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Detecting dark energy dynamics is the main quest of current dark energy research. Addressing the
issue demands a fully consistent analysis of cosmic microwave background, large-scale structure and
SN-Ia data with multiparameter freedom valid for all redshifts. Here we undertake a ten parameter
analysis of general dark energy confronted with the first year Wilkinson Microwave Anisotropy Probe,
2dF galaxy survey and latest SN-Ia data. Despite the huge freedom in dark energy dynamics there are no
new degeneracies with standard cosmic parameters apart from a mild degeneracy between reionization
and the redshift of acceleration, both of which effectively suppress small scale power. Breaking this
degeneracy will help significantly in detecting dynamics, if it exists. Our best-fit model to the data has
significant late-time evolution at z < 1:5. Phantom models are also considered and we find that the best-
fit crosses w � �1 which, if confirmed, would be a clear signal for radically new physics. Treatment of
such rapidly varying models requires careful integration of the dark energy density usually not
implemented in standard codes, leading to crucial errors of up to 5%. Nevertheless cosmic variance
means that standard � cold dark matter models are still a very good fit to the data and evidence for
dynamics is currently very weak. Independent tests of reionization or the epoch of acceleration (e.g.,
integrated Sachs-Wolfe–large scale structure correlations) or reduction of cosmic variance at large
scales (e.g., cluster polarization at high redshift) may prove key in the hunt for dynamics.
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I. INTRODUCTION

Cosmological observations suggest that the Universe is
dominated by an exotic form of matter which is respon-
sible for the present phase of accelerated expansion [1–4].
Several scenarios have been proposed to account for the
observations, but the nature of this dark energy still
remains unknown. The simplest minimal model to fit
the experimental data assumes the presence of a cosmo-
logical constant �, representing the vacuum energy con-
tribution to the spatial curvature of the space-time. In
spite of the success of this concordance � cold dark
matter (�CDM) model, there is no reasonable explanation
why the observed value of� is extremely small compared
to particle physics expectations [5].

Alternatively, a light scalar field, called quintessence,
rolling down a flat effective potential has been proposed
to account for the missing energy in the Universe [6,7].
In particular quintessence models manifesting ‘‘tracker’’
properties allow the scalar field to dominate the present
Universe independently of the initial conditions [8,9].
Different realizations of the original quintessence idea
have been studied in the literature including the possibil-
ity of a scalar field evolution driven by a noncanonical
kinetic term [10] and a nonminimal coupling between
quintessence and dark matter [11–14]. On the other hand
unified models of dark matter and dark energy have been
considered [15–17]. Despite the proliferation of scalar
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field models of dark energy, we still lack of a fully
consistent particle physics formulation. Nonetheless
distinguishing between a dynamical form of dark energy
and a cosmological constant is of immense importance
as it would give us a hint on the nature of this component.
The recent Wilkinson Microwave Anisotropy Probe
(WMAP) satellite measurements of the cosmic micro-
wave background (CMB), by providing an accurate deter-
mination of the anisotropy power spectrum, offer
the opportunity to have a better insight into the physics
of the dark energy. The quintessence hypothesis has
been tested with different methods using pre-WMAP
CMB data and SN-Ia data or the 2dF power spectrum
[18–23]. These analysis have constrained the dark energy
equation of state w without ruling out the possibility of
a time dependence. In this article we carry out an analysis
of the time evolution of the dark energy equation of
state. Our aim is to constrain a set of parameters charac-
terizing the dark energy properties and the standard
cosmological parameters by performing a likelihood
analysis of the WMAP first year data [24] and the SN-Ia
luminosity distance measurements [1,25]. The paper
is organized as follows: in Sec. II and the Appendices
we describe the method and the data, in Sec. III we
explain the evaluation of the likelihood, in Sec. IV we
discuss our results and finally in Sec. V we present our
conclusions.
06-1  2004 The American Physical Society
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II. METHOD AND DATA

The most general way of constraining the time evolu-
tion of the dark energy equation of state would require us
to consider a completely free function w�z�. As this
corresponds to an infinite number of new degrees of free-
dom, we have to simplify the problem.We use a physically
motivated parametrization where w � p=� is defined by
its present value, w0, its value at high redshift, wm, the
value of the scale factor where w changes between these
two values, at and the width of the transition, �. Namely:

w�a� � w0 � �wm � w0���a; at;�� (1)

where �, the transition function, has the limits ��a �
0� � 1 and ��a � 1� � 0 and varies smoothly between
these two limits in a way that depends on the two pa-
rameters at and � (see Fig. 1). Such a choice has been
shown to allow adequate treatment of generic quintes-
sence and to avoid the biasing problems inherent in as-
suming that w is constant. Two choices for � have been
given in the literature [23,26] as discussed in
Appendix A. Here we use the form advocated in [26].

Using this general prescription has a profound advan-
tage in attempts to detect dark energy dynamics since,
unlike simpler parametrizations based on only one or
two variables, it can accurately describe both slowly and
rapidly varying equation of states [27]. Detecting dark
energy dynamics and distinguishing it from a cosmologi-
cal constant is difficult and is clear only when there
are rapid, late-time changes in w [28], which then needs
a formalism capable of describing such rapid transi-
tions.

In order to compute the CMB power spectra, we use a
modified version of the CMBfast Boltzmann solver [29].

This is a nontrivial step in the case where � changes
rapidly (such as in our best-fit model!). In fact using a
numerical method that is not able to track rapid transi-
tions can lead to errors significantly larger than the error
FIG. 1 (color online). Schematic plot of the equation of state
parametrization Eq. (1).
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bars on the data, of order 5%, and consequently lead to
completely wrong results. Our tests are described in de-
tail in Appendix B and C.

Several degeneracies amongst the cosmological pa-
rameters prevent us from accurately constraining cosmo-
logical models using CMB data only. Specific features of
the anisotropy power spectrum can provide information
on particular combinations of the cosmological parame-
ters. For instance the relative height of the Doppler peaks
depends on the baryon density and the scalar spectral
index. In order to break such degeneracies it is necessary
to add external information. Since our goal is to constrain
the properties of the dark energy, in a flat geometry the
main limitation comes from the geometric degeneracy
between w0, the dark energy density �DE and the
Hubble parameter h. This degeneracy can be broken by
assuming an (Hubble space telescope) HST prior on the
value of h [30] and/or combining the CMB with other
data sets such as the matter power spectrum measure-
ments from the 2dF galaxy survey [31] or the SN-Ia data.
In our analysis we use the ‘‘gold’’ subset of the recent
compilation of supernova data of [25] in addition to the
WMAP temperature (TT) and cross temperature polar-
ization (TE) spectra. An important point which we want
to stress here is that CMB and SN data can be treated at a
fundamental level without any prior assumption on the
underlying cosmological model. For instance, this is the
case for the matter power spectrum data from galaxy
surveys which implicitely assumes a �CDM model
when passing from redshift space to real space. For this
reason we add the 2dFGRS large-scale structure data only
in order to check the stability of our results. We also
remark that the use of secondary observables such as
the age of the Universe, the size of the sound horizon at
the decoupling, the clustering amplitude �8 (as quoted by
the WMAP-team) or the growth factor of matter density
perturbations should not be used without thought to infer
constraints on the dark energy since their quoted value is
usually derived by implicitly assuming a �CDM cosmol-
ogy. This leads to biased results since these observables
depend on the nature of the dark energy [28,32,33]. In
principle CMB constraints can be easily added by using
the position of the Doppler peaks, which provide an
estimate of the angular diameter distance to the last
scattering surface. But it is a well known fact that pre-
recombination effects can shift the peaks from their true
geometrical position [32].

The integrated Sachs-Wolfe (ISW) effect also induces
an additional shift in the position of the first peak, in a
way that is strongly dependent on the evolution of the
dark energy equation of state and is generally larger than
in�CDM models [28]. Therefore a consistent dark energy
data analysis of the CMB indeed requires the computa-
tion of the CMB power spectrum (and TE cross
correlation).
-2



FOUNDATIONS OF OBSERVING DARK ENERGY . . . PHYSICAL REVIEW D 70 083006
Each of our models is then characterized by the dark
energy parameters WDE � �w0; wm; at;�� and the cosmo-
logical parameters WC � ��DE;�bh2; h; nS; �; As�,
which are the dark energy density, the baryon density,
the Hubble parameter, the scalar spectral index, the opti-
cal depth, and the overall amplitude of the fluctuations,
respectively. We therefore end up with ten parameters
which can be varied independently.

There is a remaining degeneracy in nS, � and �bh
2,

which allows the models to reach unphysically high val-
ues of the baryon density and the reionization optical
depth. Following the WMAP analysis and in order to
remain consistent with [34], we place a prior on the
reionization optical depth, � � 0:3. An alternative is to
use a prior on �bh

2, which may be physically better
motivated and does a better job of breaking the degener-
acy—we plan to use this for future work and discuss the
difference later on. We also limit ourselves to models with
w�z� � �1, except where stated explicitly.

III. EVALUATION OF THE LIKELIHOOD

A grid-based method would necessarily lead to a very
coarse sampling, which is why we opted for a Markov
chain Monte Carlo (MCMC) method to sample the like-
lihood surface. In addition this approach also allows easy
marginalization over parameters. We ran 16 to 32 inde-
pendent chains on the U.K. national cosmology super-
computer (COSMOS). This approach has both the
advantage that there was no need to parallelize the
Boltzmann solver, and that we are better able to assess
the convergence and exploration by comparing the differ-
ent chains.

We take the total likelihood to be the product of the
likelihoods of each data set [CMB, SN-Ia, and large-scale
structure (LSS)], or by defining �2eff � �2 logL,

�2tot � �2WMAP � �2SN1a���22dF�; (2)

where the LSS contribution is added only in Sec. IV D We
evaluate the WMAP likelihood using the code of the
WMAP science team [35], and we have checked that
our SN-Ia likelihood results are consistent with ones of
Riess et al. [25]. We treat the luminosity M as a nuisance
parameter over which we marginalise analytically. This
automatically also marginalizes over the Hubble constant
H0, so that the supernova data does not depend directly on
it. For the 2dF results we use the formalism and data of
Tegmark [36].

The convergence and sampling behavior of the chains
in a high-dimensional space is far from trivial.
Correlations in several dimensions are a particular issue
as they lead to a high rejection rate. To improve the
acceptance rate, we estimate in a first step the covariance
matrix and then use rotated parameters which are linearly
independent (i.e., lead to a diagonal covariance matrix
with variances ��pi�

2 on the diagonal). We set the pro-
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posal width of parameter pi (i � 1; ::; N) to 2:3��pi�=
����
N

p

as advocated in [37,38], which we found to work very
well. We also evaluate the rejection rate every 100 steps
and adjust the width dynamically, but normally this is not
necessary once the covariance matrix is used.

The result of a MCMC is a ‘‘cloud’’ of samples in each
chain with a density proportional to the local value of the
likelihood. In general we are not content with a
N-dimensional description of the likelihood, but would
prefer lower dimensional constraints. The generally ac-
cepted way to project the likelihood onto fewer dimen-
sions is through marginalizing. This means that we
integrate the likelihood over the parameters which we
want to hide:

L �p1; . . . ; pi�1; pi�1; . . . ; pn�

/
Z

dpiL�p1; . . . ; pi�1; pi; pi�1; . . . ; pn�: (3)

This requires a measure � � dp on the parameter
space. In many cases, there is some physical motivation
for the choice of the measure. Alternatively, it may be that
the for all reasonable choices, the measure does not vary
strongly across the range of interest. As an example, we
could use either �b or �bh2 as a fundamental parameter.
But since both H0 and �bh

2 are quite well constrained,
the result will not change appreciably if we use the one or
the other. In this case, it does not matter which one we
use. If neither is true then the result can depend strongly
on the choice of this measure.

In the MCMC case, the choice of measure is implicit in
the choice of parameters if one follows the usual rule that
the marginalization is done by summing up the samples.
To illustrate this, let us assume that the likelihood does
not depend upon a given parameter 0:1 � p � 10. In this
case, the marginalization over this parameter is just the
volume of the parameter space, since all values are
equally likely. The resulting likelihood will be flat, inde-
pendent of the choice of parametrization. Using p as our
fundamental parameter, we find that roughly half the
points will be in p < 5 and half in p > 5. On the other
hand, using logp we will find that half the points are in
p < 1, and half in p > 1. The result depends in this case
strongly on the choice of parametrization. We would like
to add here that a linear transformation of the parameters
does not change the measure, as long as the boundaries of
the integration are also adjusted. This is normally the
case, since the integration volume is usually given by
the region where L � 0. An example of such a trans-
formation is the use of a covariance matrix to render the
parameters linearly independent.

A different way to think about this specific problem is
by looking at the choice of measure as a prior. Choosing
for a parameter p the measure dp (i.e., sample it equally
in p) is the same as imposing a flat prior, P�p� � 1.
Instead, sampling the parameter in log�p�, corresponding
-3



TABLE I. �2 and best-fit values of the cosmological parame-
ters for �CDM and QCDM models.

Model �2CMB �2SN �2tot w0 �DE H0 �bh
2 ns �

�CDM 1428.7 177.1 1605.8 �1:0 0.69 69 0.023 0.97 0.11
QCDM 1426.1 176.8 1602.9 �1:0 0.71 67 0.026 1.09 0.29

FIG. 2. CMB power spectrum for the QCDM (red solid line)
and �CDM (blue dashed line) best-fit models.
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to a measure dp=p, corresponds to a flat prior in log�p� or
P�p� � 1=p when sampling evenly in p [39].

In order to test our dependence on the choice of pa-
rametrization, we ran chains for different choices,
namely �at;��, �log�at�;�� and �log�at�; log����. In the
next section we will discuss which of the results depend
on this choice.

A second issue which is often neglected is that the
likelihood which we deal with here is by no means close
to Gaussian in some of the variables. The structure of the
minima can thus be arbitrarily complicated. It is therefore
important to specifically search for the global minimum,
which can of course be rather difficult in many
dimensions.

As a final remark before discussing the results, we
would like to point out that caution is necessary when
interpreting the results. One sigma limits are not suffi-
cient to rule out anything—the true model is indeed
expected to lie about one sigma away from the expecta-
tion value! Even two sigma or 95% (the limits which we
usually quote) are not sufficient. We present here limits
and constraints on well over 20 different variables, and so
we again expect at least one to lie in the excluded region.
Even worse, Gaussian statistics are well known to under-
estimate the tails of ‘‘real world’’ distributions, so that
outliers are far more common than naively expected. In
many fields, e.g., particle physics, a five sigma limit is
being used to claim an actual detection. Although our
data is not yet of sufficient quality to impose such strin-
gent limits, we should bear this in mind. So we should as
an example only consider regions ruled out in the 1 di-
mensional likelihood plots if the likelihood has (visu-
ally) fallen to zero.

IV. RESULTS

In this section we discuss different aspects of our
results. We start by taking a look at the best-fit models
and at the goodness-of-fit of both quintessence and
�CDM models. Then we show that the introduction of a
time-varying equation of state for the dark energy com-
ponent does not significantly alter the constraints on the
basic cosmological parameters. This allows us to discuss
constraints on the time evolution of the quintessence
equation of state. In Sec. IV D we use large-scale struc-
ture data instead of the supernova data to break the
geometric degeneracy. We also check if the combination
of both data sets improves the constraints. Finally, we
discuss limits on toy ‘‘phantom energy’’ models where we
allow w<�1.

A. The goodness-of-fit

Our global best-fit QCDM model is characterized by
the following dark energy parameters: w0 � �1:00,
wm � �0:13, at � 0:48, and� � 0:06, which correspond
to a fast transition in the equation of state at redshift of 1.
083006
The total �2 of this model is 1602.9, while the best-fit
�CDM model has �2 � 1605:8. However, the total num-
ber of degrees of freedom is 1514, so that all our fits are
rather bad. This is mainly due to the WMAP data (see the
discussion in [3]). In Table I we report the corresponding
�2 values for the CMB and SN data and best-fit values of
the standard cosmological parameters for these two mod-
els. Notice that the QCDM model provides the best fit to
both the CMB and SN data.

It is intriguing that such a model has a time evolving
equation of state w�z� similar to that reconstructed from
the best-fit to the SN data in [40–42]. In Fig. 2 we plot the
temperature anisotropy power spectrum for these two
models. It is remarkable how perfectly the two completely
different models agree at intermediate ‘, demonstrating
the power of theWMAP CMB data. At low multipoles the
additional freedom of the QCDM models allows a
slightly better fit. In fact due to a different distribution
of the ISW, these QCDM best-fit models have less power
at low multipoles than the �CDM one. However, we want
to remark that this part of the CMB spectrum is most
likely affected by galactic contamination effects [43],
and without a more accurate investigation we should not
-4



FIG. 3 (color online). Marginalized likelihoods for the vari-
ous cosmological parameters in the �CDM scenario (blue solid
curve) and including the QCDM models (yellow shaded re-
gion). Also shown are QCDM models with a prior on the
baryon energy density �bh2 � 0:0216
 0:002 (red dashed
line). The results agree very well in all cases.
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place too much emphasis on this suppression of power. It
is worth noticing that the difference in the best-fit cos-
mological parameters between QCDM and �CDM will
lead to different TT power spectra at higher multipoles,
l > 700. This suggest that an accurate detection of the
third peak may increase the statistical weight in favor or
against the QCDM model.

The fact that the �2 improves by three through the
addition of the three new dark energy parameters, is to be
expected. Nevertheless we see that some quintessence
models provide a better fit to the data than standard
�CDM , as opposed to analyses which assume that w is
constant. As we will discuss later, the limits on the time
evolution of the dark energy equation of state are still
compatible with a number of proposed scalar field
scenarios.

Studying the distribution of the �2 values in the
MCMC chains for the �CDM models, we find that
��2 � 6:4 for the models at 1� (68.3% CL) and ��2 �
11:8 at 2� (95.4% CL). In the Gaussian case, this corre-
sponds to about 5.5 independent degrees of freedom,
slightly less than the number of cosmological parameters
used (A1).

For the quintessence models we find ��2 � 9:9 for 1�
and ��2 � 15:5 for 2�. Assuming Gaussian errors, this
would mean that we are dealing with about eight inde-
pendent degrees of freedom, many less than the six cos-
mological and four dark energy parameters used in the
analysis. We conclude that we are unable to constrain all
the additional parameters.

Is the improved �2 of the best-fit QCDM models a
positive evidence for the additional dark energy parame-
ters? The answer to this question requires an estimation
of the information criteria associated with the model [44].
In general adding more parameters tends to improve the
fit to data, however one should reward thoes models that
can produce the same goodness-of-fit with fewer parame-
ters. This can be achieved through the Akaike informa-
tion criterion (AIC [45]) and Bayesian information
criterion (BIC [46]), respectively, defined as

A IC � �2 lnL� 2k; (4)

and

B IC � �2 lnL� k lnN; (5)

where L is the maximum likelihood, k is the number of
parameters of the model and N is the number of data-
points. The �CDM models have an AIC of 1617.8, while
the QCDM models of 1622.9. Based on this difference of
5 we conclude that four parameter dark energy models are
not necessarily favored. The BIC disfavours the new
parameters even more strongly. The information criteria
therefore suggest that current data provide no positive
evidence that the dark energy is anything more complex
than a cosmological constant. This is not surprising, but
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should not be used as a reason to stop searching for ways
of detecting evidence of evolution. The rewards from
finding such evidence would be huge.

B. Constraints on cosmological parameters

The class of quintessence models could a priori contain
new, severe degeneracies which change completely the
preferred values of the cosmological parameters. If this
were the case, then all the standard results of the WMAP
analysis [3] would only be valid in the context of a�CDM
model.We have found this not to be the case. The new dark
energy parameters are degenerate amongst themselves
but do not introduce any new degeneracy with the other
cosmological parameters. This can be seen in Fig. 3 where
quintessence model results are compared with those ob-
-5
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tained for�CDM models only. Unless specifically stated,
the quoted results have been obtained using a linear
parametrization of at and a logarithmic one of � in the
MCMC. This maximizes the weight of models with a late
rapid transition, other parametrizations lead to an even
slightly better agreement between �CDM and QCDM.

We notice that all parameters, with the possible excep-
tion of the reionization optical depth �, are well deter-
mined in both cases. Also, their values are very similar
and cannot be distinguished even at 1 standard deviation.
Table II lists the best-fit values of the cosmological pa-
rameters for the �CDM and the dark energy models. The
constraint on h is consistent with the HST measurement
[30], while the amount of clustering matter �m is in
agreement with large-scale structure estimates [47,48].
The physical baryon density is consistent with the big
bang nucleosynthesis expectations [49]. This provides an
important cross-check that all viable models have to pass.
The background universe is therefore largely independent
of the details of the dark energy.

We find nonetheless some differences, but they can
be explained quite easily. First, these are the margin-
alized likelihoods. The remaining degeneracy in �m,
H0, and w0 is therefore translated into a slight shift
to lower values in both �m and H0. The degener-
acy between the physical baryon density, �bh2, and
the scalar spectral index, nS, becomes slightly worse
(see Fig. 4), leading to somewhat longer tails in their
likelihood distributions. This is a consequence of the
larger integrated Sachs-Wolfe (ISW) effect produced
in time dependent dark energy models with the respect
to the �CDM case [28]. In fact the ISW boosts power
on the large angular scales of the CMB, therefore less
power of the primordial fluctuation power spectrum
at small wavenumber k is required to match the
data. Consequently slightly blue shifted spectral index
values are preferred. The same effect is also responsible
for the spread of the likelihood distribution of the
reionization optical depth through the degeneracy be-
tween ns and �. For larger values of ns the excess of
power at the low multipoles of the TE spectrum requires
larger values of the optical depth (see Fig. 5). Since the
TABLE II. Mean and (formal) standard deviations for the
cosmological parameters. The �CDM values agree with pub-
lished analyses. The QCDM values are always consistent
within 1 standard deviation, showing that quintessence does
not significantly impact ‘‘precision cosmology.’’

Parameter �CDM QCDM

�m 0:30
 0:03 0:29
 0:04
�bh

2 0:0237
 0:0013 0:0240
 0:0015
H0 70
 3 68
 3
ns 0:99
 0:04 1:01
 0:04
� 0:15
 0:06 0:19
 0:07
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reionization suppresses the contribution at high ‘ with a
factor of e�2� a better determination of the CMB peak
structure as well as better polarization data will help to
break this degeneracy. We hope that the latter will be
available shortly, when WMAP releases the two-year
data.

Figure 3 shows also the effect of introducing a prior
on �bh

2, namely �bh
2 � 0:0216
 0:002. As we can

see, the prior only affects the cosmological parameters
�, nS and �bh2 and removes some of their high values.
None of the dark energy parameters are affected (see
0.9 0.95 1 1.05 1.1

0.05

0.1

n
S

FIG. 5 (color online). The degeneracy between the scalar
spectral index, nS, and the optical depth �. The filled contour
are the one and two � limits of the quintessence models. The
black lines show the corresponding limits for the �CDM case.
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FIG. 6 (color online). Likelihoods for the dark energy pa-
rameters in the QCDM models without prior on �bh2 (yellow
shaded area) and with the prior (solid blue line). The prior does
not affect the dark energy parameters significantly. We also
show the relative goodness-of-fit of the best model in each bin
(red dashed lines).
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Fig. 6). We should note that all cases use a top-hat prior
� < 0:3.
FIG. 7 (color online). 2� confidence region on w�z� derived
by taking the 95% models with lowest w�z� from our main
chain (yellow shaded area) and the ‘‘exclusion zone’’ where all
models have ��2 > 4 from the best-fit model in our main chain
(blue hatched area). We also show the w�z� of the best-fit model
(black solid line). �CDM is acceptable at 2�.
C. Constraints on the dark energy parameters

As we have seen in the previous section, the additional
parameters which describe the dark energy do not intro-
duce any new degeneracies with the standard cosmologi-
cal parameters. However we expect the dark energy
parameter space to have an internal degeneracy. For in-
stance w0 and wm both act on physical observables as an
equation of state parameter. Therefore slowly varying
models with wm � w0 may look indistinguishable from
models with the same value of w0 and a rapid transition at
very early time from whatever value of wm. As antici-
pated in Sec. IVA, the consequence of such degeneracy is
that we can strongly constrain only one of the dark energy
parameters, which turns out to be w0. In particular, the
one-dimensional marginalized likelihood gives w0 <
�0:80 at 2�, which is consistent with the upper limits
quoted in other time dependent dark energy analyses
[22,50,51]. Of course what this really implies is that the
equation of state at a redshift of order z � 0:1 is being
constrained. We can not say anything about its true value
today, but in what follows we use w0 with this caveat in
mind. The same applies when we take the limit of z ! 0
in the relevant figures.
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The other dark energy parameters are weakly con-
strained. In particular, as expected from the arguments
discussed in Sec. III, we find that the inferred confidence
intervals may depend on the parametrization of at and �
used in the MCMC. For the standard case, we find wm <
�0:08 at 2�, on the other hand at and � remain uncon-
strained.We refer to [34] for a discussion on breaking such
a degeneracy with an estimate of the value of �8 from
large-scale structure.

A parametrization in log�at� would place more empha-
sis on early transitions, so that the effective redshift
where wm is evaluated is moved to higher values. In this
case the limits on wm become even weaker, and we
conclude that wm as a parameter is difficult to interpret.
On the other hand, the limits on w�z� as a function of
redshift are less dependent of the parametrization of at,
as we derive them at all redshifts separately. We therefore
advocate these limits, as plotted in Fig. 7, as a better
illustration of the constraints on dark energy models.

These limits, derived with the Markov chain approach,
rest solely on the local density of the accepted models. If
the assumption of Gaussian errors holds approximately,
then we can derive the same limits using the actual like-
lihood values instead. In this case, and considering a
single variable, models with ��2 < 4 occur 95.4% of
the time.We find that models with w0 >�0:8 have��2 >
4, consistent with the limits from the Markov chain. In
order to put limits on the equation of state as a function of
-7



FIG. 8 (color online). Limits on �DE�z� corresponding to
those on w�z� in Fig. 7.
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redshift, we proceed as follows: we compute w�z� for each
model and then take either the 95% confidence region
over all models in the chain (shaded area in Fig. 7) or
compute the highest w�z� for models with �2 <�2min � 4
(dashed line).

The shaded area is a priori the proper marginalized
result, representing the 95% limits on w�z�. However it is
worth remarking that this constraint may suffer from a
potential problem with the choice of the measure that we
introduce to integrate the marginalized parameters over
(see discussion in Sec. III). On the other hand the dashed
line relies only on the goodness-of-fit, and can be inter-
preted as an exclusion limit. In other words models with a
w�z� that enter the hatched area are a ‘‘bad’’ fit to the data.
This does not include any information about how likely
these models are, given the variation in the other parame-
ters. Our interpretation of this is as follows: if we want to
judge if a single, specific model is ruled out or not, then
we should be using the dashed line as an upper limit for
w�z�. If we are more interested in what we would expect
as the value of w�z�, given our additional knowledge about
the other variables, then we should look at the shaded
region as providing a limit on the equation of state
parameter. As we can see in Fig. 7, models with wm �
0 at z > 1 and with a fast transition occurring at z & 1 are
a bad fit to the data, being beyond the dashed blue line.
Physically this is because models where the transition
from wm to w0 occurs at redshifts z < 10 with wm >
�0:1 give rise to a non-negligible dark energy contribu-
tion at decoupling, which is strongly constrained by CMB
data. However, models with w0 <�0:8 and wm >�0:1
for which the transition occurs at redshift z > 10 are
consistent with the data as their early energy contribution
is negligible. As mentioned earlier, the apparent exclusion
of these models based on the likelihood for wm in Fig. 6 is
an artifact of our parametrization of at. This can also be
seen by noticing that the maximized results (dashed
curve) does not fall to zero for wm > 0, indicating that
there are acceptable models in this part of the parameter
space. However these models will be indistinguishable
from a pure �CDM scenario and are thus not very inter-
esting when we try to rule out one from the other.

The limits on w�z� can be reinterpreted as constraints
on the evolution of the dark energy density (see Fig. 8).
Models with �DE�z� above the dashed line are ruled out,
thus limiting the amount of dark energy available during
matter domination to be �DE�z�< 0:1 (see also [50,52]).

These results undoubtedly have an effect for quintes-
sence model building, and we will be investigating this
aspect in a future paper. For now though we restrict
ourselves to a few general remarks. The limits on w�z�
previously obtained allow us to constrain a large class of
quintessence models. For instance the exclusion plot in
Fig. 7 suggests that models with a perfect tracking behav-
ior, for which w � 0 during the matter era up to z � 4,
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and with a late-time fast transition, are disfavoured by
the data. As we have seen before, this is because �Q must
be negligible at early times. This class of models, for
some particular choice of the parameters of the scalar
field potential, include the two exponential potential [53]
and the Albrecht-Skordis model [54]. Of course, if they
leave their tracking behavior before then, the constraint is
weakened. These models satisfy the constraints only if
the slope of the scalar field potential, where the quintes-
sence is initially rolling down, is very steep and then
followed by a nearly flat region such that the equation
of state � �1 at the present time. On the other hand
models with a nonperfect tracking behavior and a slowly
varying equation of state with w0 <�0:8 are consistent
with the data. This is the case of quintessence models with
an inverse power law potential [7], supergravity inspired
potentials such as the one proposed in [55] or off-tracking
quintessence models, such as those studied in [56,57].
Models of late-time transition [58] which show features
of our best-fit model can also be consistent with the data.

D. Adding large-scale structure

One important question is whether the supernova data
contains any severe systematic effects that may strongly
bias our results. To test for this possibility, we replace the
supernova data by the 2dF galaxy redshift survey power
spectrum from Ref. [36]. The bias is added as a new, free
parameter. This means that only the form of P�k� is con-
strained, not its amplitude. The solid lines in Figs. 9 and
10 show the resulting likelihoods of the cosmological and
the dark energy parameters, respectively. Comparing
-8



FIG. 9 (color online). Constraints on the cosmological pa-
rameters when adding the 2dFGRS data to CMB and SN–Ia
data (blue dashed line) and when only using CMB+2dFGRS
(black solid line), compared to the CMB+SN-Ia case (yellow
shaded region).

FIG. 10 (color online). Constraints on the dark energy pa-
rameters when adding the 2dFGRS data to CMB and SN-Ia
data (blue dashed line) and when only using CMB+2dFGRS
(black solid line), compared to the CMB+SN-Ia case (yellow
shaded region).
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them to the CMB+SN-Ia results (shaded yellow regions),
we find that the results are consistent, but that the super-
novae allow us to place stronger constraints on �m, H0,
and w0 when combined with the CMB. There is no evi-
dence for any systematic problems in the SN-Ia data set.

Additionally, we can use the combination of all three
data sets. In [23] we found that the LSS does not add any
strong constraints, beyond those found with CMB+SN-Ia
data, as long as no constraints on the bias parameter are
imposed. As the dashed curve in Figs. 9 and 10 shows, this
is still the case, and the bias parameter is strongly corre-
lated with the clustering strength, �8. The constraints on
the bias found in [59] do not apply to our analysis, since
they were obtained by combining the SDSS 3D matter
power spectrum with the WMAP results on �8 which are
correct only for �CDM cosmologies.

For standard quintessence models one can thus either
use supernovae or large-scale structure data, with the
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supernova data giving the stronger constraints. The situ-
ation changes if additional parameters need to be con-
strained, e.g., nonzero neutrino masses. In this case it
is crucial to have very good clustering data on small
scales where the neutrinos impose a distinct signal on
P�k�.

E. Phantom energy models

Several authors have suggested that dark energy models
with a supernegative equation of state, for which w<�1,
can provide a better fit to the CMB and the SN-Ia data
[21,60–63]. On the other hand all these analyses are
biased in favor of phantom dark energy models since
they use a constant equation of state parameter [64,65].
In this scenario the dark energy violates the weak energy
condition (WEC) which leads to a number of problems
[66]. For this reason we feel that these models are dis-
favoured on theoretical grounds. Nevertheless it remains
an interesting question whether they are compatible with
the current cosmological observations? Constraining
time dependent phantom energy models allows us the
opportunity to test these models against the observational
data without the bias induced by assuming a constant
equation of state parameter. However the main problem
for this class of models is the existence of tachyon insta-
bilities which lead to an exponential growth of phantom
energy perturbations on small scales. In addition our
formalism does not allow us to follow the evolution of
-9
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the dark energy perturbations for phantom models which
cross the w � �1 value (see discussion in Appendix B).
On the other hand we can account for the perturbations in
models which violate the weak energy condition at all
times.

In order to be self-consistent we therefore extend our
analysis to two different classes of dark energy models,
those which always satisfy/violate the WEC and those
which cross the WEC boundary value w � �1. The latter
are assumed to be homogeneous and consequently our
analysis for these class of models accounts only for the
effects they produce on the background expansion.
Although this is not physical, we are unaware of a unique
prescription for handling these cases. We therefore sug-
gest that the reader sees this section more as a speculative
treatment. It is interesting to note that in these ‘‘toy’’
phantom models, the allowed values of the cosmological
parameters do not change very much, in that they lie
FIG. 11 (color online). Constraints on the cosmological pa-
rameters for all phantom models (solid lines) and those that
respect the weak energy condition (w � 1) (shaded), compared
to the �CDM models (dashed).

FIG. 12 (color online). Constraints on the dark energy pa-
rameters for all phantom models (red dashed lines) and those
that respect the weak energy condition (w � �1) (solid black
line). The dotted line is from models that do not cross w � �1.
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somewhere between the �CDM and the QCDM case
(see Fig. 11).

The models which cross w � �1 provide a slightly
improved best fit. In particular we find a best-fit model
with �2 � 1601. It has w0 � �2:0 and wm � �0:7, i.e.,
the equation of state crosses over that of the cosmological
constant, p � ��. This behavior is most likely driven by
the supernova data, as we find a similar result if we only
use this data set [27]. In Fig. 12 we plot the 1D marginal-
ized likelihoods for the dark energy parameters.

For the standard parametrization of at and �, the
median for w0 is �1:1 and for wm is �0:8. The 95%
confidence intervals are �2:7<w0 <�0:77 and �8:3<
wm <�0:19. For the models that do not cross w � �1,
but always remain either with w<�1 or w � �1, the
results give the median for w0 to be �1:0 and for wm to be
�0:97. The overall best-fit model is the same as for the
standard QCDM models, but as the above median values
show there are about the same number of accepted models
on both sides of the divide.

Thus there is no evidence for any deviation from
�CDM in this extended framework.

The parameter which does show some change is the
clustering amplitude, �8, which lies now in the 95%
confidence interval 0:66<�8 < 1:24 as opposed to the
dark energy models satisfying the weak energy condition
w � �1 for which 0:53<�8 < 1:07.

The limits on w�z� are shown in Fig. 13. The shaded
regions correspond to all models which do not cross w �
-10



FIG. 13 (color online). Constraints on the dark energy equa-
tion of state parameter w�z�. The shaded area corresponds to
models which do not cross w � �1 and for which perturba-
tions are taken into account, while the hatched area corre-
sponds to all models, including those crossing w � �1, but
without perturbations.
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�1 and for which perturbations are included, while the
hatched area corresponds to all models which cross
w � �1.

V. CONCLUSIONS AND OUTLOOK

In this paper we have made the first attempt to
constrain dynamical models of dark energy by combin-
ing CMB, 2dFGRS and type-Ia supernova data. On
the positive side, we find that by allowing the dark en-
ergy equation of state to vary as a function of time, we
do not introduce any strong degeneracies that would
adversely affect the standard cosmological param-
eter estimation, apart from perhaps a mild degener-
acy between the reionization optical depth, � and
the redshift of the commencement of acceleration.
Its effect is to alter the ISW contribution to large an-
gles and hence, after COBE normalization uniformly
alters the heights of the peaks [23]. Breaking this
degeneracy by some means will significantly en-
hance our ability to constrain dark energy dynam-
ics. This might be done through a number of routes:
other astrophysical constraints on �; by probing the
redshift of acceleration using ISW-LSS correlations; by
measuring the non-Gaussianity of CMB from weak lens-
ing induced by structure formation [67] or by beating
cosmic variance using cluster polarization at high red-
shift [68].
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The remaining cosmic parameters are only mildly
affected by the new freedom given to dark energy and
are similar to their �CDM counterparts. On the down
side, with regard to the dark energy parameters, the
currently available data set means that only the present
value of the equation of state w0 is well constrained. We
find w0 <�0:8 at 95% confidence level. By studying the
behavior of w�z�, we conclude that the constraints become
weak for any redshifts larger than about unity.

However, there are some clear results that emerge. For
example in the large class of Quintessence models that
have periods of perfect tracking behavior, i.e., w � 0
during the matter dominated era, only those which track
for during the period z * 5 are acceptable. Quintessence
models with a very late departure from tracking, or any
dark energy models with a late transition from a high
value of w, are disfavoured as a consequence of the fact
that early contributions of dark energy are constrained to
be negligible.

We have also found a point of practical importance in
the hunt for dark energy dynamics. Since only rapidly
varying models at low redshift have a distinct signature
as opposed to �CDM [28] including such models in ones
likelihood analysis is very important, otherwise the re-
sults will be biased towards no detection of dynamics.
However these rapidly varying models are the most sus-
ceptible to numerical errors, which we have found can be
as large as 5%. We therefore have used a code specially
adapted to handle these ‘‘kink’’ cases, and this is de-
scribed in Appendix C.

We have also studied toy models for which w<�1 is
possible. In this case the perturbations are generically
unstable, and so we turned them off for any model which
enters w<�1 at any point. In this case models that have
w slightly larger than �1 at early times and show a rapid,
late transition to a supernegative equation of state, w &

�2, are slightly, but not significantly, preferred. In a
slightly more physical model where w � �1 cannot be
crossed, allowing us to compute the perturbations, we
find no preference for these ‘‘phantom’’ models.

Overall, we conclude that dynamical models of dark
energy are by no means ruled out and provide a slightly
better fit to current data than �CDM. The latter is still
perfectly acceptable and, given its simplicity, seems in
many ways the preferred model at the current time.
Whether observations and theoretical prejudice maintain
this conclusion over the coming years will have a pro-
found impact on our understanding of fundamental
physics.
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APPENDIX A: PARAMETRIZATION OF THE
MODELS

A simple way of describing a dark energy component is
to consider a constant equation of state w. However such
an approach suffers from a number of drawbacks. In fact
assuming w to be constant introduces a bias in the analy-
sis of cosmological distance measurements with the con-
sequence that large negative values of w are favored if the
dark energy is time dependent [64,65]. The effect of this
bias has to be carefully taken into account particularly
when models of phantom energy [60,66], for which w<
�1, are constrained. A possible way to address this issue
is to constrain a time dependent parametrization of w�z�.
In fact the time dependence of the dark energy equation
of state completely specifies the evolution of the dark
energy density through the continuity equation. Several
formula have been proposed in the literature [69–72] all
with limited applicability. They are typically based on
Taylor expansions in some variable (e.g., z, log�1� z�, or
1� a). However, tracking quintessence models exhibit
the important property that before the universe begins
to accelerate the dark energy has an equation of state
which mimics that of the dominant energy component.
Today of course w<�1=3, so there must be a transition
between the value at high redshifts and that at the present
time at some critical redshift, zt, or equivalently scale
factor, at � 1=�1� zt�, with a thickness determined by a
parameter �. In fact, this physically motivated parame-
trization bears a striking resemblance to the tanh�z� kink
soliton solution in spirit.

To compare various proposals we write it as:

w�a� � w0 � �wm � w0���a; at;��; (A1)

where � determines precisely how the transition from
w � wm to w � w0 occurs. Two proposals for � have
been made in the literature. The original one[17,23] uses
z instead of a:

��z; zt;�� �
�1

1� ez�zt=�
(A2)

while a different proposal (and the one that we use here)
was made in [26], namely:

��a; at;�� �
1� eat=�

1� e��a�at�=�
�
1� e��a�1�=�

1� e1=�
: (A3)

The latter form has the advantage of being more stable
numerically (since a is bounded in the interval �0; 1�
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while redshifts up to z � 104 must be considered in the
first form) and satisfies w�a � 1� � w0 whereas the same
is only true for sufficiently rapid transitions in Eq. (A2).
Because of this we use the latter form (A3) in this paper.

Importantly, this form can also be extended [26] to
allow for a different value of w during radiation domina-
tion so that it can represent tracking models faithfully at
all redshifts in terms of five physical parameters: the
value of the equation of state today w0, during the matter
era wm and during the radiation era wr, while the time
dependence is specified by the value of the scale factor at
where the equation of state changes from wm to w0 and the
width of the transition �. Since big bang nucleosynthesis
bounds limit the amount of dark energy to be negligible
during the radiation dominated era [73] the extra freedom
is not particularly important and we further reduce our
parameter space by setting wr � wm yielding the transi-
tion function (A3).

Written out fully then, the equation of state we use in
this paper is Eq. (4) of Ref. [26]:

w�a� � w0 � �wm � w0� �
1� eat=�

1� e��a�at�=�

�
1� e��a�1�=�

1� e1=�
: (A4)

The dark energy parameters specified by the vector
WDE � �w0; wm; at;�� with the parametrization given
by Eq. (A4) can account for most of the dark energy
models proposed in the literature (see [26] for a detailed
discussion). For instance, models characterized by a
slowly varying equation of state, such as supergravity
inspired models [55], correspond to a region of our pa-
rameter space for which 0< at=�< 1, while models with
a rapid variation of w�a�, such as the two exponential
potential [53] or the Albrecht-Skordis model [54], corre-
spond to at=�> 1. Models with a simple constant equa-
tion of state are given by w0 � wm. We can account also
for the so-called phantom energy models for which
w0; wm <�1. The cosmological constant model corre-
sponds to the following cases: w0 � wm � �1 or w0 �
�1 and at & 0:1 with at=�> 1.
APPENDIX B. COSMOLOGICAL EVOLUTION OF
SCALAR FIELDS

The cosmological evolution of minimally coupled
quintessence field Q is described by the Klein-Gordon
equation,

Q00 � 2
a0

a
Q0 � a2

dV
dQ

� 0; (B1)

the prime denotes derivatives with the respect to confor-
mal time, V�Q� being the scalar field potential and
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FIG. 14 (color online). Relative difference of CMB spectrum
for a rapidly varying dark energy model computed with
CMBEASY, KINKFAST 1.0.0 and CMBFAST 4.5.1.
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�
a0

a

�
2
�
8*G
3

�
�m � �r �

Q02

2a2
� V�Q�

�
; (B2)

where �m and �r are the matter and radiation energy
density, respectively. The equation of motion for the
quintessence fluctuations at the scale k in the synchronous
gauge is given by

,Q00 � 2
a0

a
,Q0 �

�
a2

d2V

dQ2 � k2
�
,Q � �

1

2
Q0h0; (B3)

where h is the metric perturbation. Instead of specifying
the scalar field potential V�Q� the conservation of the
energy momentum tensor allows us to describe a scalar
field as a perfect fluid with a time dependent equation of
state w�a�. In such a case the dark energy density evolves
according to

�DE�a� �
3H2

0

8*G
�DE exp

�
�3

Z 1

a

1� w�s�
s

ds
�
; (B4)

where H0 is the value of the Hubble parameter and�DE is
the dark energy density.We can describe the perturbations
in a dark energy fluid specified by w�a� using Eq. (B3)
with the second derivative of the scalar field potential is
written in terms of the time derivatives of the equation of
state w�a� [74],

a2
d2V

dQ2 � �
3

2
�1� w�

�
a00

a
�

�
a0

a

�
2
�
7

2
�
3

2
w
��

�
1

1� w

�

�
w02

4�1� w�
�

w00

2
� w0 a

0

a
�3w� 2�

�
: (B5)

For models with an equation of state rapidly evolving
towards w � �1 the Eq. (B5) is undefined since w �
�1 and w0; w00 � 0 after the transition to �1. This cor-
responds to the fact that at the classical level the vacuum
state has no perturbations and quantities such as the sound
speed are not defined anymore. When such conditions are
realized by one of our models in the MCMC chain, we set
the dark energy density perturbations to zero by the time
at which w � �1. On the other hand Eq. (B5) becomes
singular at w � �1 if w0; w00 � 0, which could be the case
for phantom dark energy models with w�a� crossing the
value �1. On the contrary perturbation in a time depen-
dent phantom fluid with w<�1 at all the time can be
described in our framework by switching the negative
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sign in front of the second derivative of the potential in
Eq. (B3).

APPENDIX C: THE BOLTZMANN CODE -
KINKFAST 1.0.0

We have modified the CMBFAST 4.5.1 to implement
our parameterization of dark energy (KINKFAST 1.0.0).
We have tested the numerical accuracy of our code by
comparing the power spectra of different dark energy
models with those computed by using CMBEASY [75].
We find a perfect agreement within 1%. On the other hand
we notice that the current version of CMBFAST 4.5.1,
which implements the dark energy by reading a redshift
sampled equation of state, leads to wrong spectra in the
case of dark energy models with a rapid evolution in the
equation of state (see Fig. 14). The cause of such a dis-
crepancy is that the dark energy density is obtained
through a splint integration procedure of the sampled
equation of state. We find this method to be of poor
accuracy. Without an analytic formula for w�z�, it is
more reliable to derive a polynomial fitting function for
the sampled equation of state and integrate the corre-
sponding polynomial form with standard numerical rec-
ipes [76] integration subroutines such as rombint.
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