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Redshift-space distortions, pairwise velocities, and nonlinearities
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We derive the exact relationship, including all nonlinearities, between real-space and redshift-space
two-point statistics through the pairwise velocity distribution function. We show using numerical
simulations that the pairwise velocity probability distribution function is strongly non-Gaussian at all
scales and explain why this is so. We caution that a commonly used ansatz to model the redshift-space
power spectrum gives rise to an unphysical distribution of pairwise velocities, and show that it is in
general impossible to derive the distribution from measurements of redshift-space clustering. Methods
that claim to do this obtain instead something else, whose properties we derive. We provide a general
derivation of the large-scale limit of the redshift-space power spectrum and show that it differs from
the Kaiser formula by terms that depend on Gaussian and non-Gaussian contributions to the velocity
dispersion of large-scale flows. We also show that the large-scale evolution of velocity fields is not well
described by linear theory and discuss how this impacts the redshift-space power spectrum. Finally, we
stress that using the monopole of the redshift-space power as an indicator of the real-space power
spectrum shape can lead to systematic effects in the determination of cosmological parameters;
nevertheless a simple procedure is able to recover the large-scale real-space power spectrum rather well.
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L. INTRODUCTION

Redshift surveys provide a three-dimensional view of
the large-scale structure of the universe. This view, how-
ever, is somewhat distorted due to gravitationally-
induced peculiar velocities that contribute to galaxy red-
shifts in addition to the smooth Hubble flow. These “red-
shift distortions” complicate the interpretation of galaxy
clustering data from redshift surveys but, on the other
hand, provide a measure of the amount of dark matter in
the universe (which sources peculiar velocities) due to the
induced anisotropy of clustering statistics such as the
power spectrum and the two-point correlation function.

The two main signatures of peculiar velocities on the
redshift-space clustering pattern have been known for a
long time [1-4]. At large scales, galaxies that fall into
clusters look squashed along the line of sight in redshift-
space: infall velocities of galaxies between the cluster and
us (between the cluster and the rest of the universe) add
(substract) to the Hubble flow. This squashing effect leads
to an increase of the clustering amplitude along the line
of sight, thus the power spectrum is enhanced for waves
parallel to the line of sight [3]. At small scales (compared
to the size of virialized clusters) the internal velocity
dispersion elongates clusters along the line of sight, lead-
ing to the so-called “finger of God” effect. This sup-
presses the amplitude of waves parallel to the line of
sight. Therefore, the Fourier space clustering pattern
shows a positive quadrupole anisotropy at large scales
that gradually becomes smaller and eventually negative as
small scales are probed [5].

This picture is captured by the “dispersion model” for
the redshift-space power spectrum
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where P,(k) is the real-space galaxy power spectrum,
B = Q% /b, where b, is the linear bias factor between
galaxies and mass, u = k./k with 2 denoting the line of
sight direction, and o, the pairwise velocity dispersion
assumed to be a constant independent of scale. Here 8
quantifies the squashing effect, o, the velocity dispersion
effect. The particular form for the squashing effect is due
to linear dynamics and linearized real-to-redshift-space
mapping [3] (hereafter Kaiser limit); the velocity disper-
sion factor is that corresponding to an exponential pair-
wise velocity distribution function with no mean
streaming [6]. These effects factorize due to the implicit
assumption that they can be treated as independent. Other
dispersion models assume different dispersion factors
(e.g., [7,8]).

The model in Eq. (1) is clearly oversimplified for a

number of reasons, among them:

(i) Even in the context of linear dynamics from
Gaussian initial conditions the squashing factor
in Eq. (1) must be an approximation. In a random
Gaussian field, the velocity field fluctuates from
point to point, so there is velocity dispersion and
thus the squashing effect must be necessarily ac-
companied by some sort of dispersion effect. This
implies that these effects are not independent.

(i) The dispersion factor introduces a phenomenologi-
cal parameter o, which represents an effective
pairwise velocity dispersion, but whose value can-
not be directly used to constrain models since in
reality velocity dispersion is a function of scale
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and galaxy bias and is not clear how to relate it to
the effective value o, affecting the redshift-space
power spectrum in this model.

The first point implies that some of the dispersion
effect may come from large-scale flows (as opposed to
virial velocities) which can be modeled accurately in
terms of the primordial power spectrum and cosmologi-
cal parameters. This is important because such improve-
ment of the model can add significant constraining power
on theories. The second point also implies that there is
potentially a lot to be gained from finding exactly how the
redshift-space power spectrum depends on nonlinear ef-
fects from velocities and galaxy bias. Some attempts to do
this using the halo model have been proposed [9-11], but
they do not address the first point made above. In addition,
fitting formulas extracted from simulations that improve
on the dispersion model have been developed [12,13],
which although very valuable, they do not provide much
insight into the problem.

Despite its limitations, Eq. (1) has been a popular
model for analyzing redshift surveys to obtain con-
straints on cosmological parameters (e.g., [14,15]). An
alternative to using the dispersion model has been to
simply ignore the dispersion effect, setting o, =0 in
Eq. (1), and argue that on “large enough” scales this is
sufficiently accurate. Many results on cosmological pa-
rameters from measurements of the power spectrum rest
on this assumption (e.g., [16—19]). Although in the past
uncertainties from redshift surveys have been large
enough that such strategies were reasonable, present data-
sets such as Two-Degree Field Galaxy Redshift Survey
and Sloan Digital Sky Survey demand better accuracy;
moreover, one expects to get more information than just
one or two numbers from using the full dependence of the
redshift-space power spectrum on scale and direction.

In this paper we derive an exact formula for the
redshift-space two-point function and power spectrum
in terms of the real-space density and velocity fields,
extending previous work along these lines [20]. We also
show that this formula obeys a modified version of the
“streaming model” which was previously proposed in the
small-scale [2] and large-scale [21] approximations. This
gives a useful characterization of redshift distortions
since real and redshift-space spectra are then related by
the pairwise velocity probability distribution function
(PDF), or its Fourier transform. The challenge is then
how to model this PDF in terms of the linear power
spectrum, cosmological parameters, and galaxy bias.
Some steps in this direction, modeling the first two mo-
ments, have been already given by [22,23] using the halo
model; see also [24] for a modeling of the PDF inspired
by perturbation theory. Recent work [25] provides a
modeling of the pairwise PDF starting from that of halos.
In addition, we show that the model in Eq. (1) leads to an
unphysical distribution of pairwise velocities and that
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inferring the pairwise velocity PDF from redshift-space
clustering is unfortunately not possible in general.
Methods that claim to do this [26—28] recover instead
something else, whose properties we derive here.

In this paper we mostly concentrate in the large-scale
limit, showing using perturbation theory and N-body
simulations that significant corrections to the redshift-
space power spectrum in the Kaiser limit are expected at
very large scales k = 0.01 h/Mpc. In particular, we em-
phasize that the shape of the redshift-space power spec-
trum monopole is not a good approximation to the shape
of the linear real-space power spectrum, even when k =
0.1 h/Mpc. We find that weakly nonlinear effects tend to
suppress monopole power increasingly with k, and more
so for the quadrupole, supporting the argument discussed
above that at least part of the transition from positive to
negative quadrupole with increasing k is due to large-
scale effects, not just virial velocities. We briefly discuss
the implications of these results for the determination of
Q,, and the reconstruction of the real-space power
spectrum.

Past work along these lines was done by [29-31] who
considered whether deviations from the Kaiser limit at
large scales could be due to large-scale velocities.
However, these relied on the Zel’dovich approximation,
which conserves momentum only to linear order, thus
velocity fields are not described accurately enough to
obtain reliable results (see, e.g.,[32]). Studies of the
redshift-space power spectrum using dark matter nu-
merical simulations have shown significant deviations at
large scales from the Kaiser limit before (e.g., [32,33]),
but these deviations have generally been blamed exclu-
sively on virial velocities. In fact, as we discuss here, most
of the large-scale velocity dispersion is due to weakly
nonlinear dynamics and thus has useful cosmological
dependence on (},,, oz, and the shape of the linear power
spectrum that can be used to enhance constraints from
galaxy clustering in redshift surveys.

This paper is organized as follows: In Sec. II we derive
the exact relation between real and redshift-space two-
point statistics, obtain the pairwise velocity PDF in the
dispersion model, and discuss the recovery of the pair-
wise velocity PDF from clustering measurements. In
Sec. III we present the exact result for the redshift-space
two-point correlation function in the case of Gaussian
random fields and compare it to the Kaiser formula. We
also present measurements of the pairwise velocity mo-
ments and discuss why Gaussianity is not a good approxi-
mation even at large scales. In Sec. I'V we derive the large-
scale limit of the redshift-space power spectrum and
discuss how it differs from the standard approach in the
literature. Section V presents results from perturbation
theory and N-body simulations on the weakly nonlinear
evolution of velocity fields at large scales and why it
differs substantially from that of the density field.
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Finally, in Sec. VI we present a simple model for the
redshift-space power spectrum based on the results of
previous sections and discuss the recovery of the real-
space power spectrum. We summarize all the results in
Sec. VIL In paper II we present a calculation of the non-
Gaussian terms in the evolution of pairwise velocities and
their PDE

IL. FROM REAL-SPACE TO REDSHIFT-SPACE

A. Two-Point Statistics in Redshift-Space and
Pairwise Velocities

In redshift-space, the observed radial position s of an
object is given by its radial velocity, which reflects its true
position due to the Hubble flow plus “distortions’ due to
peculiar velocities. The mapping from its real-space po-
sition x is given by

s =x— fu,(x)3 (2)

where f = dInD/dIna (with D the growth factor and a
the scale factor) is a function of (},, alone for open models
or flat models with a cosmological constant [34], the
scaled velocity field u(x) = —v(x)/(F f), with v(x) the
peculiar velocity field, { ~! the comoving Hubble scale,
and we have assumed the “plane-parallel’” approximation
so that the line of sight is taken as a fixed direction
denoted by Z. The density field in redshift-space is ob-
tained by imposing mass conservation, i.e.,

1+ 8,)d’s = (1 + 8)d’x, 3)
and thus we have in Fourier space,

dx

5D(k) + 5s(k) = W

e ik xeifku ™1 + §(x)]. (4)

Note that this derivation is exact, it does not make any
approximations about density or velocity fields; the only
assumption is that we work in the plane-parallel approxi-
mation, which is trivial to overcome by changing k,u, —
(k - ®)(u - ). Furthermore, since we are only using
Eqgs. (3) and (4), there is no reference to the Jacobian of
the transformation from x to s, Eq. (4) is valid even in
regions where there is multistreaming. In other words,
Eq. (4) is taking all mass elements at x and putting them
at the corresponding s, if different x’s give rise to the
same s they will be summed over as necessary.

For the power spectrum, Eq. (4) gives

Br
@2m)?
X[1+ 8], %)

Sp(k) + P(k) = e *rebAnl1 + 5(x)]

where Au, = u,(x) — u(x') and r = x — x’. In configu-
ration space we have
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1+ .fs(S”, s1) = fdl”||<5D(S|| -+ fAuZ)[l + 5(x)]
X [1+ 8(x)]), (6)

where the constraint given by the delta function takes a
pair separated by line of sight distance ry = (x — x') - Zin
real-space to s|| in redshift-space as given by Eq. (2), with
perpendicular separations unchanged s; = r;. Direct
Fourier transformation of this equation yields Eq. (5)
for the power spectrum. We can write Eq. (6) in a form
closer to that of the power spectrum by rewriting the
delta function

drd ) »
L+ &5y, 1) = [ CUEY = 71 + (x)]

X [1+ 8(x)]). )

It is clear from Eqgs. (5) and (7) that the basic object of
interest is the line of sight pairwise velocity generating

Sfunction M(A, r)
[1+ EMIMA, 1) = (2 [1 + 61 + 8], (8)

where we are interested in A = ifk, in Fourier space or
A = ifvy in configuration space. This generating function
can be used to obtain the line of sight pairwise velocity
moments, e.g.,

oM

v(r) = (W)\:oy 9)
M

o (r) = <_M2 >H, (10)

give the mean and dispersion of the line of sight pairwise
velocities [35]. The pairwise velocity probability distri-
bution function P(v) is obtained from the moment gen-
erating function by inverse Fourier transform [36]

Pv,r) = f“’ ;l%e_iy".’]\/l(iyf, ”.

— 00

(1)

Notice that P(v) depends on scale through the scale
dependence of M, and indeed [dvP(v)v = fv,(r),
[dvP(v)v* = f2073,(r), etc. From Eq. (7) and (11) the
redshift-space two-point correlation function can then be
written as

1+ fx(S“, s1) = [_0‘; dr“[l + .f(r)]fP(r” =8 r), (12)

where > = rj + r and s, = r . The physical interpre-
tation of this formula is clear: 7’ maps the pairs at
separation r| to separation s due to relative velocity
—H(ry —s) [see Eq. (2)] with probability P(r —
sy, r). This type of relationship between the real and
redshift-space correlation functions is known as the
streaming model [2], though it is commonly written in
terms of ¢ rather than 1 + &. If P did not depend on
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scale, both formulations are equivalent, when there is
scale dependence (as expected in any realistic scenario)
the first term in the integral for 2P does not give unity, thus
one should use Eq. (12) instead. In fact, this contribution
to &, has a simple physical interpretation: it corresponds
to redshift-space density fluctuations generated by veloc-
ity fluctuations in a uniform (real-space) density, i.e.,
when & = 0. If P did not depend on scale, random pairs
are mapped into random pairs, scale dependence means
that redshift-space correlations are created by taking
random pairs in real-space and mapping them to
redshift-space differently at different scales.

The streaming model has been mostly used at small
nonlinear scales by assuming 2 to be an exponential with
zero streaming velocity and a scale-independent isotropic
velocity dispersion [37]. At large scales, [21] showed that
if one assumes the streaming model in phase space (with
density and velocity fields coupled as in linear dynamics),
it is possible to recover the Kaiser limit for the correlation
function. We will stress in Sec. I'V, however, that the large-
scale limit uses an additional assumption—that s be
much larger than the pairwise velocity dispersion.
Fisher [21] also claims that in the linear regime the
relationship between &, and ¢ can be reduced to the
standard streaming model, i.e., as in Eq. (12) with
1 + &’sreplaced by £’s [see his Eq. (26)]. This is incorrect;
it suffices to say that if this were true all terms in &;
would be proportional to &, in particular, such a result
does not admit redshift distortions generated by corre-
lated velocity fluctuations (where 2 depends on r) in an
unclustered distribution (¢ = 0).

The power spectrum and two-point correlation func-
tion in redshift-space can be written in a similar form

dr
@m)?

Py(k) = e *r[Z(A 1) — 1], 13)

E(sy, s1) = ]Me_w(r"_s')[z(% -1 (14
2T

where A = ifk,, ify respectively and
ZAr)=[1+ &M r). (15)

It is important to note that the two-point correlation
function is affected by redshift distortions for all con-
figurations, even those perpendicular to the line of sight,
since they are coming from different scales through the
dependence of P on ry. It is, however, possible to project
out redshift distortions by integrating along the line of
sight
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£,(ry) = % ﬁw ds)&(sy, r1),

T [21 2
o dr”f( rpt rl>,
= W/P(k)%:l)d%, (16)

which sets v = 0 in Eq. (14). This is only true in the
plane-parallel approximation where the concept of “line
of sight” is applicable. On the other hand, the
redshift-space power spectrum has the nice property, in
the plane-parallel approximation, that transverse modes
are unaffected by redshift distortions (a wave in
the k, direction is uniform in z and thus unperturbed
by the real-to-redshift-space mapping), therefore
Ps(kz =0, kJ_) = P(kl)

Figure 1 shows the pairwise velocity distribution 2 for
pairs separated by distance r along the line of sight,
measured from the very large simulation of the Virgo
consortium [38]. This has 5123 dark matter particles in
a 479 Mpc/h box with a linear power spectrum corre-
sponding to (1,, = 0.3 (including ), = 0.04 in baryons),
Oy, =07, h=0.7, and og = 0.9. Because of the large
number of pairs (in our measurements we use 32 X 10'2
total pairs at scales between 0.1 and 300 Mpc/h) and
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FIG. 1 (color online). The parallel to the line of sight pair-
wise velocity PDF at redshift z =0 for pairs separated by
distance r, measured in the N-body simulations. In the bottom
left panel, the discontinuous at the origin PDF (thin solid line)
corresponds to that given by the dispersion model, Eq. (19)
(ignoring the delta function at the origin). In the bottom right
panel, the narrow distribution (thin solid line) corresponds to
the prediction of linear dynamics, Eq. (44).
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volume of the simulation, the statistical uncertainties are
small enough that we do not plot error bars for clarity. On
the other hand, one must keep in mind that neighboring
points, separated by only 20 km/s, must be highly
correlated.

Note that at most scales r =2 — 100 Mpc/h the distri-
bution is quite skewed (see also the central panel in Fig. 3
below for a plot of the skewness 55 as a function of scale).
This arises as follows: the left tail (v < 0) corresponds
members of pairs approaching each other as they fall into
an overdensity; the right tail (v >0) corresponds to
members of pairs receding from each other as they empty
underdense regions. Most pairs are not inside a void or
falling coherently into a single structure; therefore, the
peak of P is close to v = 0. The asymmetry between the
left and right tail gives rise to a mean infall (v, <O0),
that is, it is more probable to find ‘“‘coherent’ pairs in
overdense than underdense regions.

Perhaps the most significant feature of 2 is that it has
exponential wings at all scales, extending what was
previously derived in the highly nonlinear [39] and
weakly nonlinear [24] regime; the prediction of linear
perturbation theory (shown as the thin solid line in the
bottom right panel) is never a good approximation, not
even in the large-scale limit. The reasons for this are
discussed in detail in Sec. III B. The thin solid line in
the left bottom panel show the results of the dispersion
model, although by assumption it has exponential tails, it
is a poor match to simulations (even though o, is fitted to
the measured redshift-space power spectrum) and repre-
sents an unphysical (discontinuous and singular) distri-
bution of pairwise velocities. See next section for details.

Figure 2 shows P for pairs separated by distance r
perpendicular the line of sight. In this case we define

vy = /v + v} then if P is the PDF for a perpendicular
component of the velocity field (i.e., v, or v, it is the
same by isotropy and even by symmetry) it follows that

Pvy) =2v, [ i j#é\)(vx)é\«m).

UL vJ_—v,zc

a7

For a Gaussian distribution P(v,) = 2mo?)~1/2e~vi/27
and thus P(v,) = (v, /o?)e Y12 In this case P has
zero skewness—by symmetry all odd moments vanish.
Apart from this, the behavior of P is similar to the
parallel case—the distribution is non-Gaussian at all
scales and displays exponential tails. We now turn to a
discussion of P in the dispersion model.

B. The Dispersion Model

It is instructive to recast Eq. (1) in terms of the full
pairwise velocity distribution that it implies. There are
two contributions to the pairwise PDF in this model, one
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given by the squashing factor, the other by the dispersion
factor, with the total PDF being the convolution of both
PDF’s. The Fourier transform of the dispersion factor in
Eq. (1) corresponds to a pairwise velocity PDF that is
exponential, that is

NI
V20,
The squashing factor in the Kaiser limit corresponds to

a delta function PDF (see Eq. (60) below for a derivation).

Performing the convolution of this with Eq. (18) leads to
the pairwise PDF in the dispersion model

Tdisp(v) = (18)

Py NI .
(v) = TCT,,[ + 0_—pr12
2
+ 2 f’" [1— \/Ecr,,aD(u)]} (19)
Tp

where the + sign corresponds to v > 0 and the — sign to
v < 0 (opposite for v-velocities shown in Fig. 1) and ¢,
denotes the velocity-velocity correlation function in lin-
ear dynamics, ¥, = ¢, + vAy (see Egs. (33) and (38)
for explicit expressions). Note that the resulting PDF is
singular at the origin and in addition has a jump disconti-
nuity at v = 0 which is proportional to v,. The bottom
left panel in Figs. 1 and 2 illustrates this result (omitting
the singular term at v = 0) and compares it to the mea-
surements in numerical simulations for a separation of
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FIG. 2 (color online). Same as Fig. 1 but for pairs perpen-
dicular to the line of sight. The thin solid lines in the bottom
panels are as in Fig. 1, the prediction of the dispersion model
(left) and linear dynamics (right).
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r =10 Mpc/h. We have fitted the value of o, as it is
normally done, to the measured quadrupole to monopole
ratio of the redshift-space power spectrum. Despite this
fit to the power spectrum, the resulting PDF does not fit
the simulation results. This is hardly surprising since the
dispersion model Eq. (1) makes unphysical predictions
for the pairwise velocity PDF—see Eq. (19).

C. Recovery of the Pairwise Velocity PDF from
Redshift-Space Two-Point Statistics

Given the relationship between the redshift-space and
real-space correlation function through the pairwise ve-
locity PDE Eq. (12), it is natural to ask whether one can
recover information about the PDF from clustering mea-
surements. The problem is that there is no single PDF
involved in Eq. (12) but rather an infinite number of
PDF’s corresponding to different scales and angles of
the velocities with respect to the line joining the pair. If
there was no scale dependence and anisotropy, all the
PDF’s are the same and Eq. (12) becomes a convolution,
thus, one can find the PDF by deconvolution. In other
words, due to the scale dependence of the pairwise ve-
locity PDE Eq. (12) is not really a convolution; this
implies that the redshift-space power spectrum for modes
parallel to the line of sight is not the real-space power
spectrum multiplied by the generating function M.
Instead, from Eq. (13) we get

P,(k) = P(k) + M(ifk, k)

+ / P Mk, k- QP(g).  (20)

where 374 [recall that M(ifk, r) = [ P(v, r)eivk:du] is
basically the double-Fourier transform of P(v, r)

~ 3
M, p) = (;;3 e P M(A r) — 1]
B ((eMu: — 1)(1 + 8)(1 + &)
a f 1+ ¢ ’
—ipr d3r
X e " (21)

except that we substract the zero mode M(0, r) = 1, thus
M(0, p) = 0. For example, in the Kaiser limit we have

k k2 2
L2 Paylp) + 1S P, 22)

Mifk,, p) — 2f

where Pgs, denotes the density-velocity divergence power
spectrum and Py, is the velocity divergence power spec-
trum. In linear perturbation theory (PT) P = Pgs =
Psg = Pyg, but we will keep the distinction because
weakly nonlinear corrections are significant at large
scales (see Sec. V.)
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If we assume that all pairwise moments have no scale
dependence and are isotropic, which implies that odd
moments vanish (since they must be anisotropic, by sym-
metry odd moments vanish when r-Z=0),
Mifk, p) = [M(ifk.) — 11p(p) and thus P,(k2) =
P(k)M(ifk). Note that in this case M(ifk) is real be-
cause odd moments vanish, however, in general M (ifk)
is complex. By taking (even number of) derivatives with
respect to A of P (vV—A%2)/P(v—A%) = M(A) one can
generate all (even) moments and thus find the (symmetric
by assumption) PDF by inverse Fourier transform.

Galaxy redshift surveys show that P (k2)/P(k) is very
close to a Lorentzian, and this has been interpreted as
evidence for an exponential pairwise velocity PDF
[26,27]. However, realistically one cannot neglect anisot-
ropy, since we know that odd moments must be nonzero,
in particular, there are infall velocities (v, # 0) and
skewness. The infall velocities are small compared to
the dispersion at small, nonlinear scales, however the
skewness is expected to be significant except in the highly
nonlinear regime —see Fig. 3 below [24,40-42]. By con-
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FIG. 3 (color online). Moments of pairwise velocities parallel
to the line connecting the pair as a function of scale. Top panel:
pairwise dispersion o, (squares) as a function of scale, its
connected piece o, (solid line), and the mean infall v,
(triangles). The dashed line denotes the predicted o, in linear
dynamics. Middle panel: dimensionless measure of infall
(lv121/ o5, triangles) compared to the skewness of the pairwise
velocity PDF (squares); the skewness dominates at most scales.
Bottom panel: kurtosis as a function scale, note that it does not
vanish at large scales and s, > 1 at all scales; the pairwise
velocity PDF is strongly non-Gaussian at all scales, see Fig. 1.
For reference, an exponential distribution has s3 = 0 and s, =
3.
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struction, since power spectra are functions of only k> and
k2 by statistical isotropy, using P,(k2)/P(k) as a generat-
ing function (with kX = —iA) only generates even mo-
ments and thus a symmetric answer for its PDE even if
the actual PDF is asymmetric [43].

To see what this method actually recovers we go back
to Eq. (20) and write explicitly that the redshift-space
power spectrum depends on the magnitude of k and &,

Pk k) = P(R) + Sk, B) + F(=ifk, —)]
1 ~
+ [ a5 IMirk.k )

+ M(~ifk,, —k — q)1P(q) 23)

that is, we average together waves with opposite wave-
vectors. In this method the moment generating function is
identified with the ratio P (kZ)/P(k) (where we must re-
place k by —iA in our convention) thus it becomes

_ r
G =1+ fW“ + €]
v [ MAr) — 1]e 2+ [M(—A,r) — 1]
2P<\/—T>

(24)

It is easy to check that if M(A) does not depend on r,
G(X) = M(A) and thus one can recover by inverse Fourier
transform of G(A) the PDF of pairwise velocities, as
discussed above. However, in the realistic case with scale
dependence and anisotropy, the inverse Fourier transform
of G(A) does not give the actual PDE To illustrate this, let
us calculate the first two nonvanishing moments (second
and fourth) of this symmetric “pseudo-PDF”

2 3r
<%>A—O = [%[0%2(") - 2Z'U12(r):”:1 + é—'(r)]’ (25)
4 3r
<%>A—O - ft‘l/_g[m(é)(r) — dzm(r) + 6220%,(r)

—43v (][ + £(r)], (26)

where £ = V! [ d*ré&(r) is the average of the correlation
function, and the integrals over the volume V are cutoff at
some large scale (depending on the size of the survey and
the practical implementation of the method). In Egs. (25)
and (26) m(132) denotes the third moment of the actual PDF

and m(142) its fourth moment. It is clear from these equa-
tions that the moments of this pseudo-PDF are weighted
versions of combinations of several moments of the true
PDE so their value is not straightforward to interpret.
From Eq. (25) we see, for example, that the effective
value of the velocity dispersion o2 picked up by this
method is given by
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&3 2 1 2
o2 = V—gu + f(r)][g A0 + 5t - grﬁlz(r)}
27)

where we used that by symmetry of,(r) = o’ (r) +
v[aj(r) — a1 (r)] and v, (r) = vo1,(r), with v = z/r.
Therefore, we see that the effective value of the velocity
dispersion is a weighted version of the underlying veloc-
ity dispersion minus a contribution due to the mean
streaming (recall in our convention here #;,(r) > 0, these
are u-velocities), therefore, one expects this method to
yield a biased low value of the weighted [by r2(1 + £)]
mean of the dispersion if not corrected for infall, as
stressed by [44] and more recently in [28]. Note however
that [28] also interprets the pseudo-PDF as the actual PDF
of pairwise velocities, and they do not include skewness
into their treatment.

D. The pairwise velocity PDF in terms
of its building blocks

We now discuss how to use cumulant expansions to
evaluate the pairwise moment generating function or
Z(A, r) in Eq. (15) in terms of its building blocks, the
cumulants. The starting point is the property between the
moment M(j) and cumulant C(j) generating functions
for a set of fields which we group together in a vector field

A
M (§) = (4) = exp(el). = expC(j), (28)

where A = {A,, ..., A,} and similarly for j. Derivatives of
C generate all the connected correlation functions. By
taking derivatives with respect to appropriate compo-
nents of the vector j, it follows, in particular, that

(ej'A1A2> = <ej]A]A2>c exp(elel >w (29)

(e/1M1A,A3) = [(e/1M1AA3), + (e/"M1Ay) (/1M1 A3), ]
X exp(e/14r),. (30)

Using j, = A, A; = Au,, A, = 6(x) =6, and A3 =
S8(x’) = &', this leads to the exact expression

Z(Ar) = exp(ee),[1 + (145:5), + (eMdug),
+ (M) (M), + (M55, ] (31)

Note that the overall factor in this expression is the
moment generating function for the line of sight velocity
differences, and it is a volume-weighted quantity (as
opposed to the pairwise velocity PDF which is mass
weighted by densities at x and x’). This velocity-
difference PDF is not sensitive to galaxy biasing, since
it does not depend on the density field and even if there is
velocity bias inside dark matter halos this is a small effect
[45—47], and halos are in addition suppressed by volume
weighting due to their small size. Therefore, the velocity-
difference PDF depends on weakly nonlinear dynamics
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and thus can be modeled (almost) exclusively in terms of
cosmological parameters.

It is straightforward to evaluate Eq. (31) in the linear
regime for Gaussian fluctuations. In this case, the velocity
is proportional to the density, whose only nonzero cumu-
lant is the second and thus,

ZgAhr)=[1+ &) + /\(Au (8 +8) + AX(Au.5)

X (Au_8")] exp (Au2> (32)

Notice that even in this case, the resulting expression is
nonlinear in the amplitude of correlation functions and
does not involve terms of the same order in linear per-
turbation theory. Even though fluctuations are assumed to
obey the linear dynamics, the nonlinear nature of the
redshift-space mapping leads to a somewhat more com-
plicated picture. We will explicitly evaluate Eq. (32) in the
next section. Nonlinear effects due to dynamics lead to
significant deviations from the predictions of Eq. (32),
even at large scales; we discuss this below. An evaluation
of Eq. (31) is given in paper IL

III. THE REDSHIFT-SPACE POWER SPECTRUM
AND CORRELATION FUNCTION
IN LINEAR DYNAMICS

A. Pairwise velocity moments

We now give an explicit evaluation of Eq. (32). Using
symmetry considerations, the velocity correlation func-
tion can be written as

(ui(x +r/Qu;(x —r/2)) =, (r)d;;
+Lay(r) =

v (r)] ’;Z", (33)

where ¢(r) and ¢, (r) are the velocity correlation func-
tions parallel and perpendicular to the line of sight,
respectively. They are related to the velocity divergence
power spectrum Py,(k) through [48]

_ [Pog(k) ji(kr)
Wo(r) = f DN (34)
Uy (r) = f P",fz(k) [jo(kr)_ “,(fr)}d*k (35)

where j,(x) is the usual spherical Bessel function, and we
assumed a potential flow, which implies () =
d(riy1)/dr and i, (r) = ¢ (r). The variance of velocity
differences reads

2
i) =2~ uu + 5000)), 0

which leads to the volume-weighted velocity-difference
moment generating function
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)\2
Zo(Ar)= expT(Au@
2
= exp/\2(o-5 — g () + %Alp(l‘)), (37)
r

where

Pyq(k)

AY(r) = 1 () — iy (r) = [ kndk (38)

and the one-dimensional linear velocity dispersion o2 is
given by

o3 f Poo®) oy, (39)
3

Note that as r— 0, ¢(r) = ¢ (r) = 0%, and then
Zy(A,0) = 1, as expected from its definition. On the other
hand, as r — oo, ¢y (r), ¢, (r) — 0, and then Zy(A, o0) =
exp—A2a?. To evaluate the prefactors in Eq. (32), we use
that [see Eq. (9)]

(Au,[8(x) + 6(x)]) = vi(r)[1 + £(r)]
_ Psy(k) .
= Zr f i Ji(k rd®k,  (40)

and

(Au 6(x)) = (Au o(x")) = %vlz(r)[l +é(] @D

then
Zo=[1+ f(r)][l T v+ 2 vn(r)[l + f(r)]}

X eprz(au b +5 A«p(r)) 42)

B. The Failure of Gaussianity

It is important to note that, although the large-scale
limit of vy, is well described by linear dynamics (see,
e.g., [22,49]) the same is not true for the pairwise disper-
sion; indeed we have [6 = 6(x), 6§’ = 5(x')]

o (1 + &) = (Au (1 + 8)(1 + &)
= (Auz2>(1 + &)+ (AuZZ(S + 68))
+ (Au,286'),. 43)

In linear dynamics, Gaussianity implies that the last
two terms vanish; however, in reality the third moment
term contributes a constant in the large-scale limit (r =
|x — x'| — o0) that adds in quadrature to the contribution
of the first term (we evaluate this term in paper II).
Therefore, linear theory never gives a good approxima-
tion to the second moment of pairwise velocities. That
there are non-Gaussian corrections should be of no sur-
prise since pair weighting means the second moment of
pairwise velocities involves up to fourth moments [24];
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the interesting aspect here is that even in the large-scale
limit non-Gaussian terms persist, e.g., (u,>8) contributes
a constant at large scales.

The top panel in Fig. 3 illustrates this point, where o,
is shown as a function of scale for the N-body measure-
ments (square symbols) and linear theory (dashed lines).
All quantities in this figure refer to velocity components
parallel to the separation vector of the pair. It is also
important to note that the dependence of o, on scale is
opposite in the linear case (decreasing at smaller scales)
than in the simulations (though at scales r < 1 Mpc/h,
o, starts decreasing in the N-body results). This is also a
feature of the Gaussian restriction of linear dynamics, as
we shall discuss in paper II, and it implies that the
dispersion effect on the two-point correlation function
or power spectrum will be significantly underestimated.
Physically, in the Gaussian case as r is decreased the
velocity field is more correlated and thus (Au.?) de-
creases; since no correlations between density and veloc-
ity squared are incorporated in linear theory, it is
impossible to see that the velocity of pairs in regions of
larger overdensity are fluctuating more; this is described
by the non-Gaussian third and fourth terms in Eq. (43).

The other panels in Fig. 3 show the importance of non-
Gaussianity of the pairwise PDE The central panel com-
pares the skewness s3 to the dimensionless measure of
infall, vy,/0f,, where o, is the connected second mo-
ment shown by a solid line in the top panel. This shows
that the skewness is more important than infall at most
scales (and by a large factor at scales where infall is most
important). Therefore, modeling the pairwise PDF with
infall but no skewness, as it is often done (see [21] for an
exception), is not a good approximation. Finally, the
bottom panel shows the kurtosis s, as a function of scale,
this quantifies that the pairwise PDF is strongly non-
Gaussian (s, > 1) at all scales, and it is basically a mani-
festation of the exponential wings seen in Figs. 1 and 2 at
all separations.

Why is the Gaussian limit of the pairwise velocity PDF
never reached at large separations? The reason is that the
relevant quantity is the (density-weighted) difference in
velocities. At a given separation r the velocity difference
does not receive contributions from modes with wave-
lengths much larger than r, since those give the same
velocity to x and x’. For wavelengths smaller than r the
contribution of modes is down-weighted only by k!
(independent of r in the r — oo limit); therefore, even at
large separations one is sensitive to nonlinearities. In
other words, at large separations the velocities are uncor-
related and thus the pairwise velocity generating function
factorizes into individual particle velocity generating
functions. These are sensitive to nonlinearities, i.e., there
is no “large scale” in that problem. Thinking in terms of
the halo model, at large scales the pairwise dispersion is
due to particles in different halos, each of which has its
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own (independent) one-point dispersion due to virial
(“nonlinear’”) and halo (““linear’’) motions, these contri-
butions will add in quadrature to give the full dispersion
(see [22]). We caution, however, that this split is not
straightforward; halo motions are not well described by
linear theory (their pairwise PDF in the large-scale limit
is not exactly Gaussian, see [50]).

In [24] it is argued that exponential tails in the pair-
wise PDF are generated by pair weighting; although this
is in part important, it is not the whole story. We show in
paper II that the velocity-difference PDF (which is vol-
ume weighted) also has exponential tails in the large-
scale limit, for the reasons discussed above. Of course,
pair weighting helps build non-Gaussianity and it is
responsible for the deviations in o, from linear theory
at large scales.

C. The Exact Result for Gaussian Random Fields

Even though Gaussianity is not a good approximation
to describe the statistics of pairwise velocities, it is in-
structive to discuss the redshift-space correlation func-
tion in the Gaussian case, both as a starting point for
more accurate calculations and to discuss the regime of
validity of the Kaiser limit.

The only assumptions in deriving Eq. (42) are that
fluctuations are Gaussian and velocity flows are potential,
i.e., there is no assumption about the amplitude of fluctu-
ations (in practice, of course, Gaussianity follows only if
fluctuations are vanishingly small). It is easy to write
down explicitly the pairwise velocity PDF obtained
from using Eq. (42) in Eq. (11),

B 1 —v? AP
SN =Ty Ve ssan) | Fa

1w\ v,
1 vl v (R S

This is not a Gaussian distribution (except when v, = 0
at large or small scales, or at all scales for separations
perpendicular to the line of sight), although close to its
peak it is well approximated by a Gaussian centered at
v = fv,. Note, however, that the velocity-difference
PDF is Gaussian, being the prefactor outside the square
brackets. The second and higher cumulants of the pair-
wise velocity PDF are, e.g.,

&E—1
T<U>2,

1-3
W) = %+ e

vy,
(45)

V),

Wh, =

where (v) = fvy,, and 0% = f?>(Au?) is the variance of
the distribution of velocity differences. The non-
Gaussianity is induced solely by the nonlinearities in
the mapping from real-to-redshift-space. The two-point
function can be written using Eq. (12)

=206+ A0,
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00 dr“e_l/zxz
I+ ‘fs(SH’ s1)= f_mm[l + &(r)]
2 _
X |:1 + xup, + uM%z(l + 5)}

(46)

where

S | — Ui 2 24 2
T Reayn M@ DT

47

This is the exact result in the Gaussian limit and has been
obtained before by Fisher ([21], Eq. 20) by integrating the
four-dimensional joint Gaussian PDF for 6(x), &(x'),
u_(x), and u_(x'). See also [51,52]. The method described
in Sec. II D is an alternative way of obtaining the same
result with considerably less algebra, and the advantage
that also holds in the non-Gaussian case provided
the correlators in Eq. (31) can be calculated. The analo-

gous result for the power spectrum is (v = z/r, k| =

km, rp =rvl —1?)

Pk u) = # ﬁ:o r*dr ﬁl dvdy(k r)[cos(kruv)
X [Zg (A, r,v) — 1]
+ sin(kruv) Z89(A, r, v)], (48)

which involves a 2D rather than 1D integration. Here
Z¥4(A, 1, v) corresponds to the term proportional to A
in Eq. (42), and ZZ*"(A, r, v) is the rest. In order to obtain
power spectrum multipoles it is sometimes more conve-
nient to calculate first multipoles of the correlation func-
tion

b =00 [\ gL, @)

where L, denote the Legendre polynomials, and then
using the plane-wave expansion (u = k,/k, v = z/r)

e Tikr = Z(‘N(zf + Dje(kr)Lo(w)Le(v),  (50)
=0

obtain from them the power spectrum multipoles

(

Y4 0
P =0 [T arnen. on

2

In this way, a 3D numerical integration gives both the
redshift-space correlation function and power spectrum.

Figure 4 shows the result for the redshift-space corre-
lation function &(s), s;) in the exact Gaussian case
Eq. (46) (solid lines) and the Kaiser limit (dashed lines),
Eq. (61) below. Notice that there are significant deviations
even at large scales, predominantly at small s, ; we ex-
plain why this is the case in Sec. IV below. Since the
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correlation amplitude is so much smaller in this region
compared to small s, when multipoles are calculated
integrating along fixed s the results are close to their
Kaiser limit values. It is apparent that the qualitative
behavior of the corrections are to make the contours
less squashed, as expected from the effects of the velocity
dispersion. This is evident in Fig. 5 which zooms into
small scales; the dispersion effect is obvious (the quad-
rupole has opposite sign from that at large scales). Note
that this happens at very small scales because the pair-
wise dispersion decreases at small scales (see dashed line
in Fig. 3), thus one needs to go to tiny scales before s
becomes smaller than the pairwise dispersion. In addi-
tion, one can see that the Gaussian result is not close to
the Kaiser limit even when the amplitude of the correla-
tion function is much smaller than unity, e.g., see &, =
0.002 in the left panel in Fig. 4.

As shown in Fig. 3 and discussed above, assuming
Gaussianity is not a good approximation, therefore these
results are not a substantial improvement over the Kaiser
limit, and we do not show corresponding results for the
power spectrum. What is interesting here is that it gives
some idea of how to incorporate the effects of large-scale
velocity dispersion; we will come back later to this when
we develop a simple approximation to the redshift-space
power spectrum. We now turn to a discussion of the
assumptions behind the Kaiser limit and show how our
approach differs from the standard derivations of it in the
literature.

30

25

T T T T
o
: 1=
S
)

\
v
\
\ v
\ 1
.
\
\
\
v \
v \
' \
\
v
\ \
\ \
\ Ay
v \
'

'
'
=
<]
=
'
'
\
[
y
H
}

s [Mpc/h]

o\

PRI S NI S N L SN BTN NN ST N e [T S N A AN R AL W |

5 10 15 20 25 30
s | [Mpc/h]

o T

FIG. 4 (color online). Contours of &.(sy, s;) for the Exact
Gaussian result (solid line) and the Kaiser limit (dashed line),
for a flat ACDM cosmological model (Q),, = 0.26, o3 = 0.9,
Q, = 0.04, h = 0.7) with linear bias b, = 1.
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FIG. 5 (color online). Same as Fig. 4 but at small scales. Note
the dispersion effect: a Gaussian random field does show
“fingers of God” even though the velocity dispersion decreases
monotonically towards small scales (see dashed line in Fig. 3).

IV. THE LARGE-SCALE LIMIT

A. Derivation

The nontrivial part of Eq. (46), and Eq. (12), in gen-
eral, is that as one integrates along r| one is integrating
over a different PDF due to scale dependence and anisot-
ropy. The relationship between &, and &, v, and o3,
((Au?) in linear dynamics) is nonlocal; however, at large
scales one can express & in terms of local second mo-
ments by the following procedure, which leads to a deri-
vation of the Kaiser formula and makes clear its regime of
validity.

What do we exactly mean by large scales? Although &
and v, vanish in the large-scale limit, o3, does not (and
(Au?) is largest at large scales); therefore, we are not
allowed to do a small amplitude expansion in this case.
On the other hand, when s > fo, the integration over
r will be sharply peaked about r = s; thus, we can
“expand real-space about redshift-space”

dP(v;
P(v;ry) = Puss)) + (r) — s”)w
1 d?>P(v; s))
+ E(F” — .S‘||)2dsv|2|s|| + ... 52)

Note that since this expansion can be done for any PDF
(not just the one corresponding to linear dynamics) we
will do so in general; our results here apply to the fully
nonlinear case. Similarly one can expand &(r) = &(s) +
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..., and using that v = r| — s [see Eq. (12)], keeping up
to second derivatives we obtain

2
T+ & =0+ f)(l + fvl, +%‘T%’ + ) + & fvp
2
~|—7§"0'%2 + 2ot + .. (53)

where all quantities in the right hand side are evaluated at
s and derivatives are with respect to s, e.g., v}, =
dvyy(s)/ds. Keeping only terms linear in quantities
that vanish in the large-scale limit gives

2 2

Eg= &+ ful, + 70%’2’ +5 "ohle  (54)
where o3, is the large-scale limit of the pairwise dis-
persion. In Fourier space this reads

1
P (k) = Paa(k)(l - Efzk%a%z oo> + ifk v, (k)
1
— Efzkgo%z(k). (55)

Higher-order derivatives are suppressed by higher powers
of k,. Expanding real-space about redshift-space should
work well when the derivatives in Eq. (54) are small (k, is
small), i.e., when considering waves with k with a small
component with respect to the line of sight in which case
the distortions are small. The large-scale limit of vy, is
given by linear theory, v,(k) = —2ik Psy(k)/k>,
whereas for %, both Gaussian and non-Gaussian terms
contribute. We calculate the non-Gaussian terms in paper
IT; for our purposes here let us just write o3, |, = 2(02 +
A,) and o3,(k) = —2k?Pyy(k)/k* + B,(k), then we have
k2

Py(k) = Pss5(k)[1 — f2 k(02 + A,)] + 2fPP50(k)

2k_§ _1 212
+f k4P00(k) 2f sza'(k)’ (56)

where the non-Gaussian terms correspond to A, = (u28)
and B, = FT(Au?(8 + &' + 88")),., where FT stands for
Fourier transform. We show in paper II that in the large-
scale limit, B, = (8/35)(4 + 11u?/3)a?P(k). A, corre-
sponds to the difference in the large-scale limit of o, to
the linear value (squares compared to dashed lines in
Fig. 3), whereas B, is the non-Gaussian contribution
that takes into account that the scale dependence of the
pairwise velocities is opposite to that in linear theory, i.e.,
increasing toward smaller scales; as a result it counters
the effect of the Pyy term. From Eq. (56) it follows that
when

Kf?c2 <1 or ku < 0.2h/Mpc, (57)

where we assumed a flat Acold dark matter (CDM)
model, for which o2 =~ 40 (Mpc/h)? and f = 0.5 at 7 =
0, one recovers the Kaiser formula [3] for the power
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spectrum (the reason why we do not assume Pgg =
Psy = Py will become clear in Sec. V)

P(k) = Pss(k) + 2f u?Psg(k) + f2u*Pgo(k).  (58)

The condition in Eq. (57) says that, unless one consid-
ers modes nearly perpendicular to the line of sight u ~ 0,
velocity dispersion effects become important for wave-
numbers much smaller than the nonlinear scale. Note that
at k, ~ 0.2 h/Mpc the velocity dispersion terms become
of order unity almost reversing the enhancement of the
redshift-space power spectrum. These additional terms
have important dependencies on cosmological parameters
that are different from those in the Kaiser formula, for
example A, ~ b0} and B, ~ b0y in the large-scale
limit, where b, is the linear bias, with o, ~ o5 depending
also on the shape of the power spectrum. This can help
break degeneracies present in Eq. (58).

Note that although Eq. (58) has the right limit at k, =
0, giving the real-space power spectrum, the second
derivative (which is the first nonvanishing) with respect
to k, does not (except at k = 0) as this is sensitive to
velocity dispersion effects, both Gaussian and non-
Gaussian. It is useful to recast Eq. (58) in terms of what
it implies for the pairwise velocity PDE To do this, we
can expand Eq. (42) for small A (recall A = ifk, in
Fourier space)

2
Zo~1+ () + Avp(r) + %(Au%}. (59)

This implies that the pairwise velocity PDF in the Kaiser
limit has the form [see Eq. (11)]
d 2 d?

pa 7<Au§>—)ab(v>, (60)

P(v) = <1 A% 40>

that is, it corresponds to a very sharply peaked PDEF since
the dispersion (Au?) is effectively assumed to be vanish-
ingly small. This is the result used in Eq. (19) to derive the
pairwise PDF in the dispersion model and when put into
Eq. (12) gives the two-point function [21,53])

f2 d2

d
Elsyps1) = €(s) + fd—s”Uu(S) + > Kﬁ<Auz2>- (61)

It is interesting to go back to Fig. 4 and compare the
exact result for Gaussian random fields to the Kaiser
formula. The expansion in Eq. (52) is best when the scale
dependence of the PDF is small. This is going to be less
safe for smaller s, since for large s, variations in ry as

one integrates enter only in quadrature in s> = rj + s7,

whereas for s = 0 variations in r) enter linearly into s.
This is the analogous situation to having k, not small in
Fourier space, and this is why the largest deviations in
Fig. 4 happen near s; = 0, even at large scales.

Finally, a few words of caution about the expansion in
Eq. (52). This converts integration over an infinite number
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of PDF’s into a single one and its derivatives, thus sig-
nificantly simplifying the calculation. Note, however,
that in order to arrive to Eq. (54) one must interchange
the order of the derivatives and integrals over the PDF and
integrate term by term. Such a procedure is not strictly
valid, since it is very likely that the expansion in Eq. (52)
does not converge uniformly. Indeed, in the Gaussian case
one is expanding Eq. (42) for small A, and the exponential
series has zero radius of convergence, thus term by term
integration is not mathematically valid. Note also that at
the end, terms that were supposed to be of increasing
order in a small parameter in Eq. (52) end up being of the
same order of magnitude in Eq. (58).

B. Comparison with the standard derivation

Let us now compare our derivation of the Kaiser limit
with the standard approach ([3,33,54]) which makes ex-
plicit use of the Jacobian J = |ds;/dx;| of the mapping
from real-to-redshift-space. In the plane-parallel ap-
proximation, J(x) = |1 — fV_u,| and from Eq. (3) it fol-
lows that 1 + 8,(s) = [1 + 8(x)]/J(x). Now if we assume
fV.u. < 1, we canexpand 1/J(x) = 1 + fV_u_, and thus
linearizing in the field amplitudes if follows

8,(s) = 6(x) + [V, u,(x), (62)

which, using that V - 4 = § in linear dynamics, and s = x
to leading order, in Fourier space leads to
8,(k) = 8(k)(1 + fu?).

There are several steps in this derivation which are
unjustified, namely, the density and velocity gradients
at a given point in space are not small (i.e., for CDM
models their linear variance at a point is much larger than
unity); note that there is no smoothing involved until
after one makes these approximations. In particular
8(x) can be large inside dark matter halos and similarly
V. u,, which will also fluctuate in sign. What is small is
the correlation between fields separated by large dis-
tances, not the field amplitudes themselves. By making
approximations at the level of density and velocity fields
one gets incorrect correlations, in the sense that the
velocity dispersion of a Gaussian random field never
appears in this approach. The derivation presented in
Sec. II A and IV Ashows that it is unnecessary to assume
anything about the Jacobian of the transformation or the
amplitude of density and velocity gradients.

V. NON-LINEAR EVOLUTION OF DENSITY AND
VELOCITY FIELDS

The expansion leading to Eq. (56) has little to do with
nonlinear dynamics (only involved in generating the non-
Gaussian terms) but rather with the nonlinearities of the
real-to-redshift-space mapping. We now explore the cor-
rections induced in the redshift-space power spectrum
due to nonlinear evolution of the density and velocity

083007-12



REDSHIFT-SPACE DISTORTIONS, PAIRWISE ...

fields. We shall see that the velocity field is affected more
significantly than the density field at large scales due to
larger sensitivity to tidal gravitational fields.

We are interested in calculating the nonlinear evolution
of density and velocity divergence auto and cross spectra
and comparing to numerical simulations. Measuring the
volume-weighted velocity divergence power spectrum in
numerical simulations is not straightforward at small
scales. Interpolating the particles velocities to a grid
gives the momentum (density-weighted velocities); in
order to obtain #(k) one possibility would be to

(1) Fourier transform the momentum, and divide the
Fourier coefficients by the interpolation window
(“sharpening” of the momentum Fourier
coefficients).

(i1) do the same for the density field, and then trans-
form back to real-space density and momentum
fields.

(iii) divide momentum by density at each grid point.
Fourier transform the resulting volume-weighted
velocity field and calculate the divergence in
Fourier space.

This procedure is not ideal for several reasons. First,
there is the choice of the interpolation scheme: one would
like to choose a low-order interpolation scheme because it
does not smooth out fields too much (so sharpening only
affects the highest-k modes). On the other hand, a low-
order interpolation scheme gives rise to many grid points
with zero density and momentum, thus the velocity field
cannot be defined there. Using a high-order interpolation
scheme bypasses this problem but leads to some grid
points with negative density after step ii), due to the
fact that sharpening can be numerically unstable in voids.
A more practical procedure is to divide the interpolated
momentum by the interpolated density (both of which
have been similarly affected by the interpolation win-
dow), Fourier transform that, and without applying any
corrections (since interpolation corrections in numerator
and denominator should roughly cancel) calculate the
divergence of the velocity field. This procedure is safe
to the extent that gives results independent of the inter-
polation scheme. We have tried second- (cloud in cell),
third- (triangular shaped cloud), and fourth-order inter-
polation schemes with similar results: at large scales k <
0.3 h/Mpc the different procedures give the same power
spectrum; for smaller scales the results obtained start to
depend on the particular scheme used. It would be inter-
esting to try using Delaunay or Voronoi tesselation tech-
niques [55] to see whether this can be improved for
smaller scales, but our procedure is simpler and works
well at large scales.

We now present the calculation of the density and
velocity divergence auto and cross power spectra using
one-loop PT. In linear PT, by definition Pgs(k) =
Psg(k) = Pyy(k) = P(k). Nonlinear corrections break
this degeneracy, giving
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Pss(k) = P(K) + 2 [ [F>(p, 9 PP(p)P(q)dq + 6P(K)

x j Fy(k )P(q)d, (63)

Pyo(k) = P(K) + 2 f [Ga(p. Q)P P(p)P(q)dq + 6P(K)

X ] Gs(k, q)P(q)d’q, (64)

Psy(k) = P(K) + 2 f F2(p. 9)Gs(p, ) P(0)P(q)dPq

+3P(K) f [F3(k q) + Gs(k )JP(g)dq, (65)

where p = k — q. The first term of nonlinear corrections
describes the contribution to the power spectrum at k due
to coupling between modes g and p, whereas the second
term corresponds instead to corrections to the linear
growth factor that depend on k. The kernels F, and G,
can be written as (k = k/k and similarly for §)

. 201
Fy(k, q) =2+—k.q<5+€> +7<kikj ——5.4>
q

2 2 k 374
A 1

X (‘qu]‘ - 551']')’ (66)
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Galh ) =52+ 584+ ) + 5 (k= 35,

A 1

X (q,»q =3 5,;,), 67)

where v, = 34/21 and u, = 26/21 represent the second-
order evolution in the spherical collapse dynamics. The
other two terms in these kernels have a different physical
origin: the middle term is due to the nonlinear trans-
formation from following mass elements to studying the
dynamics at fixed spatial position (‘“Lagrangian to
Eulerian space” mapping), and the last term represents
the effect of the tidal gravitational fields, since (k;k ;=
%Sij)é(k) is the Fourier representation of the tidal gravi-
tational field V,V,;®(x) — 18, V*®(x), where ® is the
gravitational potential. The important thing to notice
here is that velocity fields are more sensitive to tidal fields,
the coefficient of the last term in G, is twice that in F,,
and consequently they evolve less by spherical collapse
(that’s why w, is smaller than v, to exactly compensate)
and therefore do not grow as fast due to nonlinear effects.
In fact, we shall see that nonlinear growth is significantly
smaller than linear at the scales in which we are
interested.

The F5 and G5 terms can be analyzed in a similar way,
but they are more complicated. Instead, we just write
down their expression after the angular integration over
k- ¢ has been done
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These terms are negative and the magnitude of G5 is
larger than F;. This leads to an overall suppression of
Pgg(k) compared to linear theory. Figure 6 shows the
results of these calculations (solid lines) and measure-
ments in numerical simulations (symbols) expressed as
ratios to the linear power spectrum Py, (k). One-loop PT
for Pss(k) performs significantly worse than for spectra
with no baryonic wiggles, though it does seem to track
the variations seen in the simulations, about 10% for k <
0.2 h/Mpc, at least in a qualitative sense. The situation is
significantly better for Pgsy(k), but this good agreement
appears to be to some extent an accident—a cancellation
between too large corrections for Pss(k) and Pggy(k) with
opposite signs.

These results can be understood qualitatively and to
some extent quantitatively as well by considering one-
loop PT for scale-free initial conditions with Py, (k) = k.

dd/Pli
[TTI T rrrrery

0.02 0.04

0.06 0.08 0.1 0.2
k [ h/Mpc ]

FIG. 6 (color online). Nonlinear corrections to the density-
density (top), density-velocity (middle), and velocity-velocity
(bottom) power spectra as a function of scale. The symbols
denote measurements in the very large simulation dark matter
simulations; solid lines denote one-loop perturbation theory.
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In this case [56]

P00 = Pfi)] 1 + “n'(”)(k%)nH} (70)

where k,; is the nonlinear scale defined from the linear
power spectrum, and x and y denote any of §, §. The
functions « are decreasing functions of n, positive for n
sufficiently negative and negative for n sufficiently posi-
tive; the sign of a describes whether the nonlinear growth
is faster or slower than in linear theory. Corrections to
Pss (Pgg) are positive for n < —1.4 (n < —1.9) and nega-
tive otherwise (see Figure 12 in [57] for plots of a5 and
agg). For CDM models close to the nonlinear scale at,
e.g., k = 0.1 h/Mpc, the effective spectral index is nq; =
—1.35, which, being close to the critical index for &
where corrections to Pgs(k) vanish, leads to a small
negative correction to Pss. On the other hand, the situ-
ation is very different for # that has a critical index of
—1.9, thus the large negative corrections to Py, [58]. This
has a significant impact on the large-scale redshift-space
power spectrum. For more discussion of nonlinear cor-
rections along these lines see, e.g., [56,57,60—62].

VL. THE REDSHIFT-SPACE POWER SPECTRUM
A. A simple model

We now put together the results discussed above to see
how well one can match the large-scale redshift-space
power spectrum with the information we have so far,
without resorting to an evaluation of the PDF of pairwise
velocities in the non-Gaussian case. Specifically, we use
the following ansatz

Py(k) = [Pss(k) + 2f u?Pgq(k)
+ f2utPog(k)lexp(— f2k2a3), (71)

where Pgss, Psg and Py, refer to the nonlinear spectra (see
Fig. 6). We include only velocity dispersion effects using
the large-scale limit in the Gaussian case; as discussed at
the end of Sec. III A this is not correct even at large scales,
as the pairwise velocity PDF is significantly non-
Gaussian at all scales. Going beyond this, however, re-
quires an evaluation of the pairwise PDF in the non-
Gaussian case, which is addressed in paper II. We try to
compensate for this by keeping a constant Gaussian ve-
locity dispersion suppression factor given by linear dy-
namics; this is an improvement over the incorrect scale
dependence in linear dynamics and partially mimics the
effect of non-Gaussian terms. But it is clearly an over-
simplification. Note that although at first sight Eq. (71)
looks similar to the phenomenological model of [7], it is
in fact rather different: we do not fit for a velocity dis-
persion factor, but rather ¢? is predicted by linear dy-
namics and depends on og and the shape of the power
spectrum; also, we incorporate the difference in evolution
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between density and velocity fields at large scales, as seen
in Fig. 6.

Figure 7 shows the results of such an exercise, com-
pared to the numerical simulation results (symbols) and
to the Kaiser formula (dashed lines). Although the im-
provement is significant there are still some deviations,
which is not surprising given our approximate treatment.
In particular, Eq. (71) does not give enough suppression at
intermediate angles. The suppression of power at u = 1
works reasonably well, and it is due to the velocity
dispersion and the nonlinear corrections to Pgse and
Pgyy; for example, at kK = 0.1 h/Mpc each effects sup-
presses power at u = 1 by the same amount, about 10%
each.

B. Recovering the real-space power spectrum

An important question is to what extent one can re-
cover the real-space power from measurements of the
redshift-space power spectrum. Attempts to do this fall
into two different approaches: one is to measure the
projected correlation function ¢, Eq. (16), by integrating
the redshift-space correlation function along the line of
sight [63—65], the other is to try to measure the power for
modes perpendicular to the line of sight either by
smoothly approaching u = 0 [66] or at large scales by
using the Kaiser formula to go from multipoles to the
real-space power [18,67]. Here we explore the conditions
of validity of the latter.

LA L I B Y B
N

0.35

LA L L B B

0.05

coa e b P P P P by

(@]
—_
LA L L L I

v e by b b b Py by

0.05 0.1 0.15 0.2 0.25 0.3 0.35
k, [ h/Mpc ]

FIG. 7 (color online). Contours of the redshift-space power
spectrum at z = 0. The solid lines correspond to the N-body
simulation results, dashed lines denote the Kaiser formula, and
dotted lines show the simplified ansatz of Eq. (71).
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First, it is important to note that even if one is inter-
ested in just the shape of the real-space power spectrum
(and not its amplitude), it should be clear from the results
presented so far that there is no reason to expect that the
monopole of the redshift-space power should have the
same shape as the real-space power, at least not to the
accuracy of current large surveys such as Two-Degree
Field Galaxy Redshift Survey and Sloan Digital Sky
Survey. The top panel in Fig. 8 illustrates this point for
the model of Eq. (71) and N-body simulations, where we
compare their monopole and quadrupole to those in the
Kaiser limit, PX = P(k)(1 + fu?)? with P(k) the non-
linear real-space power spectrum. Note that even at k =
0.1 h/Mpc the monopole is suppressed by about 10% and
the quadrupole by 35-40%. From Fig. 8 we can see again
that our model underestimates the suppression when com-
pared to numerical simulations. In principle the situation
for galaxies could be different than shown in Fig. 8, but
for close to unbiased galaxies there is no reason why it
should be drastically different than for the model in
Eq. (71), given that we only include velocity dispersion
due to large-scale flows and nonlinear corrections to 6
should not be affected by biasing, being a volume-
weighted velocity [see discussion after Eq. (31)]. We stress
that ignoring the suppression of power at large scales can

1 l 1 l 1 l l 1 l 1
0.04 0.06 0.080.1 0.2 0.4
k [ h/Mpc ]

FIG. 8 (color online). Top panel: Ratio of the monopole (solid
line) and quadrupole (dashed line) to the predictions of the
Kaiser formula for redshit-space power given by Eq. (71).
Symbols show the same quantities in the numerical simula-
tions. Bottom panel: recovery of the real-space power spectrum
from redshift-space multipoles according to Eq. (73) for the
model in Eq. (71) (solid line) and N-body simulations (sym-
bols).
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contribute to systematic effects in the determination of
shape parameter, the spectral tilt and running of the
spectral index, or constraints on the neutrino mass.

The good news is that an “inverse use” of the Kaiser
formula has a larger regime of validity than one might
expect based on the results discussed so far. Aslong as we
can approximate the redshift-space power spectrum with
only £ = 0, 2, 4 multipoles we can always write

Py(k) = P(K[1 + 245(k)p” + A()u], (72)

with A, (k) and A,(k) some arbitrary functions of k. One
can think of these functions as scale dependent versions
of f or B when bias is present, i.e., in the Kaiser limit
A, (k) = [A,(k)]? = B2. The interesting piece of informa-
tion is that recovering the real-space power spectrum
from the redshift-space multipoles in the case of arbitrary
A, and Ay is that is still given by the same linear combi-
nation as in the Kaiser limit

PU) = Po(k) — 3 PR+ S PR, (T3)

even for arbirtrary A,(k) and A,(k), since Eq. (73) uses
only orthogonality of Legendre polynomials up to £ = 4.
Equation (73) is thus far more general than assuming the
Kaiser limit; basically the linear combination at each
scale is done using the effective value of B at that scale
implied by A, and A4. The reason why this is useful is that
higher than £ = 4 multipoles are generated only for £k =
0.2 h/Mpc since they are suppressed by higher powers of
k. in the large-scale expansion [see Eq. (52)]. An example
of the effectiveness of using Eq. (73) is given in the
bottom panel of Fig. 8 where we use it to reconstruct
the real power in the case of the model in Eq. (71) and
for the N-body measurements, which do not have the form
of Eq. (72), since the exponential generates all multipoles
higher than € = 4 with roughly equal amplitude in the
high-k limit and even more so for the simulation.
Nonetheless, the recovery of the real-space power is quite
successful for k£ < 0.2 — 0.3 h/Mpc, a bit worse for the
simulation that has a larger velocity dispersion every-
where compared to the Gaussian value (see top panel in
Fig. 3).

The approach of using Eq. (73) to recover the real-
space power spectrum was implemented already in
[18,67]. Of course the use of Eq. (73) can be extended to
include higher multipoles if possible; this will increase
the regime of validity of the reconstruction. Note, how-
ever, that the nice property of recovering Pgss does not
extend to Psy and Py, e.g., using the same idea one
obtains 3 P,(k) — % P4(k) = A,(k)P(k), which cannot be
interpreted as Pgg with the same degree of accuracy due
to the effects of velocity dispersion.
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VIIL. CONCLUSIONS

We have derived the exact relationship between two-
point statistics in real- and redshift-space in terms of the
statistics of pairwise velocities. This is given by Eq. (12)
for the two-point correlation function in terms of the
pairwise velocity PDF and by Eq. (13) for the power
spectrum in terms of the pairwise velocity generating
function. These results include all nonlinearities in the
dynamics and the real-to-redshift-space mapping; the
only approximation made is that distortions are plane-
parallel. The radial distortion case can be derived by
similar reasoning to that in Sec. II A. Higher-order cor-
relation functions in redshift-space can also be studied
along the same lines.

We also showed that

(i) the pairwise velocity PDF is strongly non-
Gaussian at all scales (Figs. 1 and 2). The failure
to reach Gaussianity at large scales is related to
the fact that difference of velocities between
members of a pair are always sensitive to modes
whose wavelength is smaller than the distance of
separation.

(i1) the often used dispersion model, Eq. (1), gives
rise to an unphysical distribution of pairwise
velocities (see bottom left panel in Fig. 1).

(ii1) it is impossible in general to derive the PDF of
pairwise velocities from measurements of
redshift-space clustering. Methods that claim
to do this obtain instead something else, whose
properties we derive—see Eqgs. (25)—(27).

(iv) the exact result for the redshift-space correlation
function of a random Gaussian field is signifi-
cantly different from the Kaiser formula at large
scales for pairs parallel to the line of sight
(Fig. 4).

(v) the large-scale limit of the redshift-space power
spectrum in the general case differs from the
Kaiser formula by terms that depend on
Gaussian and non-Gaussian contributions to the
velocity dispersion of large-scale flows
[Eq. (55)].

(vi) there are significant nonlinear corrections to the
evolution of velocity fields at scales much larger
than the nonlinear scale (Fig. 6). These are due to
the sensitivity of velocities to tidal gravitational
fields, which suppress the growth relative to
linear perturbation theory and have a significant
impact on the redshift-space power spectrum.
These corrections should be included when mod-
eling large-scale velocity flows.

(vii) the monopole of the redshift-space power spec-
trum does not provide a good measure of the
shape of the real-space power spectrum (top
panel in Fig. 8). Ignoring this can lead to system-
atic effects in the determination of the spectral
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tilt, running of the spectral index, and limits on
the neutrino mass.

(viii) the real-space power spectrum can be recovered
at large scales by the standard procedure based
on the orthogonality of multipoles (bottom panel
in Fig. 8).

We have ignored the problem of galaxy biasing,
although linear bias is of course trivial to introduce. It
is interesting to note in this regard that non-Gaussian
terms give a different dependence on cosmological pa-
rameters that can be used to break degeneracies.
Nonlinearities in the bias between galaxies and dark
matter can lead to nontrivial behavior, this will be ex-
plored elsewhere. An important gap that remains is the
derivation of the large-scale limit of the PDF of pairwise
velocities; this is a difficult problem that will be ad-
dressed in paper II. This should allow a more physical
modeling of the redshift-space power spectrum along the
lines of Sec. VI A where we assumed (incorrectly) that
Gaussianity holds at large scales. The usefulness of such a
model is that it allows for the correlation that exists
between the squashing and dispersion effects, which so
far have been taken as independent in the modeling of
redshift distortions, such as Eq. (1). The correlation be-
tween both effects depends on (), and the shape and

PHYSICAL REVIEW D 70 083007

normalization of the power spectrum. Using this infor-
mation is essential to extract the full information encoded
in the anisotropy of the redshift-space power spectrum,
which on physical grounds must be poorly described by
just two independent numbers such as 8 and an effective
velocity dispersion o ,.
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