
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E � 1� 2<�1� s2�; (166)

where �k is the component in the x direction, �? is that in
a direction orthogonal to x in the plane spanning the x
axis and Hi, and �b is the component orthogonal to that
plane (we use vector symbols for components to keep with
previous notation).

For V � 0 (rest frame of matter) there is nothing to
distinguish the x axis from Hi’s direction, so without
restricting generality we may set s � 1 and speak jointly
of �? and �b as a vector �?. Then the group speed v �

j@!=@�j1=2 turns out to be

v0 �
e�2*���
2

p

��1� 2<�2�2
k
� �2?

�1� 2<��2
k
� �2?

	
1=2
: (167)

From Sec. III E we compute the logarithmic slope

<��� � ��� 1���� 2�=�3�2 � 6�� 4�; (168)

whose graph is shown in Fig. 3.
In particular, < � 1

2 in a quasistatic region. In the deep

MOND regime ��y� �
��������
y=3

p
so < � 1

2 , while in the high
acceleration limit ��y� � 1 so < � 0. Consequently, in
the deep MOND regime, v0 � e�2* with equality for
�? � 0. In the Newtonian regime v0 � 2�1=2e�2* for
all �. Finally, in the intermediate regime 2�1=2e�2* �

v0 � �1� 2<�1=22�1=2e�2*, with lower and upper equal-
ity for �k � 0 and �? � 0, respectively. Summarizing,
scalar waves propagate subluminally in the frame in
which the matter is at rest, provided, of course, *> 0.

Since the vector U� defines a privileged Lorentz frame,
the form of the wave Eq. (159) is different in different
frames. Thus we must check explicitly that the sublumi-
nal propagation of scalar waves remains valid in all
Lorentz frames. Since the analytic expressions for general
� are cumbersome, we have done so numerically for small
positive*. For small V the group speed starts at the value
(167). If �k < 0, v for the � mode rises with increasing V
approaching unity as V ! 1. By contrast, if �k > 0, v at
first decreases with increasing V only to reach a mini-
mum which can be quite narrow and deep for �k=j�j near
unity. Beyond the minimum is a critical V past which the
� mode with positive �k is no longer possible. It is
replaced by the � mode with opposite sign of �k, whose
v rises as V rises beyond the critical V, approaching unity
for V ! 1.

In summary, provided *> 0 as guaranteed (see
Sec. V) for the vicinity of masses embedded in the cos-
mologies studied in Sec. VII, no case of superluminal
propagation is observed for scalar perturbations on a
quasistatic background.

2. Cosmological background

Consider now propagation of scalar perturbations in
FRW cosmology. Here U� remains pointed in the time
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direction, and takes the form (142) in a local Lorentz
frame of the physical metric which moves w.r.t. the matter
at velocity V in the x direction. SinceH� is now timelike,
one must change the sign of the argument of the square
root in definition (157). Definition (158) then requires a
switch in sign of the < term in Eq. (156). We may
evidently write*;� � IU� (with I spacetime dependent).
It follows from definition (142) that H� �

p
2U� inde-

pendent of I . Using all this in the modified wave
Eq. (159), we obtain in the said Lorentz frame, after an
eikonal approximation, a dispersion relation of the form
(143) with the coefficients A,B, andC modified according
to the rule e4* ! �2� 4<�e4*. Thus in the frame Lwhere
the matter is at rest (V � 0) we now find the isotropic
group speed, c.f. Eq. (147),

v0 � �2� 4<��1=2e�2*; (169)

so that according to Fig. 3, for *> 0, v0 never exceeds
1=
p
2.

For V > 0 we use the analysis leading to Eqs. (154) and
(155) with the substitution e4* ! �2� 4<�e4* to con-
clude that the passage to superluminality is forbidden.
Numerical plots disclose a behavior of v�V� very similar
to the one for tensor waves. For � type modes with �k <
0, v grows monotonically approaching unity for V ! 1.
For �k > 0 modes there is a minimum of v at some high
V, the narrower and deeper the larger �k=j�j. A mode of
this type exists only up to a critical V beyond the mini-
mum, and is thereafter taken over by the � type mode
whose �k is of opposite sign, and for which v approaches
unity as V ! 1.

C. Caveats

Summing up, propagation of weak perturbations of the
tensor, vector or scalar gravitational fields of TeVeS is
always subluminal with respect to the physical metric.We
have checked this in detail only for waves propagating on
pure cosmological backgrounds or on quasistatic back-
grounds. Furthermore, the analysis looked at perturba-
tions of one field while keeping the others ‘‘frozen’’ at
their background values. A more advanced analysis would
have examined propagation of joint tensor-vector-scalar
modes. This said, no mechanism is evident for the for-
mation of causal loops. This under the condition *> 0
which, as we have seen, is widely obeyed in flat-space
cosmological models and quasistatic systems embedded
therein.
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APPENDIX A: ACAUSALITY IN
RELATIVISTIC AQUAL

This comes about because the wave equation for free
propagation of  deriving from the L in Eq. (6) (cova-
riant derivatives are w.r.t. g��),

�~f0�L2g�) ;�  ;) �g�� ;��;� � 0; (A1)

leads to the following linear equation for propagation of
small perturbations � on the background fg��;  Bg:

0 � �g�� � 2<X�X��� ;�� � � � � ; (A2)

X� � �g�) B;� B;)��1=2g�� B;�; (A3)

< � d ln~f0�y�=d lny: (A4)

In Eq. (A2) the ellipsis stands for terms where � is
differentiated only once.

For a static background X� is a unit purely space vector
X. In an appropriately oriented Cartesian coordinate
system in a local Lorentz frame, it will point in the x
direction. In such frame Eq. (A2) takes the form

0��� ;tt��1�2<�� ;xx�� ;yy�� ;zz���� : (A5)

In the eikonal approximation appropriate for short wave-
lengths, one sets  � Ae{’ and neglects terms with de-
rivatives of A or of k� � ’;�. Then Eq. (A5) gives

! � �kt � ��1� 2<�kx2 � ky2 � kz2�1=2: (A6)

The group speed vg � j@!=@kj1=2 turns out to be

vg �
�
�1� 2<�2kx2 � ky2 � kz2

�1� 2<�kx
2 � ky

2 � kz
2

	
1=2
: (A7)

In the deep MOND regime [~f�y� � 2
3 y
3=2], 2< � 1 while

in the high acceleration limit [~f�y� � y], < � 0. Thus
whatever the choice of ~f, 0< << 1 over some range of
y (acceleration). There vg > 1 if k is not exactly orthogo-
nal to X (distances and times measured w.r.t. metric g��).
On the other hand, light waves travel on light cones of
~g�� while metric waves do so on null cones of g��. The
two metrics are conformally related so their null cones
coincide: light and metric waves travel with unit speed.
Thus most  waves are superluminal, in violation of the
causality principle [see Sec. II B].
APPENDIX B: PROBLEMS FOR PCG IN
SOLAR SYSTEM

The permissible ranges of  and " are strongly con-
strained by the solar system. It can be shown [4] that the
1=r force in Eq. (17) causes the Kepler ‘‘constant’’ of
planetary orbits with periods P and semimajor axes ~a
to vary slightly with ~a:
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4�2~a3=P2 � GM��1� a0~a=& �: (B1)

Assuming M� 	 Mc, we get & � 1
2 so that as we pass

from planet to planet, the constant varies by a fraction
�2� 10�15= . The inner planet periods P are known to
better than one part in 108. Thus  > 2� 10�7.

A stronger constraint comes the perihelia precessions
of the planets. The anomalous force in Eq. (17) generates
an extra precession [4] which in Mercury’s case (excen-
tricity 0.206 and ~a � 6� 1012 cm) amounts to 3�
10�8 �1 arcsec=century. With  � 2� 10�7 this already
amounts to 0.35% of the Einstein precession, which is
measured to about that accuracy. Trying to assume M� >
Mc just aggravates the problem. And we are not at liberty
to raise  further because for fixed a0, Mc scales as  2.
Thus, for example, with  � 3� 10�7, the MOND limit
of PCG would not apply to galaxies with M< 8� 109, a
range including many dwarf spirals with missing mass
problems! Hence the perihelion precession marginally
rules out PCG with a sextic potential.

APPENDIX C: RELATION BETWEEN
DETERMINANTS g AND ~g

From Eqs. (22) and (23) it follows that

~g �)g)� � e2*���� � �1� e�4*�U�U��; (C1)

Viewing this as multiplication of two matrices, we take
the determinant:

~g�1g � e8*DetK�*;U�;

K�*;U� � I � �1� e�4*�U;
(C2)

where I is the unit matrix whose components are ���
while U is a matrix with components U�U�. Now both ~g
and g are scalar densities, so that their ratio must be a true
scalar. Hence DetK�*;U� is a scalar.

In a local Lorentz frame in which the unit timelike
vector U� has components f1; 0; 0; 0g, U’s only nonvan-
ishing component is U0

0 � �1. Therefore, DetK �
�1� �1� e�4*�� � 1� 1� 1 � e�4*. Substituting this
in Eq. (C2) we recover Eq. (28).

APPENDIX D: RELATIONS BETWEEN
ms, mg, AND rg

To determine rg one must delve into the region % < R.
Assuming that the ideal fluid modeling the matter is at
rest in the global coordinates, we may write its 4-velocity
as ~u� � e*U� � �e*�)=2��

t (see Sec. III C). Let us
return to Eq. (85), substitute ~Ttt from Eq. (40) and reor-
ganize the left hand side to obtain

%�2e)�5&=4�%2&0e&=4�0 � �8�GP; (D1)

P � ~�e)�2e�2* � e2*� � 5tt � tt=8�G; (D2)

Integration gives for % > R
-26
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&0e&=4 � �
2Gmg

%2
�
1

%2
Z %

R
�8�G5tt � tt�e

5&=4�)%2d%;

(D3)

mg � 4�
Z R

0
Pe5&=4�)%2d%; (D4)

where the integral in Eq. (D3) does not contain ~� since it
extends only outside the fluid.

How much does the ‘‘gravitational mass’’ mg differ
from the scalar mass ms? For a star the volume integral
of ~p is of order the random kinetic energy, which by the
Newtonian virial theorem is of order of the gravitational
energy �Gmg=R. According to Eqs. (73) and (74), and
(92) this is also the order of the fractional correction toms
or to mg coming from the metric factors and e*. We have

RELATIVISTIC GRAVITATION THEORY FOR THE . . .
083509
not worked out 5tt or tt in the interior, but from Eqs. (79)
and (83) we may estimate that the 5tt and tt=8�G terms
contribute tomg terms of O�kGms

2=R� and O�Krg2=GR�,
respectively. Because we assume small k and K, these last
two terms are obviously subdominant contributions. We
may conclude that mg and ms differ by a fraction of order
Gmg=R which is 10�5 for the solar system.

Let us now calculate &0e&=4 at % � R using Eq. (74) and
(89), and (91) and equate the result to �2Gmg=R2 as
stipulated by Eq. (D3):

rg �
3Krg2

8R
�
kG2ms

2

4�R
�O�rg3=R2� � 2Gmg: (D5)

For the Sun rg=R�Gms=R� 10�5; we see that rg �
2Gmg with fractional accuracy much better than 10�5.
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