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Primordial bispectrum information from CMB polarization

Daniel Babich* and Matias Zaldarriaga†

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
and Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA

(Received 29 August 2004; published 15 October 2004)
*Electronic
†Electronic

1550-7998=20
After the precise observations of the cosmic microwave background (CMB) anisotropy power
spectrum, attention is now being focused on higher order statistics of the CMB anisotropies. Since
linear evolution preserves the statistical properties of the initial conditions, observed non-Gaussianity
of the CMB will mirror primordial non-Gaussianity. Single-field slow-roll inflation robustly predicts
negligible non-Gaussianity so an indication of primordial non-Gaussianity will suggest alternative
scenarios need to be considered. In this paper we calculate the information on primordial non-
Gaussianity encoded in the polarization of the CMB. After deriving the optimal weights for a cubic
estimator we evaluate the signal-to-noise ratio �S=N� of the estimator for Wilkinson Microwave
Anisotropy Probe, Planck, and an ideal cosmic variance limited experiment. We find that when the
experiment can observe CMB polarization with good sensitivity, the sensitivity to primordial non-
Gaussianity increases by roughly a factor of 2. We also test the weakly non-Gaussian assumption used to
derive the optimal weight factor by calculating the degradation factor produced by the gravitational
lensing induced connected four-point function. The physical scales in the radiative transfer functions
are largely irrelevant for the constraints on the primordial non-Gaussianity. We show that the total
�S=N�2 is simply proportional to the number of observed pixels on the sky.
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I. INTRODUCTION

Recent advances in observational cosmology have led
to unprecedented constraints on the parameters of the
cosmological model. One of the outstanding goals in the
field is to determine the mechanism responsible for the
seeds that lead to the structure in the observable universe.
The current data are consistent with an initial scale
invariant and adiabatic spectrum of primordial curvature
perturbations which existed outside the horizon at recom-
bination. These observations are in agreement with the
predictions of single-field slow-roll inflationary models,
but various alternative scenarios still remain viable.

In the next decade we will see further advances in
observations that will constrain many aspects of the
primordial seeds. The spectral index of their power spec-
trum will be measured more accurately and over a wider
range of scales by a combination of cosmic microwave
background (CMB) and other large scale structure probes.
Dedicated CMB polarization instruments will establish
whether or not there is a stochastic background of gravi-
tational waves as predicted by models where inflation
happens at the grand unified theory scale. The constraints
on Gaussianity, which are the focus of this paper, will also
improve significantly.

The Gaussianity of the primordial fluctuations has
received a lot of attention lately mainly because in stan-
dard single-field slow-roll inflation models the deviations
from Gaussianity of the perturbations can be fully calcu-
lated and are directly related to the departures from scale
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invariance and thus predicted to be very small [1], most
probably unobservable in the CMB. Thus constraints on
the Gaussianity can help distinguish simple inflation
models from the various alternatives. Most of the alter-
natives to single-field slow-roll inflation solve the stan-
dard cosmological problems in the same way, by invoking
a period of accelerated expansion in the very early uni-
verse (see [2] for a counterexample). They differ however
in the characteristics of the produced perturbations. Just
as in slow-roll models the perturbations arise from quan-
tum fluctuations during inflation but the detailed physics
is not the same. In some of the models the dynamics of
the inflaton field is fundamentally changed by the pres-
ence of higher derivative terms in the Lagrangian which
can even lead to an inflaton field that is not rolling
slowly [3–6]. Another possibility are models in which
fluctuations in another field different from the inflaton are
responsible for the adiabatic fluctuations we observe to-
day [7,8].

These alternative models usually make distinctive pre-
dictions about the shape of the spectrum of primordial
perturbations, the amplitude of the gravity wave back-
ground, and the departures from Gaussianity as de-
scribed, for example, by the three-point function. For
scale invariant perturbations the three-point function in
Fourier space or bispectrum is effectively a full function
of two variables; thus it could contain a wealth of infor-
mation about the primordial seeds. The different alterna-
tives to slow-roll inflation not only predict different levels
of non-Gaussianities but also different shapes for the
bispectrum as a function of triangle configuration.
Moreover one can make a very definite and model inde-
pendent statement about the shape of the three-point
05-1  2004 The American Physical Society
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function in the so-called collapsed limit. The collapsed
limit corresponds to a three-point function where one of
the Fourier modes has a much longer wavelength than the
other two. In that limit the three-point function should go
to zero, unless more than 1 degree of freedom is dynami-
cally relevant during inflation [9]. Other consistency re-
lations can be obtained involving the three-point function
and the amplitude and slope of tensor perturbations [10].

Thus a detailed measurement of the three-point func-
tion could provide very interesting information on the
mechanism responsible for generating the primordial
curvature perturbations. In this work we will use the
so-called ‘‘local model’’ for the non-Gaussianities and
specify the amplitude of non-Gaussianity by the parame-
ter fNL. In this model the gravitational potential, ��x�,
can be expressed in terms of a Gaussian gravitational
potential, �g�x�, as

��x� � �g�x� � fNL��
2
g�x� � h�2

g�x�i	: (1)

The bispectrum in this model can be written as

h��k1���k2���k3�i � 2fNL�2��3	�3��k1 � k2 � k3�


 �P�k1�P�k2� � cyc:	; (2)

where P�k� is the power spectrum.
In general the primordial bispectrum cannot be written

as in Eq. (2) and so constraints on the fNL parameter do
not automatically apply to all models of primordial non-
Gaussianity [11]. Nevertheless, we can list approximate
values of fNL that are expected in the various alternatives
to single-field slow-roll inflation in order to estimate the
detectability of these various models. For comparison in
slow-roll inflation models one expects an fNL � 0:05 [1].
In models where higher derivative operators are impor-
tant for the dynamics of the field one can expect results
ranging from fNL � 0:1 in models where high derivative
operators are suppressed by a low UV cutoff [4] to fNL �
100 in models based on the Dirac-Born-Infeld effective
action. A recent idea called ghost inflation, where infla-
tion occurs in a background that has a constant rate of
change instead of a constant background value, can also
give fNL � 100 [6]. The effect of additional light fields on
the efficiency of reheating can lead to inhomogeneities in
the thermalized species [7]; this mechanism was shown
to produce an fNL � 5 [12]. Another example is the
curvaton model where isocurvature fluctuations in a sec-
ond light scalar field during inflation generate adiabatic
fluctuations after the inflationary epoch is completed;
these can cause large non-Gaussianity, fNL � 10 [8].

There are two additional sources of non-Gaussianity
that although not primordial in origin could be observed
first by future experiments. The first and perhaps the most
important for observations is secondary anisotropies such
as gravitational lensing, the thermal and kinetic Sunyaev-
Zeldovich (SZ) effects, and the effects of a patchy reio-
nization. The second source are non-Gaussianities related
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to the nonlinear nature of general relativity. The expec-
tation is that this latter source will lead to fNL � 1 (e.g.,
[13,14]), although there is no full calculation of the tem-
perature and polarization anisotropies of the CMB to
second order in the curvature perturbations. In [15] re-
sults were presented for the collapsed limit, where the
calculation simplifies enormously. It that case fNL � 0:7
was obtained although the shape dependence of the bis-
pectrum was different from that of the fNL model.
Our brief overview of the current models of non-
Gaussianity can be supplemented by the comprehensive
review article [16].

While some of the aforementioned models of the early
universe are speculative, the second order single-field,
slow-roll inflation and nonlinear radiative transfer calcu-
lations should be taken as definite predictions of standard
cosmology. It is interesting to determine how close we are
to observing any of these effects. Currently the best
constraints, which come from the Wilkinson Microwave
Anisotropy Probe (WMAP) [17], imply �58 < fNL <
134 (95% C.L.) [18].

Here we will focus on constraints on fNL derived from
observations of the CMB since previous work has ana-
lyzed the relative ability of standard cosmological obser-
vations to detect non-Gaussianity and determined that
observations of the CMB are superior [19]. The theoreti-
cal ability of CMB temperature maps to constrain fNL

has been determined for a Cosmic Background Explorer
normalized Einstein–de Sitter (EdS) model [20]. It was
shown that the minimum fNL detectable by WMAP is 20,
Planck is 5, and an ideal experiment (no noise and infini-
tesimal beamwidth) is 3. The limiting factor in the case of
an ideal experiment was taken to be the effect of gravi-
tational lensing, which increases the estimator noise
without affecting the CMB bispectrum signal. Gravi-
tational lensing adds to the cosmic variance portion of
the noise because the particular realization of the large
scale structure that lenses the CMB is also a priori un-
known. Other secondary sources of anisotropies will have
a similar effect.

Since it appears that we are close to being able to detect
some of the interesting non-Gaussian effects mentioned
above, it is important to explore other sources of infor-
mation beyond the CMB temperature fluctuations to see if
the minimum detectable value is lowered when the new
information is included. The CMB is linearly polarized
and the E type polarization is sensitive to the primordial
curvature fluctuations. Therefore in this paper we will ask
how much stronger would the constraints on fNL be if
information from the E polarization is included. Since B
polarization cannot be directly generated by the scalar
primordial curvature fluctuations we will ignore it in this
paper.

As we mentioned above, there are two ways in which
secondary anisotropies can complicate and degrade our
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ability to constrain primordial non-Gaussianity. If the
source of secondary anisotropies being considered pro-
duces a three-point function it might bias the estimator of
primordial non-Gaussianity. In practice, a model of pri-
mordial non-Gaussianity is assumed and a reduced bis-
pectrum template is calculated. The distinct shape of the
primordial reduced bispectrum may allow it to be dis-
tinguished from the other bispectra [20], assuming it can
be detected with a sufficiently high signal-to-noise ratio.
In addition secondaries add fluctuations which increase
the variance estimators of the three-point function with-
out contributing to the signal. In fact the variance of the
estimator is related to the six-point function of the tem-
perature field. The six-point function can be expressed in
terms of its unconnected Gaussian contribution: permu-
tations of three two-point functions, the product of a two-
and a connected four-point functions, and a connected
six-point function. Previous work on this subject has
ignored any non-Gaussian contribution to the six-point
function.

The secondary anisotropy that will be considered in
detail is gravitational lensing. Gravitational lensing does
not produces a three-point function, so it will not bias our
estimator of the primordial bispectrum. However it will
produce corrections to the two-point function and create
four- and six-point functions even if the CMB anisotro-
pies are perfectly Gaussian [21,22]. Also, lensing will
create small scale power in the CMB two-point function
which acts like noise in the analysis of primordial non-
Gaussianity. All information about fNL is eliminated on
scales where this effect dominates; this limits the mini-
mum fNL that an ideal experiment can detect to be fNL �
3 for the EdS model [20]. Fortunately the gravitational
lensing effect in a EdS cosmology is much larger than the
gravitational lensing effect in a �CDM concordance cos-
mology [23], so gravitational lensing will be less impor-
tant in our calculations. For reference the lensed and
unlensed CMB power spectra are plotted in Fig. 1.
0 1000 2000 3000 4000 5000

FIG. 1 (color online). The lensed (dashed, red line) and unlensed
the temperature power spectra are on the left and the E polarizati
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Lensing increases the power in the temperature (polar-
ization) anisotropies by a factor of 2 at l � 4200 (l �
5000). However we will find that the four-point function
starts reducing the signal to noise of the bispectrum on
significantly larger scales.

In this work we will ignore other secondary anisotro-
pies such as the thermal and kinetic Sunyaev-Zeldovich
effects and the Ostriker-Vishniac effect. The dominant
secondary anisotropy, the thermal Sunyaev-Zeldovich
effect, has a characteristic spectral shape that will allow
it to be separated. In general the physics of these second-
ary anisotropies requires a nonlinear analysis using hy-
drodynamical simulations; we will leave a detailed
analysis of the effects of these secondary anisotropies
to a future work [24]. These secondary anisotropies also
produce polarization in the CMB, and fortunately the
amplitude of the polarization secondary anisotropies is
much lower than the corresponding temperature anisot-
ropies and will be less of a problem.

Finally, although the E and B polarization modes most
directly correspond to the primordial curvature fluctua-
tions and gravity waves, they are not directly measured in
CMB experiments. The Stokes’ parameters Q and U are
measured and then decomposed into E and B. While this
decomposition is perfectly well defined for a noise free
experiment observing the full sky, ambiguities arise in
practical experimental situations [25]. Fortunately the
majority of the information on fNL comes from small
scales, where this ambiguity is less of a problem if we
assume the beam is oversampled in order to reduce the
effects of power aliasing that can also mix E and B modes
[26,27]. In this paper we will ignore these complications
in the decomposition of the Stokes’ parameters.

The paper is organized as follows: in Sec. II we derive
the optimal estimator when polarization information is
included in the non-Gaussianity measurements, provide
numerical results for the improved constraints on fNL,
and quantify the reduction in the S=N due to the
0 1000 2000 3000 4000 5000

(solid, black line) Cl for the concordance �CDM cosmology;
on power spectra are on the right.
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connected four-point function contribution to the noise.
In Sec. III we analytically reproduce our calculations for
toy models that do not include the effect of radiative
transfer or the curvature of the sky, but develop intuition
about our numerical results. We will conclude in Sec. IV
with a discussion of our results. In this paper we assume
the standard �CDM cosmology with �v � 0:73,
�b � 0:044, �c � 0:226, �8 � 0:8, and H0 �
72 km s�1 Mpc�1 with a scale invariant primordial power
spectrum and normalized to the 1-yr WMAP data [17,28].
Also we do not include the effects of reionization nor the
late-time integrated Sachs-Wolfe effect. The late-time
integrated Sachs-Wolfe effect affects only large scales
which do not contribute much to the total signal.
II. POLARIZATION

A. Optimal estimator

The signal-to-noise ratio �S=N� defined in [20] can be
generalized to include polarization information by find-
ing the optimal weight functions for a cubic estimator.
First we form the estimator of the CMB temperature and
polarization bispectrum signal as

Ŝ �
X
i;j;k

X
fl;mg

Wi;j;k
fl;mg

ai
l1m1

aj
l2m2

ak
l3m3

; (3)

where the indices i, j, and k run over T and E, fl; mg

indicates all three li, mi and Wi;j;k
fl;mg

is the weight function
we will optimize. The expectation value of the estimator
is

hSi �
X
i;j;k

X
fl;mg

Wi;j;k
fl;mg

Gm1m2m3
l1l2l3

bi;j;k
l1l2l3

; (4)

where following the standard notation in the literature we
separate hal1m1

al2m2
al3m3

i into the reduced bispectrum
bl1l2l3 and the gaunt integral,

Gm1m2m3
l1l2l3

�

��������������������������������������������������������
�2l1 � 1��2l2 � 1��2l3 � 1�

4�

s  
l1 l2 l3
0 0 0

!




 
l1 l2 l3
m1 m2 m3

!
; (5)

which characterizes the angular dependence of the bis-
pectrum. The sum over i; j; k includes all eight possible
bispectra fTTT; TTE; TET; ETT; TEE;ETE;EET; EEEg.
In the weakly non-Gaussian limit we neglect the contri-
bution of the primordial bispectrum to the variance of Ŝ,
which becomes

hN2i �
X
i;j;k

X
p;q;r

X
fl;mg

X
ft;sg

Wi;j;k
fl;mg

Wp;q;r
ft;sg �Cov	

i;j;kjp;q;r
fl;mjt;sg ; (6)

here we have defined a covariance matrix between the
eight possible bispectra for each value of fl; mg and ft; sg
as
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�Cov	i;j;kjp;q;r
fl;mjt;sg � ha�i�

l1m1
a�j�

l2m2
a�k�

l3m3
a�p�

t1s1a
�q�
t2s2a

�r�
t3s3i: (7)

After restricting the indices such that l1 � l2 � l3 and
t1 � t2 � t3, Eq. (7) is evaluated using Wick’s theorem in
terms of CT

l , CE
l , or CX

l , which are the temperature,
E-mode polarization, and cross-correlation power spec-
tra, respectively. It is necessary to include permutation
factors when some of the l’s are equal; we include a factor
of 2 if two l’s are equal and six when all three l’s are equal
[29]. We include instrument noise in the standard fashion
[30] and adopt parameter values (beam width and pixel
noise) that are relevant for WMAP and Planck [31].

Once we have chosen the ordering of the multiple
indices, the evaluation of Eq. (7) produces Kronecker
	’s which allow us to rewrite the variance as

hN2i �
X
i;j;k

X
p;q;r

X
fl;mg

Wi;j;k
fl;mg

Wp;q;r
fl;mg

�Cov	i;j;kjp;q;r
l1;l2;l3

: (8)

Defining the �S=N�2 as hSi2=hN2i we find the optimal
weights by maximizing this ratio:

2
	hSi
	W

�
hSi

hN2i

	hN2i

	W
; (9)

where

	hSi
	W

� Gm1m2m3
l1l2l3

bi;j;k
l1l2l3

(10)

and

	hN2i

	W
� 2

X
p;q;r

Wp;q;r
fl;mg

�Cov	i;j;kjp;q;r
l1;l2;l3

: (11)

It is clear that Eq. (9) is satisfied when we choose

Wp;q;r
fl;mg

�
X
ijk

Gm1m2m3
l1l2l3

bi;j;k
l1l2l3

�Cov�1	
i;j;kjp;q;r
l1;l2;l3

: (12)

Now defining the quadratic form

�qTC�1q�l1l2l3 �
X
i;j;k

X
p;q;r

bi;j;k
l1l2l3

�Cov�1	
i;j;kjp;q;r
l1;l2;l3

bp;q;r
l1l2l3

;

(13)

where q is a vector that contains all the possible bispectra,
and using the summation properties of the Wigner 3j
symbols we find the formula for the S=N when we opti-
mally include both temperature and polarization infor-
mation about the observed CMB,�

S
N

�
2
�

X
2�l1�l2�l3�lmax

�2l1 � 1��2l2 � 1��2l3 � 1�

4�




 
l1 l2 l3
0 0 0

!
2

�qTC�1q�l1l2l3 : (14)

This is a straightforward generalization of the formula
in [20], where the quadratic form in Eq. (14) is simply
replaced by b2

l1l2l3
=Cl1Cl2Cl3 .
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B. Reduced bispectrum

We follow the notation of [20] in our calculation of
polarization and cross-correlation reduced bispectra.
Working to linear order in radiative transfer, the CMB
temperature and polarization fluctuations can be ex-
pressed as

aj
lm � 4�il

Z d3k

�2��3
�j

l �k�Y
�
lm�k̂���k�; (15)

where j � T; E corresponds, respectively, to either tem-
perature or polarization, ��k� is the primordial curvature
fluctuation, and �i

l�k� is the radiation transfer function
calculated by CMBFAST. We include the relevant factor of����������������������������������
�l � 2�!=�l � 2�!

p
in the polarization transfer function.

The reduced bispectrum, defined in Eq. (4), can be
expressed as

bi;j;k
l1l2l3

� 2fNL

Z
r2dr�%i

l1
�r�%j

l2
�r�&k

l3
�r�

� %i
l1
�r�&j

l2
�r�%k

l3
�r� � &i

l1
�r�%j

l2
�r�%k

l3
�r�	; (16)

where
FIG. 2 (color online). Upper left panel: A plot of %T
l �r� vs l for

dashed line), and r � '0 � 1:4'R (blue, dotted line). Upper right p
lower right panel: same, but for &E

l �r�.
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%i
l�r� �

2

�

Z
k2dkP�k�jl�kr��i

l�k�; (17)

and

&i
l�r� �

2

�

Z
k2dkjl�kr��i

l�k�; (18)

again where i � T or E. In our notation %l�r�, &l�r� is,
respectively, the equivalent of blin

l �r�, bnon
l �r� in the nota-

tion of [20]. Defining 'O as the present day value of
conformal time, 'R as the value at decoupling, and rD �
'0 � 'R as the comoving distance to the surface of last
scattering, the region of integration for r is over the sound
horizon (from 'O to '0 � 2'R).

In Fig. 2 we see features familiar to the CMB tem-
perature anisotropy and polarization power spectra. The
upper level displays the temperature and polarization
%l�r�’s. On large scales %T

l �r� approaches a constant value
independent of the radial distance within the sound hori-
zon. The dominant mechanism on these scales is the
Sachs-Wolfe effect so the radiation transfer function ap-
proaches �T

l �k� � �jl�krD�=3. Since there is no polariza-
tion Sachs-Wolfe effect, we see %E

l �r� ! 0 on large scales.
values of r � '0 � 'R (black, solid line), r � '0 � 0:6'R (red,
anel: same but for %E

l �r�; lower left panel: same, but for &T
l �r�;

-5



FIG. 4 (color online). Plotted is �S=N�f�1
NL vs lmax for an ideal

experiment (no instrument noise and infinitesimal beam size)
without the effects of gravitational lensing for TTT (dot-
dashed, green line), EEE (dashed, red line), TTT � TTE
(dashed, light blue line), TTT, TTE � TEE (dotted, blue
line), and all bispectra (solid, black line).

FIG. 3 (color online). All figures are �S=N�f�1
NL vs lmax excluding the effects of gravitational lensing for TTT (dot-dashed, green

line), EEE (dashed, red line), TTT � TTE (dashed, light blue line), TTT, TTE � TEE (dotted, blue line), and all bispectra (solid,
black line). Left panel: WMAP; right panel: Planck.
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As we approach smaller scales we see the analog of the
familiar acoustic oscillations.

C. Numerical results

The curve of S=N vs lmax will give an estimate of the
minimum fNL measurable when both temperature and
polarization information, as well as their cross correla-
tions, are included in the analysis. The S=N is linear in
fNL, so we can determine the minimum statistically ob-
servable fNL by requiring S=N � 1. The CMB is only
partially polarized so in experiments with relatively large
noise it should be easier to measure bispectra with fewer
E’s than those involving three E’s. For example WMAP
will measure TTE much better then EEE. Therefore it is
practical to calculate the change in the constraint on fNL
as we include bispectra with one additional E. In Fig. 3
the S=N is forecasted for WMAP and Planck excluding
the effects of gravitational lensing and in Fig. 4 for an
ideal experiment (no instrument noise, infinitesimal
beamwidth) also excluding the effects of gravitational
lensing.

Using only temperature information WMAP will be
able to detect an fNL of 13.3 and Planck an fNL of 4.7,
thus approximately recovering the results of the previous
analysis [20]. Our results are summarized in Table I.
When the CMB polarization is measured with good
sensitivity, it appears that the inclusion of polarization
roughly increases the sensitive of the experiments by a
factor of 2. For an ideal experiment the minimum fNL is
lowered to 1.6, which is close to the predicted size of the
corrections due to second order corrections to gravita-
tional and hydrodynamical evolution of the CMB.

In Fig. 4 we see the S=N curve continues to rise with a
constant slope for the case of an ideal experiment. One
might wonder why the physical scales in the radiation
transfer functions, like the sound horizon or silk length at
the surface of last scattering, do not strongly influence the
083005
slope of the S=N curve as lmax increases. The silk length is
defined as the average distance a photon random walks
before recombination. This signals a breakdown of tight
coupling between the baryons and the photons that effec-
tively smooths out the fluctuations on small scales. One
could worry that this effectively introduces an average
that through the central limit theorem would reduce the
level of non-Gaussianity of the resulting anisotropies,
however the linear growth of S=N with lmax in Fig. 4
contradicts this intuition. In Sec. III we will use toy
-6



TABLE I. Minimum values fNL detectable with signal-to-
noise ratio of one using stated bispectra with WMAP, Planck,
and an ideal experiment.

Experiment TTT EEE TTT, TTE TTT, TTE, TEE All

WMAP 13.3 314 11.2 10.9 10.9
Planck 4.7 8.9 3.4 3.0 2.9
Ideal 3.5 2.6 2.2 1.8 1.6

PRIMORDIAL BISPECTRUM INFORMATION FROM CMB . . . PHYSICAL REVIEW D 70 083005
models in an attempt to better understand our unexpected
results.

D. Gravitational lensing corrections

As we mentioned in the Introduction, the variance of
the bispectrum estimator is the six-point function which
includes contributions from connected two-, four-, and
six-point functions produced by gravitational lensing. It
is straightforward to include the influence of the two
point, as the unlensed CMB power spectra are simply
replaced with their gravitationally lensed counterparts
in the expressions for the variance of the estimator.
This approach has been taken in [20]. The four-point
function can become large on small scales [21,22], so it
is important to check how our results change once these
contributions are included. In this subsection we will
investigate the effects of the gravitational lensing con-
nected four-point function on the S=N of the estimator we
have defined. Since the creation of a connected four-point
function is the same order in the lensing potential expan-
sion as the creation of small scale power in the two-point
function we will treat the two effects together in this
subsection.

In principle we could also include the effects of the
connected six-point function induced by gravitational
lensing. The leading order (in the projected lensing po-
tential) contribution to the connected six-point function
is fourth order in the lensing potential and thus it should
be subleading. In addition, to this order in the lensing
potential expansion there are extra terms in the connected
two- and four-point functions that should be included.
Here we will ignore these terms and focus on those second
order in the lensing potential.

We derived the optimal weights assuming the six-point
function could be evaluated solely in terms of permuta-
tions of two-point functions. Once we include the contri-
bution from the connected four-point function the
variance of our estimator will increase and its S=N will
decrease. In this subsection we will determine the size of
this effect. Similar work has been published on the effects
of gravitational lensing induced non-Gaussianity on the
analysis of the B-mode polarization power spectrum [32].
There it was shown that the non-Gaussianity reduces the
information contained in the B-mode power spectrum.

For simplicity we will include only CMB temperature
information, but the inclusion of E polarization is
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straightforward. Also we will work in the flat-sky ap-
proximation which is excellent for the relevant small
scales. The relationship between the all-sky and flat-sky
formalisms is well understood [33]. Here we adopt the
conventions

ha�l1�a�l2�i � �2��2	�2��l1 � l2�C�l1�; (19)

ha�l1�a�l2�a�l3�i � �2��2	�2��l1 � l2 � l3�B�l1; l2; l3�:

(20)

In the flat-sky formalism our estimator of the three-point
signal is defined as

Ŝ �
Z d2l1

�2��2
d2l2
�2��2

d2l3
�2��2

W�l1; l2; l3�a�l1�a�l2�a�l3�;

(21)

where W�l1; l2; l3� is the weight function.
Using the above conventions the expectation value of

the estimator is

hSi �
Z d2l1

�2��2
d2l2
�2��2

d2l3
�2��2

W�l1; l2; l3��2��2	�2��l1 � l2

�l3�B�l1; l2; l3�; (22)

and its variance is

hN2i �
Z d2l1

�2��2
d2l2
�2��2

d2l3
�2��2

d2l01
�2��2

d2l02
�2��2



d2l03
�2��2

W�l1; l2; l3�W�l01; l
0
2; l

0
3�


 ha�l1�a�l2�a�l3�a�l
0
1�a�l

0
2�a�l

0
3�i: (23)

In the weakly non-Gaussian regime, meaning that the
six-point function can be expressed in terms of permuta-
tions of two-point functions, the estimator variance be-
comes

hN2i �
Z d2l1

�2��2
d2l2
�2��2



d2l3
�2��2

W2�l1; l2; l3�6C�l1�C�l2�C�l3�: (24)

This assumes that there is no strong source of non-
Gaussianity. While the primordial non-Gaussianity is
rather small there is the possibility that secondary anisot-
ropies may cause significant non-Gaussianity and must be
included in Eq. (24).

The �S=N�2, defined as �SN�
2 � hSi2=hN2i, must be

maximized by choosing the appropriate weight function,
W�l1; l2; l3�. We will find the optimal weight function
when in the weakly non-Gaussian limit the six-point
variance is solely determined by the Gaussian contribu-
tions and characterize the reduction in the S=N of the
estimator once the non-Gaussianity induced by gravita-
tional lensing is included. Of course we could derive the
-7



FIG. 5 (color online). The ratio of the �S=N�GL including the
various forms of gravitational lensing to the �S=N�0 excluding
the gravitational lensing is shown above. The curves indicate
the inclusion in the estimator variance of the four-point func-
tion, but not the two-point function (dotted, red line), both the
four- and two-point functions (solid, black line), and the two-
point function, but not the four-point function (dashed, blue
line).
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optimal estimator including the connected four-point
function in the variance. Indeed if we discover that the
gravitational lensing four-point function significantly re-
duces the S=N we should modify our weight function.
Maximizing the signal-to-noise ratio, in an analogous
fashion to the above, we find that we should choose our
weights such that

W�l1; l2; l3� � �2��2	�2��l1 � l2 � l3�
B�l1; l2; l3�

6C�l1�C�l2�C�l3�
:

(25)

This leads to the standard formula for the S=N in the flat-
sky formalism

�S=N�2 �
	�2��0�

�2��2

Z
d2l1d

2l2d
2l3	

�2��l1 � l2 � l3�



B2�l1; l2; l3�

6C�l1�C�l2�C�l3�
: (26)

However there are corrections to the variance in
Eq. (24) from the connected four-point function

ha�l1�a�l2�a�l3�a�l4�i � �2��2	�2��l1 � l2 � l3
� l4�T�l1; l2; l3; l4�: (27)

Including these terms, the correction to Eq. (24) becomes

	hN2i �
9

�2��8

Z
d2l1d2l2d2l3d2l01d

2l02d
2l03W�l1; l2; l3�


W�l01; l
0
2; l

0
3�	

�2��l1 � l01�C�l1�	
�2��l2 � l3 � l02

�l03�T�l2; l3; l
0
2; l

0
3�; (28)

where the factor of 9 comes from the cyclic permutation
symmetries. The connected four-point function induced
by gravitational lensing has been previously determined
in the flat-sky formalism [21].

We will determine the effects of gravitational lensing
by calculating the reduction in the estimator signal to
noise when the weights derived by ignoring gravitational
lensing are used. This means that the weight defined in
Eq. (25) will always be evaluated using unlensed CMB
power spectra. However the Gaussian and non-Gaussian
six-point functions in Eqs. (24) and (28) will be evaluated
with the lensed CMB power spectra when specified.

In Fig. 5 we plot the ratio, R � �S=N�GL=�S=N�0, that
determines the effect of gravitational lensing on our
ability to observe primordial non-Gaussianity. We have
defined the reduced S=N that takes into account gravita-
tional lensing as �

S
N

�
2

GL
�

hSi2

hN2iGL
; (29)

where hN2iGL includes the gravitational lensing two- and
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four-point functions as specified. The solid black curve
indicates that the estimator variance includes both the
two- and four-point functions created by gravitational
lensing, while the dashed blue curve includes only the
effects of the two-point function and the dotted red curve
just the four-point function.

Figure 5 shows that gravitational lensing does not
affect the ability of WMAP to constrain primordial
non-Gaussianity, however Planck’s theoretical ability
will be reduced by nearly �25%. The figure also shows
that including the gravitational lensing correction to the
two-point function leads only to a minor change in the
signal to noise on these scales, the leading effect coming
from the four-point function. In fact if one includes only
the lensing effect through the two-point function one
obtains R > 1 for some lmax which clearly is unphysical.
Eventually, at high enough l (l � 4000) when the lensed
CMB power spectra are significantly larger than the
unlensed ones, the corrections to the two-point function
will also decrease the signal to noise.

Recall that we assumed the CMB fluctuations were
weakly non-Gaussian when we derived the optimal
weight functions used to construct our estimator. In a
future work we will derive weight function including
the effects of non-Gaussianity due to gravitational lens-
ing [34].
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III. SCALING FORMULAS FOR THE SIGNAL-TO-
NOISE RATIO

The shape of the S=N vs lmax curve in Fig. 4 implies
that our naive expectations of the effects of the photon
diffusion are incorrect. We do not see a saturation of the
S=N curve that we predicted earlier. In order to verify
these counterintuitive results we will alter the CMBFAST

transfer functions by hand to test how sensitive the results
are to the actual form of the transfer functions. In the first
case we explicitly include additional damping by multi-
plying the CMBFAST transfer functions by an exponential
�l�k� ! �l�k�e��k=kD�

2
, where the silk damping scale,

kD � 500=rD, is chosen such that the effects appear
near l � 500. In the next case we remove all influence
of radiative transfer by choosing �l�k� ! &jl�krD�, where
& is some constant that will always cancel in the formula
for the �S=N�2, Eq. (14).

In Fig. 6, all the S=N curves are roughly parallel
meaning that our radical altering of the transfer function
only changes the numerical coefficients in the expressions
for S=N. The functional dependence on lmax appears to be
close to the same for all three examples. This suggests that
we can understand these scalings by using simple toy
models.

A. No radiative transfer

As a first example we will calculate the S=N in the
flat-sky approximation and with no radiative transfer;
FIG. 6 (color online). �S=N�f�1
NL vs lmax for TTT of the full

calculation including the CMBFAST transfer functions (solid,
black line), no transfer function (long dashed, blue line), and
the CMBFAST transfer functions with additional damping
(dashed, red line).
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therefore we will simply observe the underlying modes
restricted to the plane of the sky.

Here we adopt the following conventions:

h��k1���k2�i � �2��3	�3��k1 � k2�P�k�; (30)

h��k1���k2���k3�i � �2��3	�3��k1 � k2
� k3�B�k1; k2; k3�; (31)

and maintain the previously specified conventions for the
CMB anisotropy Fourier coefficients, Eq. (19). Using our
assumptions of the flat-sky approximation with no radia-
tive transfer, the Fourier coefficients of the temperature
anisotropies can be expressed as

a�l� � �2��2
Z d3k

�2��3
��k�eikzrD	�2��l� kkrD�; (32)

where rD is the distance to the surface of last scattering
and kk is the Fourier wave vector parallel to the surface of
last scattering. The power spectrum of this model is

l2C�l�
2�

�
A

2�2 �
k3P�k�

2�2 � �2; (33)

where A is the amplitude of the scale invariant power
spectrum P�k� � A=k3. Likewise we can find the bispec-
trum

B�l1; l2; l3� �
2fNLA2

�2

�
1

l22l
2
1

� cyc:
�
: (34)

Using the standard formula 	�2��0� � fsky=� and substi-
tuting these results in Eq. (26) gives�

S
N

�
2
�

fskyf
2
NLA

6�4

Z
d2l1d2l2d2l3	�2��l1 � l2

� l3�l21l
2
2l

2
3

�
1

l21l
2
2

� cyc:
�
2
; (35)

and evaluating the above expression we find�
S
N

�
2
�

4

�2 fskyf2
NLAl2max ln

lmax

lmin
: (36)

The logarithm is typical of scale invariant primordial
power spectra [35]. If the primordial perturbations were
generated by a Poisson process so each point in space was
statistically independent, the logarithm would be absent
and the dependence on lmax would solely be l2max.
Equation (36) can be written in a more physical way by
relating it to other observables,�

S
N

�
2
� 8�fNL��

2Npix ln
lmax

lmin
; (37)

where Npix � fskyl2max is the number of observed pixels.
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B. Silk damping: toy model

There remains the question of why physical processes
like silk damping or cancellation due to oscillations dur-
ing the finite width of the last scattering surface do not
cause a strong change in the slope of the S=N curve at
high l. First of all it is important to note that there are an
equal number of transfer functions in the numerator and
denominator of Eq. (26), so there is a sense that the effects
of radiative transfer cancel out. Of course the transfer
functions are not simple multiplicative factors that can
be canceled. However the saturation of S=N when instru-
ment noise or gravitational lensing comes to dominate the
Cl’s, as contrasted with the continued growth of S=N in
the case of an ideal experiment without gravitational
lensing, can be understood from this perspective. When
gravitational lensing and other secondaries or instrument
noise dominates the six-point function in Eq. (26) the
convenient cancellation cannot occur and we can no
longer recover information about primordial non-
Gaussianity on these scales. In the case of lensing it
might be possible to improve the signal to noise by using
the B type polarization, which on small scales is only
generated by lensing, to constrain the deflection angle and
at least partially ‘‘unlens’’ the observed T and E fields.

We will attempt to explore this in the model by includ-
ing the effects of silk damping by introducing an expo-
nential cutoff to mimic the effects of silk damping on the
radiation transfer function,

a�l� � �2��2
Z d3k

�2��3
��k�eikzrD	�2��l� kkrD�e

�k2=2k2D;

(38)

where kD is a wave vector corresponding to the silk length
below which the radiation transfer function is strongly
damped. Repeating the above steps we find the power
spectrum can be formally evaluated in terms of hyper-
geometric U functions as

C�l� �

����
�

p
A

2�l2
e�l2=l2DU�1=2; 0; l2=l2D�; (39)

where lD is the 2D Fourier multiple corresponding to the
silk damping scale as lD � rDkD. We can make an ap-
proximation in order to better understand the effects of
silk damping on the CMB power spectrum by cutting off
the integral at k � kD, then

C�l� �
A

�l2
e�l2=l2D��������������������
1� l2=l2D

q ; (40)

so when l � lD we recover Eq. (33). Likewise we can
evaluate the three-point functions again in order to fa-
cilitate the evaluation of this integral assuming that the
exponentials cut off the region of integration at k1, k2 �
kD.
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B�l1; l2; l3� �
2fNLA2

�2 e��l21�l22�l23�=2l
2
D

264 1

l21
��������������������
1� l21=l2D

q



1

l22
��������������������
1� l22=l2D

q � cyc:

375: (41)

Then substituting Eqs. (40) and (41) into Eq. (26) and
assuming l � lD�
S
N

�
2
�

fskyf
2
NLAlD

6�4

Z
d2l1d

2l2d
2l3	

�2��l1 � l2 � l3�



�l31 � l32 � l33�

2

l31l
3
2l

3
3

; (42)

we find that leading term scales as

�
S
N

�
2
/ fskyf2

NLAl2max: (43)

The dependence on lmax in Eq. (43) is nearly as strong as
that in Eq. (36). This shows that we can still expect to
recover information about fNL on scales where photon
diffusion is exponentially damping the transfer functions.
In practice, both detector noise, angular resolution, and
secondary anisotropies will limit the smallest scale that
can be used.

C. Physical arguments

The strongest feature of silk damping in our toy model,
the exponential damping of the CMB power spectrum
and the bispectrum, cancels in the expression for the
�S=N�2, Eq. (42). However the exponential damping is
not the only feature caused by this effect; now the power
spectrum Eq. (40) scales like l�3, instead of l�2, at large
l. While the �S=N�2 still scales with Npix � fskyl

2
max, the

exact numerical coefficient that determines the slope will
be reduced.

We can understand this behavior by considering the
contribution of collapsed triangles l1 � l2 � l3. In this
limit the estimator variance, ignoring factors O�1�, is
simply

�2
l1l2l2

� �Cl1 � Nl1��Cl2 � Nl2�
2; (44)

where Nl represents both the instrument noise and any
secondary anisotropy that will degrade our ability to
recover the signal of the primary anisotropy. Ignoring
numerical factors, the reduced bispectrum from Eq. (16)
can be rewritten as

bi;j;k
l1l2l3

� fNL

Z
k21dk1k22dk2k23dk3�i

l1
�k1��

j
l2
�k2��k

l3
�k3�


Cl1l2l3�k1; k2; k3��P�k1�P�k2� � cyc:	; (45)
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where we define Cl1l2l3�k1; k2; k3� �
R

r2drjl1�k1r� 

jl2�k2r�jl3�k3r�. This integral determines the geometric
coupling of a triangle in Fourier space with a triangle
on the CMB sky.

Again in the limit of collapsed triangles, we can ap-
proximate the above coupling integral as

C l1l2l2�k1; k2; k3� � jl1�k1rD�
Z

r2drjl2�k2r�jl2�k3r�;

(46)

and using the definition of the 	 function,

C l1l2l2�k1; k2; k3� � jl1�k1rD�
	�k2 � k3�

k22
: (47)

Here the slowly varying spherical Bessel function is
evaluated at the surface of last scattering since the trans-
fer function �i

l1
�k1� in Eq. (45) is peaked there.

Substituting this result into Eq. (45) we find

bi;j;k
l1l2l2

� fNL

Z
k21dk1k22dk2jl1�k1rD��

i
l1
�k1��

j
l2
�k2��k

l2
�k2�


�P�k1�P�k2� � cyc:	: (48)

This can be evaluated as

bi;j;k
l1l2l2

� fNLCT;i
l1

Cj;k
l2

; (49)

where Cj;k
l is CT

l , CX
l , or CE

l depending on the values of j
and k.

Now the �S=N�2 for a given collapsed triangle is

b2
l1l2l2

�2
l1l2l2

�
f2

NL�C
T;i
l1

Cj;k
l2
�2

�Ci
l1
� Ni

l1
��Cj

l2
� Nj

l2
��Ck

l2
� Nk

l2
�
: (50)

As long as we can measure the appropriate temperature or
polarization fluctuations on the scale l2, �Cj;k

l2
�2=�Cj

l2
�

Nj
l2
��Ck

l2
� Nk

l2
� � 1 and Eq. (50) becomes independent of

l2. After integrating l2 up to lmax, while keeping l1 � l2,
we find �

S
N

�
2
/ f2

NLCT
l1
�ri

l1
�2l2max; (51)

where

ri
l �

CT;i
l�����������

CT
l Ci

l

q (52)

is the cross-correlation coefficient and again we assumed
that we could resolve the primary CMB anisotropies on
scale l1.

If i � T, then on the very large scales we are consid-
ering rT � 1 and we recover�

S
N

�
2
/ f2

NLAl2max; (53)

the result we found for our toy model, Eq. (36). If i � E,
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then rE � 0:9 on large scales for models without reioni-
zation and rE � 0:5 for models with a significant reioni-
zation optical depth [36], so our conclusion still holds.

This explains the results we found in our silk damping
toy model, Eq. (43). It is important to remember that we
can detect only the primordial non-Gaussianity when we
can resolve the primordial anisotropies. If the observed
CMB power spectrum for the l modes from some col-
lapse triangle is dominated by instrument noise or power
induced by gravitational lensing, then cancellation of the
silk damped power spectra in Eq. (50) will not occur and
we will observe the type of saturation seen in Fig. 3.

IV. CONCLUSION

The wealth of recent observational data has allowed
the kinematics of the standard cosmological model to be
rigorously tested, and now we must turn to the theory of
its initial conditions. Slow-roll inflation has become the
standard scenario used to explain the initial conditions of
cosmology. While slow-roll inflation makes several pre-
dictions, the Gaussianity of the underlying curvature
fluctuations may be the most robust and therefore should
be tested. Since the CMB contains additional information
in its polarization patterns, we calculated the increase in
the signal-to-noise (S=N) ratio of the optimal cubic esti-
mator when polarization information is included. The
improvement in WMAP is small, from fNL � 13:3 for
just temperature to 10.9 for both T and E. Since WMAP is
too noisy to measure E with high S=N we should not
expect a large change. For Planck the improvement is
from fNL � 4:7 to 2.9 and we find that an ideal experi-
ment, with no instrument noise and infinitesimal beam-
width, improves from fNL � 3:5 to 1.6. With an ideal
experiment cosmic variance limited up to l � 3000 it
might be possible to observe the three-point function
produced by nonlinearites in general relativity.

We also explored how the four-point function induced
by gravitational lensing would degrade our estimator’s
S=N. For WMAP there is very little effect; however the
constraints from Planck can be reduced by 25%. For the
next generation of CMB experiments which will measure
l > 1000 with good sensitivity, the estimator used to
constrain the primordial non-Gaussianity should be de-
rived including the effects of gravitational lensing.

The scaling with lmax was shown to be related to the
total number of observed independent pixels on the
sky, implying that �S=N�2 / fskyl

2
max ln�lmax=lmin�. If the

underlying distribution was Poisson the logarithm would
be absent implying that the total �S=N�2 simply scales as
Npix � fskyl2max. The functional dependence on lmax of our
full calculation using the radiation transfer functions
produced by CMBFAST agreed quite well with the predic-
tion of our toy model. We showed that silk damping did
not reduce the signal available from small scales appreci-
ably. By using a toy model it was shown that this perhaps
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unexpected result is caused by the contribution from
collapsed triangles.

Our ability to constrain primordial non-Gaussianity on
small scales crucially depends on our ability to measure
the primordial anisotropies on those scales. While
we focused on gravitational lensing in this paper, there
are many other mechanisms (thermal SZ, kinetic SZ,
Ostriker-Vishiniac, etc.) that produce additional
Gaussian and non-Gaussian CMB fluctuations on these
extremely small scales. The influence of these mechanism
on our estimator is difficult to determine because of the
nonlinear physics involved and their highly non-Gaussian
nature. Further work is needed in order to understand how
083005
these effects will change the conclusions of this paper.
These effects further strengthen the case for measuring
the CMB polarization on small angular scales, as the
above secondaries are not expected to be significantly
polarized.
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