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Inflation universally produces classical almost scale free Gaussian inhomogeneities of any light
scalars. Assuming the coupling constants at the time of inflation depend on some light moduli fields, we
encounter the generation of modulated cosmological fluctuations from (p)reheating. This is an alter-
native mechanism to generate observable (almost) scale free adiabatic metric perturbations. We extend
this idea to the class of hybrid inflation, where the bifurcation value of the inflaton is modulated by the
spatial inhomogeneities of the couplings. As a result, the symmetry breaking after inflation occurs not
simultaneously in space but with the time laps in different Hubble patches inherited from the long-
wavelength moduli inhomogeneities. To calculate modulated fluctuations we introduce techniques of
general relativistic matching conditions for metric perturbations at the time hypersurface where the
equation of state after inflation undergoes a jump, without evoking the detailed microscopic physics, as
far as it justifies the jump. We apply this theory to the modulated fluctuations from the hybrid and
chaotic inflations. We discuss what distinguishes the modulated from the inflation-driven fluctuations, in
particular, their spectral index, modification of the consistency relation, and the issue of weak non-

Gaussianity.
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L. INTRODUCTION

One of the generic predictions of inflation lies in the
fact that vacuum fluctuations of all light scalar fields, y,,
minimally coupled to gravity and with a mass smaller
than the Hubble parameter (m < H), are universally
unstable and appear after inflation as classical random a
priori Gaussian inhomogeneities with (almost) scale free

spectrum H/ V2k3. The wavelengths of the fluctuations,
Sx,(t,X), of such a light scalar field are stretched by
inflation and exceed the Hubble patch after inflation.

One can relate dy,(z, X) to the cosmological scalar
metric perturbations in different ways, depending on
the composition of the underlying theory. Indeed, the
simplest and most studied possibility is to assume that
there is a single light scalar field that is the inflaton itself,
¢. The inflaton fluctuations ¢ are transferred to the
scalar metric perturbations through gravitational inter-
action [1].

On general grounds, we may however expect many
scalar fields playing roles during inflation. There is a
broad range of multiple field inflationary models with
different motivations behind them, like, e.g., double in-
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flation [2] or hybrid inflation [3], where different fields
dominate at different stages of the cosmological evolu-
tion. Multiple fields were also evoked to design departures
from the standard inflationary predictions: existence of
isocurvature modes [3,4], nonscale free spectrum of pri-
mordial fluctuations [5], or deviation from Gaussianity
[6,7]. In these cases some fields unnecessarily give a
dominant contribution to the background evolution, but
during some time give a dominant contribution to the
perturbations. Another corner of the multiple field pa-
rameter space is related to the curvaton scenario [8].
There, a newly introduced scalar field, the curvaton,
that is indeed not the inflaton, should be light during
inflation, plus dominate after inflaton decay, plus decay
after inflaton but prior to big-bang nucleosynthesis, plus
give a dominant contribution to the metric fluctuations.
A new and more economic idea to generate cosmologi-
cal perturbations from modulated fluctuations of cou-
plings was proposed recently [9-11]. In the context of
multiple scalar field theories, it is assumed in these mod-
els that some of the light fields never give a dominant
contribution neither into background nor in perturbations
during inflation, but contribute to the coupling constants

a = a(y,). (D

Indeed, in string theory [12] couplings are in fact the
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vacuum expectation value (VEV) of moduli fields and, in
supersymmetry (SUSY) theories couplings can also de-
pend on scalars. As a result, fluctuations of the moduli
0 x, generated during inflation will manifest themselves
in spatial inhomogeneities of the couplings

0
sa =% 5y, )
IXq

The interaction is not as important during inflation as it is
after inflation. Consider, for example, simple chaotic in-
flation. The background scalar field rolls towards the
minimum of the potential, where it begins to oscillate.
Because of the coupling to the other fields the inflaton
decays into radiation in the process of (p)reheating [13].
Because of the large scale coupling inhomogeneities,
Eq. (2), at scales much larger than the causal horizon
after inflation, transition from the matter dominated re-
gime of inflaton oscillations to radiation occurs in differ-
ent causal patches not simultaneously, which leads to
small adiabatic metric perturbations after (p)reheating.
After the moduli y, get pinned down to their minima, the
spatial variations of coupling constants in the late time
universe will be erased. However, the large scale metric
fluctuations that are produced due to interactions survive
as a memory of the primordial moduli inhomogeneities.

It is actually not mandatory for scalar fields to be light
during inflation. In fact, in the context of N = 1 super-
gravity with the minimal Kéihler potential during infla-
tion the scalars typically acquire the mass m, ~ H.
Cosmological fluctuations neither in the inflaton sector
nor in the moduli sector are produced unless special care
is taken to make at least some of them light. This, together
with the options to build up inflationary models, moti-
vates the study of different mechanisms of generations of
cosmological perturbations.

In this article, we investigate this mechanism of modu-
lated cosmological fluctuations. Original papers on the
modulated fluctuations [10,11] discussed metric perturba-
tions generated from the decay of inflaton oscillations.
However, there is another important class of hybrid infla-
tionary models, which typically emerges in supergravity
and the string theory/brane cosmology. The two field
(¢, o) hybrid inflation has the effective potential

Ver = (02 = v 4 g0 V() ()
where V(o) is the inflaton potential. This potential con-
tains two couplings A and g2, which define the end point
of inflation and the field dynamics. Assuming these cou-
plings are moduli dependent, we encounter modulated
fluctuations in the hybrid inflation. This is the main novel
idea of the paper which we describe and develop in Sec. IL

One may think of different aspects of the theory of
modulated fluctuations, related to the nature of the mod-
uli and dependencies, Eq. (1), details of preheating, ther-
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malization, moduli evolution, etc. Here we concentrate on
the cosmological general relativistic part of the story,
namely, how to derive cosmological metric perturbations
from the coupling perturbations, Eq. (2). In the chaotic
inflation typically inflaton oscillations decay through the
nonperturbative effect of parametric resonance of parti-
cle creation [13]. This leads to copious production of
particles in an out-of-equilibrium state. Further interac-
tions between particles relax them towards thermal equi-
librium. Perturbative regime of particle interactions takes
place at the latest stages of transition from inflation
towards hot radiation [14]. In hybrid inflation, preheating
after inflation has the character of the tachyonic preheat-
ing [15], accompanying the symmetry breaking after
inflation [16]. Tachyonic preheating leads to the generation
of particles out of equilibrium with the subsequent ther-
malization of them. Coupling constants of interaction
appears at different stages of preheating and thermaliza-
tion. However, for the production of modulated cosmo-
logical perturbations it is essential that couplings are
responsible for the change of the equation of state. If
the equation of state is not changing, modulated pertur-
bations are not generated. In this respect we shall con-
centrate at the first instance where the equation of state
after inflation is changing due to the couplings. In the
case of chaotic inflation it happens when an effective
matter equation of state of the coherent inflaton oscilla-
tions is replaced by the radiation in the very fast process
of preheating. In the case of hybrid inflation, the vacuum-
like (inflation) equation of state is replaced by radiation in
the very quick process of tachyonic preheating.

So far the formalism of the modulated cosmological
fluctuations was considered for the toy model of slow
perturbative reheating [10,11,17,18], often with the
Yukawa type interaction ¢y between inflatons and fer-
mions. This is fair enough to see in principle that metric
fluctuations are generated from the moduli inhomogene-
ities. However, the modern theory of the transition be-
tween inflation and radiation is described by the theory of
preheating. Even for the case of the fermions their pro-
duction is nonperturbative and significantly modified by
preheating [19]. In this paper, on the technical side, we
suggest the method to treat the generation of modulated
cosmological fluctuations in the inflationary models with
preheating. We will use the fact that in all cases preheating
is very short, and from the general relativistic point of
view can be considered as the instant jump of the equa-
tion of state. It is then convenient to use the formalism of
matching conditions of the geometrical quantities at
the time of the transition [20]. For this, we do not need
to know the microscopic details of preheating and
thermalization.

In Sec. II, we first discuss the basics of the modulation
of the couplings and some model building aspects that
have to be fulfilled for such a mechanism to be efficient.
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The construction of an explicit model in a supergravity
context is proposed in Sec. III. After recalling the basics
of the matching conditions in Sec. IV, we then apply them
to the standard single field inflationary case in Sec. V. We
then turn to the case of modulated fluctuations in Sec. VL
We will discuss the main features of the mechanism in
Sec. VII and, in particular, emphasize that it allows one to
extend the standard consistency relation of inflation.

II. MODULATED FLUCTUATIONS OF
COUPLINGS IN HYBRID INFLATION

Consider a model of hybrid inflation. The basic shape
of the effective potential is given by Eq. (3), where ¢ is
the inflaton and o is another scalar field, which is massive
during inflation but whose effective mass changes sign at
the critical value of the inflaton value

b= @ “
4

The point where ¢ = ¢, 0 = 01is a bifurcation point. For
¢ > ¢, the squares of the effective masses of both fields
are positive and the potential has a minimum at o = 0.
For ¢ < ¢, the potential has a maximum at o = 0. The
global minimum is located at ¢ =0 and |o| = v.
However, at ¢ > ¢, the effective potential has a valley
along o = 0. In this model, inflation occurs while the ¢
field rolls slowly in this valley from large values towards
the bifurcation point. At the bifurcation point the sym-
metry breaking occurs. Recall, however, that immedi-
ately after the bifurcation point the field o has a negative
mass square. Hence, dynamics of the symmetry breaking
is accompanied by the tachyonic instability of inhomoge-
neous modes. It results in the very rapid decay of the
homogeneous fields into inhomogeneous modes in the
nonlinear regime of tachyonic preheating [15,16] much
before the global potential minimum is reached. For what
we are interested in this bath of inhomogeneous modes
essentially behaves like a radiation fluid. In the following
we will simply assume the transition between inflation
and radiation domination to be instantaneous.

In general in hybrid models ¢ and o can be viewed as
scalar fields coming from a much larger scalar sector of
the theory. We then assume that there exists a set of light
scalar fields, y, and that the couplings A and g absorb the
dependence on these scalars as

A= Alx,), g=8Wa) = .= e xa) )

A and g? are determined by the VEVs of these fields. Since
the fields y, are light, they develop super-Hubble inho-
mogeneities so that the symmetry breaking that termi-
nates the inflationary stage does not occur at the same
time everywhere and is modulated over space. The fluc-
tuations of the light fields modulate the couplings A and
g”> which then have spatial fluctuations in a way that
depends on their dependence on the y, VEVs,
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aA
SN = Sx.; 6
g 2y, X (6)
9 2
5g? = ag Xa- (7)
— 0 Xa

It follows that our model consists of the inflaton, ¢, a
Higgs-like field, o, and the light fields, y,, with a poten-
tial of the form

Vet = 2A(x)(0? — vH)? + 1% (x)e?o? + V(). (8)

In principle, moduli may have potentials U(y,), which
for simplicity are assumed to be negligible during infla-
tion, or included into (8), as we will see below.

In Eq. (8) the dependencies of the coupling constant on
the moduli fields y, have a quite different status. Let us
inspect the conditions in the theory (8) which would keep
the moduli light during inflation. When ¢ > ¢, and
o = 0 the equations for the fields y, are
vt A .

Yo t3HY, + — 0,
Xa Xa 4 9y,

®)

where a dot refers to a derivation with respect to cosmic
time. Equations for its fluctuations & y,e** are
k2 vt 92
6, T3Héy, + =06x, + ——
Xa Xa az Xa 4 aXaaXb
+9A .

=2 22 +ay,d @
T3, P (0

X

During the inflationary stage ¢ > ¢, the effective poten-
tial in which y, evolves is A(y,)v*/4.

If the background value of y, is the order of M and the
natural argument of coupling is y,/M then the fluctua-
tions of the fields y, have a mass m2 = (v*/4)0A/dx, ~
H*M3/M?, where M, = 87rG is the Planck mass. But as
we will see in the next section, the right amplitude of
modulated fluctuations is achievable if the mass scale M
is of order or smaller than M ,. Thus, 6 x,, are heavy unless
the coupling A has no dependence on moduli. There is no
such reservation for g2. In the following we will see that
supergravity D-term inflation precisely provides us with
such a pattern for the moduli dependence.

When the mass of y, is small, and its contribution to
the background geometry is negligible, its kinetic energy
is also small, e.g., y, = 0. In this case the fluctuations
d x, can be considered as the light test field at a given
background driven by inflaton ¢. It is easy to see that y,
also do not influence the evolution of the inflaton field and
fluctuations during inflation. Indeed we have equations
for inflaton fluctuations 8¢ and metric fluctuations ® (in
the longitudinal gauge) during this phase

1
2M

P

d+HD =

(@8@ + XubXa): (1D
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k2 ;
8¢ +3H8p +—8p = —2V'd + 49D —V"5¢p, (12)
a

where a prime refers to a derivation with respect to ¢. It
follows that the fluctuations of the light fields y, do not
contribute to the metric fluctuations in Eq. (11) during
inflation, so that the set of Egs. (11) and (12) reduces to the
one of the inflaton coupled to metric perturbation, as in
single field inflation.

To summarize, since o = 0 during inflation, the func-
tion g(x,) does not enter the perturbation equations dur-
ing inflation so that the light fields can be considered as
test fields. As anticipated, the light fields influence only
the end of inflation by modulating over space the time at
which the symmetry breaking occurs, imprinted in the
hypersurface ¢ = ¢..They are subdominant with respect
to the VEVs of ¢ and o that drive the evolution of the
background and do not affect the generation of metric
perturbations during inflation. We expect the cumulative
fluctuations after inflation to inherit both from the metric
fluctuation during inflation and from the modulated tran-
sition, hence opening the possibility of nontrivial phe-
nomenological consequences.

III. MODULI IN COUPLINGS OF SUGRA D-TERM
INFLATION

In this section we slightly step aside of the main topic
of the paper, modulated cosmological fluctuations in the
generic hybrid inflation. We consider a specific example of
the sugra D-term inflation, to illustrate how the depen-
dence of couplings on moduli can be originated. Although
in general, D-term inflation is similar to the hybrid in-
flation, there are some differences. In particular, the slow-
roll regime of inflation may be ended even before ¢
reaches the bifurcation point [21,22]. D-term inflation is
reduced to the hybrid inflation in the limit of small g. All
our results are immediately applicable for this limit of
D-term inflation. In a more general case of D-term in-
flation the equation of state may be changed twice, at ¢,
and even before at some hypersurface ¢, > ¢, but ¢, is
still spatially varying due to the moduli dependence. As a
result the magnitude of modulated fluctuations may be
even greater than our estimations below (where only a
single jump in the equation of state is considered). We
notice but do not consider these effects in the paper.

Let us recall how potentials of the form of Eq. (3) can
be obtained from particle physics models. Such potentials
are indeed prototypes of models of inflation motivated by
supergravity (including low-energy string theory) such as
F- or D-term inflations (see, e.g., Ref. [23] for a review). It
might be worth keeping in mind that the more generic
P-term inflation has both these models as limiting cases
[24]. Note also that brane-antibrane D-D systems in
superstring theory produce four-dimensional effective
potentials like (3).
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In F-term inflation we always have g> = A and no
modulated fluctuations can be generated. We will not
consider this case any further. On the contrary a D-term
inflation driven by a nonzero Fayet-Iliopoulos D term
does not lead to any specific relation between g> and A.

For further discussion recall that a generic N =1
supergravity Lagrangian including interaction with
matter and Yang-Mills fields in 3 + 1 dimensions is
built from three arbitrary functions: the Kéhler
potential K(x%, x,) which encodes the kinetic term of
the scalar fields, the superpotential W(y,), and the Kinetic
terms  f,5(x,) for the vector multiplet fields,
[Refop(xa)JFe, FPEY. We will use notation and the
form of the supergravity Lagrangian, see Eq. (5.15) of
Ref. [25], adapted to cosmology.

The simplest model of D-term hybrid inflation [22]
consists of three (left) chiral superfields ®;: the inflaton
and two fields of opposite charge under a local U(1). The
potential for this model comes from the superpotential

W= 2g0D, D_, (13)
and the D term
D= @(ZIQMIZ —2|D_|* = 2v?), (14)

where the fields 3. have charges *+/A and the Fayet-
Iliopoulos term is +/Av? /2. We may choose the fields to be
real and define o = +/2|®-| and ¢ = /2| D], allowing
for canonical kinetic terms. In terms of these fields, in the
global SUSY limit the potential reduces to the form

V=Vy,+Vp

_A 2 212 g 2 2 2. 2
—Z(O'+—0',—v)+3(¢0'++¢0',

+o2a?). (15)

When ¢, which plays the role of the inflaton, is large
enough both o, and o_ have a large positive mass and
are forced to be zero. Supersymmetry is however broken
and the one-loop corrections give an extra term in the
potential, which is only ¢ dependent so that it rolls down
toward ¢ = 0. This model exactly matches Eq. (3) noting
that during the whole evolution o _ is forced to be zero.

In a more general context of supergravity, the D term
has a prefactor [Ref, 3(x,)] " absorbed in the coupling A,
Axa) = A X [Ref(x,)]"". Thus, a large mass of y, can
be avoided by simply assuming that Ref,z = 1. The
effective coupling g> can then be made dependent on y,
through the Kihler potential.

We give a toy model example where we want to observe
that the moduli dependence can appear in g while it does
not appear in A. The Kéhler potential intervenes in the
F-term part of the potential
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w2
Vp = eK/M%[KJ "DWD,W — 3—2} (16)
M
P
where D; = 1/M%3K/o®; + 9/d®;, and K/ is the in-
verse matrix to K;» = 9°K/d®;0®7. The D term on the
other hand is given by
VA
2
where K; = 9K/9®;, and ¢; is the charge of the corre-
sponding scalar.

For a standard simple string theory toroidal compacti-
fication scheme [26] for which

K= —310g<t + - Zl@ilz), (18)

D= (qiKip; — v?), an

t being a bulk modulus, and in the case the VEVs of the
fields (and in particular that of ®y which is nonvanishing
during inflation) are small compared to |¢| the computa-
tions can be easily completed. We have K; = 6¢7/(t + t*)
and K;;» = 6/(t + 1*)8,;. This latter matrix can easily be

inverted. As a result the fields ®; = \/3/(r + r/)®, are the
fields that have a standard kinetic term in the low-energy
limit. We see that in this case the ¢ dependence in Eq. (17)
drops. Unfortunately this is also the case in the expression
of V.

If however the compactification is made in such a way
that there are three different moduli directions #; then the
expression of Vy can be made dependent on the moduli
values. This is the case for instance if

K=-— log(tl +1 = ZICD,-IZ) — log(t, + 13)

—log(t; + 13). (19)

In thls case Ki = 2@:‘/(1‘1 + tT) and K’f = 2/([1 + [T)81]
The kinetically regularized fields are @; =

J1/(t; + 1))@, from which we get

Vi =goD,. 2+ |dD 2+ |D D, 2], (20

RPN U eV
& (ty + 65) (13 + t§)g ’

which indeed leads to a moduli dependent effective g2.
Note that if each ® is associated with a different moduli
direction the dependence in g also vanishes. We see that
unless the Kéhler potential has very specific features, the
effective coupling constant g2 is dependent on the moduli
fields. This is what we were looking for. The picture we
obtained here is not as simple as the one described in the
introduction since it implies that the inflaton potential,
V(¢) here, coming from the radiative correction to the
potential induced by the breaking of the boson-fermion
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mass equalities, depends on g, therefore on the moduli
fields. It means that the inflaton is actually a combination
of @ and of the moduli. The picture sketched in the
beginning will be recovered if the dependence with the
latter is small enough. Note also that the theory we
present is incomplete because it does not provide for a
stabilization mechanism for the VEVs of the moduli. The
problem of stabilization in the context of D-term inflation
is discussed, e.g., in [27], and references therein. We will
then not exploit this specific model any further. We value
it however because it shows that modulated inflation
should be rather generic in realistic models of sugra.

In the following sections we derive the geometrical
theory of modulated cosmological fluctuations which is
applicable for the hybrid inflation, as well as from the
chaotic inflation.

IV. JUNCTION CONDITIONS FOR METRIC
PERTURBATIONS AT THE TIME
HYPERSURFACE

In this and the following sections we turn to a technical
part of the paper. We will deal with the general relativistic
aspects of the cosmological metric fluctuations. First, in
this section we will remind one of the general formalism
of the matching conditions [28] of two geometries on the
different sides (past and future) of a time hypersurface.
This spacelike hypersurface, 3, also divides the matter
contents in the Universe, which has different equations of
state on different sides of . In subsequent sections, we
apply this general formalism to different situations.

We begin with the derivation of the matching condi-
tions in the cosmological context. We assume that the
transition between two eras, e.g., inflation and radiation
dominated, takes place on a three-dimensional spacelike
hypersurface defined by

3 = {g = const},

where ¢ is a scalar to be specified; see Fig. 1. We focus on
scalar and tensor modes of metric perturbations and

A time o P=p/3
N,
n,
2:{q=0-9,00=0}
n_

P';:,—p

space

FIG. 1 (color online). The inflationary period is matched to a
radiation dominated era on a spacelike hypersurface 2, defined

by q(¢, xo) = ¢ — ¢.(x.) =0.
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assume that the spatial sections of the Universe are flat
and work in longitudinal gauge. It follows that the metric
of spacetime takes the form

dsi = a%:(”]r)[_(l + 2<I)i)d7ﬂ:
+{(1 — 2<I)i)5ij + hiij}dx"dxj], 21

where the indexes — and + refer, respectively, to the two
eras, before and after 3. h;; is a symmetric traceless (h} =
0) transverse (9;h"/ = 0) tensor describing the gravita-
tional waves. Note that the conformal times 7+ in both
eras are a priori different. We also split g as

qg=4q+dq (22)

with 8¢ being the perturbation in longitudinal gauge.

The junction conditions [28] reduce to the continuity of
the induced three-dimensional metric on 2, and of the
extrinsic curvature of 2; see Refs. [20,29,30]. The normal
unit vector to the hypersurface % is given by

9,9
n,=-—=r— (23)
o J=0.99%

so that the induced three-dimensional metric on 2, takes
the form

¥ = a2[<1 - 2(@ + :l-[%))ag + hg} (24)

and its extrinsic curvature

1 5
Kg=—{—5{5;+[5{q>+q>'+(5{/—5{2)—f’}3;
a q
og 1
+090, L + _plal, 2
b q/ D) h} ( 5)

where a, b run from 1 to 3, and the prime is the derivative
with respect to 1, H = % It follows that the matching
conditions for the background geometry reduce to

[al. =0, [H].=0, (26)

where [X]+ = X, — X_. In other words, the scalar factor

and its time derivative are continuous through X.
Matching conditions for perturbations are split into

o 1
[®]. =0, [@%M—ﬂ —0, [—f’} -0,
q 1= q ]=
27
for the scalar perturbations and
[hij]e =0,  [hj]- =0 (28)

for the gravitational waves. Equations (27) and (28) are
the basis for the applications below.

PHYSICAL REVIEW D 70 083004

V. JUNCTION CONDITIONS FOR INFLATON
DRIVEN METRIC FLUCTUATIONS

In order to present the method and the notation, we
rederive the standard result for the scalar metric fluctua-
tions driven by inflaton fluctuations, using the general
formalism of junction conditions for the metric fluctua-
tion outlined above (see also Refs. [20,29]).

A. Long-wavelength modes evolution

So for the time being let us assume that inflation is
driven by a slow-rolling scalar field ¢. We can introduce
the slow-roll parameters by

M2 V/\2 M2 \
=_r(_ =_Pr(__}\ 2
¢ 167T<V>’ K 87T<V> @9)

Solving for e = 1 — H'/H? gives the expression of the
parameter

I+e
—_ ;r]_ ’
where conformal time during inflation is 7 _. It is conve-
nient to introduce the two quantities defined by

20+ HD _ Sp
3HI+w) g_q>+5-[7,

that correspond to the curvature perturbation in a flat
slicing gauge and in a comoving gauge (see, e.g.,
Ref. [31] for the history of the introduction of these
quantities). For a general perfect fluid, including the
particular case of a single scalar field, the perturbation
equations take the form [32]

H =

(30)

R =d+ 31)

ka?®
AD = T[5,0 —3H p(1 + w)v], (32)

2
P+ Hd = —%p(l-ﬁ-w)v, (33)

where 6p and v are, respectively, the density perturba-
tion and the velocity perturbation in Newtonian gauge
and with k = 87G. It follows that the density fluctuation
can be expressed as

Ka? _ /
T5,o—A<I>+33h((<I> + H D), (34)

and that the two quantities defined in Eq. (31) are related,
using that H' — H? = H p'/p, by

1 AD

R++-—oFrr—e=

SH - ¢
so that they are equal for super-Hubble modes. The evo-
lution equation for the gravitational potential, see
Ref. [32], can be shown to imply

R'=0, =0, (36)

(35)
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for super-Hubble adiabatic modes. In fact, the solution
evolution equation of the gravitational potential takes the
general form

O = %[3 + A/(l + w)azdn}. (37)

The coefficient A corresponds to the growing mode and B
to a decaying mode. If the equations of state vary con-
tinuously from w = —1 + 2¢/3 during inflation to w =
1/3 during the radiation era, we obtain that the gravita-
tional potential in the radiation dominated universe
(RDU), after the decaying modes have become negli-
gible,

~z1+8
3 &

where A is fixed during inflation. Since R =~ ® /e ~A/e
during inflation and R =~ 3® /2 during RDU, the solution
of Eq. (37) is equivalent to the continuity of R, Eq. (36).
Note also that Eq. (37) implies that the variation of the
gravitational potential when the scale factor changes be-
havior changes from a o 7 to a o« 7> at t = ¢, is P(t >
t)/®(t<t) = (14 p)/(1 + p,) (see Ref. [20]).

()

A, (38)

B. Derivation by means of the junction conditions

Let us now do the same exercise but by means of the
junction conditions and assume inflation suddenly ends
with a transition to a radiation era. As long as the back-
ground dynamics is concerned, the matching conditions
for the background quantities, that is the continuity of the
scale factor and of the Hubble parameter, Eq. (26), imply
that the transition happens at n, = 5, = —(1 — &)n_
and we have

a(n-)=C/(=n )",
ai(ny) = c/[( + 8)77>1k+8](77+/77*)-

Now, the transition is due to a sudden change in the
equation of state and takes place on a constant density
hypersurface [20]. The matching conditions (27) imply

that
1)
-
p 1+

[q>'+ (H' - 3{2)‘;—’,’} —0.

*

(39)

[q)]i =0,
(40)

The first two conditions and the continuity of J{ imply
that

[{]- =0, 41)
and thus that
1 AD
R+ 3-50), 0 @

The first condition implies that
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[ACD - 35;—[4(:11; + 3'{613)}+

=0

which reduces to

[33-[(<11>’++W5-[<I>)L o

(43)

on super-Hubble scales. It follows that the matching con-
ditions imply the continuity of £, Eq. (41) and the con-
tinuity of R on the super-Hubble scale. Note however that
this conclusion relies strongly on the fact that §p/p’ is
continuous, and thus on the choice of the matching sur-
face (see Ref. [29] for further discussion on this issue).
Note that matching on a constant ¢ hypersurface will
have implied, from Eq. (27) that [R]. = 0, instead of
Eq. (41). Interestingly, Eq. (35) shows that for supper-
Hubble modes, it is equivalent to match on a constant field
or constant density hypersurface.

The general solution for the gravitational potential,
Eq. (37), impliesthat ® = A_ + B_(—7n)and ® = A, +
B, /7 respectively during inflation and RDU. The con-
tinuity of ®@ and the condition (36) imply that
le—2

21+ ¢
z A, B, =—
3 ¢ T3 g

+

Ay, (44)

if we neglect the decaying mode during inflation. At a
time still in the RDU but far enough from the transition,
we get that

21+e

o, ~=
T3 e

d_, (45)

which is the standard result, Eq. (38). Again, since R _ =
®_ /e and R, = 3D, /2, Eq. (37) is equivalent to the

)]
inflation RDU
R ®,= 2R/3
d=¢cR
D, n
n*

FIG. 2 (color online). The evolution of the gravitational po-
tential ® through the transition. Both R and ® are continuous
(dashed line) if the transition is a constant density hypersur-
face. @, and @, refer, respectively, to the growing and decay-
ing modes.

083004-7



BERNARDEAU, KOFMAN, AND UZAN

continuity of R. The behavior of the different quantities
is depicted in Fig. 2. Note that the growing mode of the
gravitational potential inherits a contribution from the
gravitational potential during inflation (®_) and a con-
tribution from the density perturbation on the matching
surface [(2 — &)®_/3€]. In the modulated inflationary
model, this second contribution will be modified, as we
will see in the next section.

C. Initial power spectra and the consistency relation

The preceding argument simply shows that in the
standard case it is equivalent to use the matching con-
ditions or the continuity of / to relate the gravitational
potential generated during inflation to the one in the
radiation era. Indeed, one still needs to determine the
gravitational potential generated during inflation that
can be obtained from the quantification of the density
fluctuations during inflation. This is part of the standard
lore.

For the scalar modes, let us introduce the Mukhanov
variables [32]:

H ae
u=zR Z<CI> + o 5¢>>, z TS (46)
in terms of which the equation of evolution of the scalar
modes is

u + (k* —7"/2)u = 0. 47)

In terms of the slow-roll parameter z//z = (v* —
1/4)/m* with v = 3/2 + 3& — 7 so that the general so-
lution of Eq. (47) can be expressed in terms of Hankel
functions. On super-Hubble scales, it reduces to

1
we = —=(—km)'/27". 48
We deduce that the curvature perturbation, R, = u;/z, is
given by

1 H 1
~—— —  (—km)n3e 49
k '\/2_](3_ Mp 8( 77) ( )
before the transition. Defining the power spectrum of any
field X as

22
(XiXi) = =5 PR3k — K, (50)

one obtains that

P1/2_ 1 <£>L(—kn_)”38

L i 2 i
- ~ - pl2=Zpl?
R 27\M,) e e

[T 3 [0
(51
where the last equality derives from Eq. (45).
Concerning the gravitational waves, one can follow the

same routes but now the matching conditions Eq. (28) are
trivial. Introducing the variable [32] uy = aM,h, the
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evolution of the tensor modes is dictated by the equation
wl + (k> —a"/a)uy = 0. (52)

The general solution is given in terms of the Hankel
function and the growing mode on super-Hubble scales
is given by

1 H
e U (53)
V23 M,
from which one deduces a consistency relation between
the relative amplitude between scalar and tensor contri-
butions and the slow-roll parameter

T

— =g=—ny/2 (54)

S
where T and S are measuring the amplitude of the power
spectra of, respectively, the tensor and scalar curvature
modes and where ny is the tensor modes spectral index.

h+~

VL. THE CASE OF MODULATED FLUCTUATIONS

Now we turn to the main subject of the paper, namely,
the generation of modulated fluctuations. Contrary to the
previous case of inflaton driven fluctuations, the transition
between the inflationary era and radiation era does not
take place on a constant density hypersurface but on a
hypersurface of constant value of the bifurcation point.
We derive in Sec. VI A the general expression of the
curvature fluctuations in the radiation era and then apply
it to the case of modulated fluctuation scenarios
(Sec. VIB).

A. General results

Let us start by matching the inflationary stage to the
radiation era on a general constant g hypersurface. From
the junction conditions (28), we deduce that the gravita-
tional potential in the radiation era is given by

2—eH

D (n) =P (—n.)+ 3
q

-]

where ¢ is given by Eq. (29) and depends on the details of
the inflationary stage. Using that R, = 3®, /2, we de-
duce that the curvature perturbation deep in the radiation
era but long enough after the transition is given by

3 Hé
R () =30 (n) + (1-5)7 0 =m0 50

To go further, we need to specify (i) the nature of the
inflationary period which will fix ®_(n_) and ¢ and
(i1) the nature of the transition which will fix g.

Let us note that the formula (56) contains the standard
case discussed in Sec. V that is recovered by simply
choosing g = ¢, taking into account that Eq. (29) implies
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that H/¢ = \J4m/e/M,. We now apply this general result
to the case of modulated fluctuations.

B. Modulated fluctuations from slow-roll hybrid
inflation

We consider the realistic scenario of a slow-roll hybrid
inflationary stage in which the value of the bifurcation
point is modulated by some light fields, as described in
Sec. IIL It follows that inflation ends when ¢ = ¢.(x,) so
that the parameter ¢ introduced in Sec. IV has to be
chosen as g(¢, x,) = ¢ — ¢.(x,). Let us stress that g is
a function of all light fields including the inflaton. We
deduce that the quantities needed to apply the matching
conditions (27) and (28) are given by

(57)

and by

qg=¢ (58)
because Y, = 0. We can now apply the matching condi-
tions between the inflationary solution and the radiation
era solution, exactly as in Eq. (44), and making use of the
background quantities defined in Eq. (39) we obtain the
equivalent of Eq. (55):

2—eH

Pi(n) = P-(=m) + ——
¢

[590(—71*)

*

73
- Z?’a5)((_77*) |:1 - <_> } (59)
a n
where we have introduced the coefficients

_ dec _
711 - an

Using that ®_ ~ ¢R _, we deduce that R, = 3P, /2 is
given, at a late enough time (7 > 7..), by

7). (60)

&

H
Ro-R-(123);

D Yabxa(=m.). (61)

Using Eq. (29) to express H/¢ at the time of the tran-
sition, we end up with

1 - 8/2 5/\/11(_7]*)
R, =R_—Jar N gya (62

P

Assuming for simplicity that there is only one light scalar
field and taking into account that R_ and &y, are not
correlated, see the discussion in Sec. I, we conclude that
1—¢ 2 i .
"

Pgr, = Pr_ +4m (63)

We now need to determine the one of y, that can be
considered as a test field. Let us recall the evolution of any
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light field y satisfies, in Fourier space, an equation of the
form

(ady)" + |:k2 + m?a* — c;”}(ac?)() =0. (64)

Assuming that the background spacetime is described by
slow-roll inflation, the bracket expression reduces to
(v*> — 1/4)/n* with v ~ 3/2 — m*/3H? + ¢ if one uses
Eq. (30). The solution leads, on super-Hubble scales, to

Sy~ H
Xk e

The power spectrum of any light field, as defined in
Eq. (50), is thus given by

H\2 2 2
P(k) = (E) (—km)2m/3H=2e, (66)

(—km)¥?7. (65)

It follows that the power spectrum of the curvature
perturbation deep in the radiation era is given by [33]

1 /H\21
P — “(k « —2¢ k *21]—48
R, 47T2<Mp> 8( 1) " 28[(kn.)
+477y2(1 — €)(kn,)¥m/3H], (67)

Contrary to the standard case described in Sec.V, R is not
conserved through the transition, his jump being given by
Eq. (62). This is due to the fact that the perturbation of the
light fields, which were isocurvature perturbations during
inflation, are transferred to the adiabatic mode at the
beginning of the radiation era. Note also that ¢’ has
been expressed in terms of the slow-roll parameters so
that 8¢ and ®_ combine to give R . Also, the standard
inflationary case described in Sec. V is recovered when
v = 0, that is when the value of the bifurcation point does
not depend on any light field and when the end of inflation
takes place on a constant ¢ hypersurface.

C. Spectral index and the consistency relation of
modulated fluctuations

An important qualitative result we obtain here is that
the modulated fluctuations from the hybrid inflation are
inevitably accompanied by the usual inflaton fluctuations.
Their relative amplitude is given by the factor 47ry*(1 —
€) and their spectra are not generically the same. While
the index of the inflaton driven fluctuations is ng — 1 =
2m — 6€, that of the modulated fluctuations ng — 1 =
2m?/3H? — 2¢&. The observed scalar spectrum is there-
fore the sum of two power laws and the scalar spectral
index can run between these two limiting values.

Concerning gravitational waves, the super-Hubble so-
lution in RDU takes the form &, = A, + B, /7 so that
the matching conditions (28) imply

| H
hy ~——=——(kn.)"* (68)
e m, T
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on super-Hubble scales at any time n > 7,. It follows
that deep in the radiation era,

M

1 H \2
Py(k) = 4—772<—) (k)2 (69)
)4

as in the standard inflationary case.

In the standard case described in Sec. V, the amplitude
of the gravitational waves was set by the energy scale of
inflation, (H/M,)"/? ~ V'/4/M, and their relative ampli-
tude compared to the scalar modes was controlled by the
slow-roll parameter & via the consistency relation (54).
This implies that the detection, or limit on the amplitude,
of the gravitational waves set a constraint on the energy
scale at which inflation took place.

The modulated fluctuations lead to another effect. The
consistency relation (54) becomes

T €
S 1+47(1 — e)y?

(70)

and the contribution of the tensor modes is always smaller
in the modulated fluctuations case than in the standard
inflationary case. This can be easily understood because
the modulated fluctuations are of a scalar type only and
the gravitational waves are completely insensitive to the
properties of the transition, as can be seen from the
matching relation Eq. (28).

The situation where y ~ O(1) is particularly interest-
ing since T/S remains of order & but a deviation from the
standard consistency relation (54) of order & appears. In
this regime, the scalar power spectrum is the sum of two
power laws of comparable amplitude, opening the possi-
bility to have a break at an observable wavelength. This,
in particular, the case in the explicit model presented in
Sec. 111, from Eq. (20) we get y* =33 _, y2 =

When y = 1 that is when most of the scalar perturba-
tions are inherited from the modulation of the transition
hypersurface the ratio 7/S is then much smaller that &
and we get a mechanism that damps the gravitational
waves contribution, whatever the energy scale of inflation.
On one hand, it allows the energy scale of inflation to be
higher than in the standard case and still have undetect-
able gravitational waves (see also Ref. [34] for a scenario
that can boost the gravitational waves). In that case,
gravitational waves then appear to contribute nonsignifi-
cantly, e.g., to the temperature anisotropies and their
detectability, see, e.g., Refs. [35,36], and strong con-
straints on & will be difficult to set.

VIL DISCUSSION AND CONCLUSION

Modulated curvature fluctuations in hybrid models can
be put on firm ground whether it is from a model building
perspective or for the computation of its phenomenologi-
cal consequences. That such models are generic might be
interesting at different levels. In such classes of models
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indeed the metric fluctuations are not necessarily associ-
ated with field fluctuations in the slow-roll direction. It
allows one to break the relations between the slow-roll
parameters and the shape of the power spectrum.
Analogous conclusions were reached in Ref. [37] where
a model that decouples the spectral index from the infla-
tionary stage is presented. Moreover some of the difficul-
ties encountered in the usual hybrid models might be
circumvent. Indeed the production of topological defects
at an energy scale comparable to that of the adiabatic
fluctuations, no contribution of which have been detected,
is natural in such models forcing a tuning of the parame-
ters subsequently causing the suppression of “good’ sca-
lar fluctuations (see Ref. [24]). Here we avoid this
problem. Actually what we have obtained here is a kind
of decoupling of the background evolution sector from the
generation of fluctuations.

Are thus models arbitrary constructions or could they
be physically motivated? Let us recall that light fields,
such as moduli, are generic in, e.g., string theory. They
may have different effects related to the theory of struc-
ture formation and of interest for cosmology. They may
induce a modulation of the coupling constants that can
lead (i) to a spacetime modulation of the constants of
nature, as, e.g., the fine structure constant (see Ref. [38]
for the effect of a fluctuating light dilaton, Ref. [39] for an
example of signature on the cosmic microwave back-
ground, and Ref. [40] for a review), (ii) to the generation
of non-Gaussianity, and (iii) to the mechanism of modu-
lated fluctuations described in this article.

The mechanism presented in the article shows that
modulated inflationary models correspond to a large class
of models that naturally emerges from supergravity where
the couplings depending on light moduli fields can modu-
late the transition to the radiation era. In such models we
have more specifically shown that gravitational waves
were not affected by the modulation while scalar modes
receive an extra contribution. The primordial power spec-
tra however follow a modified consistency relation,
Eq. (70), which depends on a new parameter, vy, that
characterizes the dependence of the bifurcation point on
the light fields. Moreover the fact that the contribution of
the gravitational waves is always smaller in this context
than in the standard inflationary case has two consequen-
ces: (i) it allows one to have a higher energy scale for
inflation and still have undetectable tensor modes but (ii)
makes the possibility of their detection via B-polarization
measurements more difficult. An interesting situation
arises when y ~ 1. In that case, the tensor modes still
have a relative amplitude comparable to the standard case
but (i) we have a deviation, Eq. (70), from the standard,
Eq. (54), that can be hoped to be measured and (ii) the
scalar power spectrum is the sum of two power laws,
opening the door for a possible break in the range of
wavelengths of interest for cosmology.
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These results should be put in parallel to other exten-
sions of standard inflation where the consistency relation
can be modified. Generically in multifield inflation [41],
Eq. (54) becomes T/S = esin?’® where O is the
isocurvature-adiabatic correlation angle. As in our case,
T/S < &. On the other hand in the curvaton scenario [8],
the density perturbations arise from the fluctuation of a
light field and primordial perturbations are entirely from
an isocurvature mode and the consistency relation be-
comes T/§ < € (see, e.g., Ref. [42]). This is analogous to
a limit in which y > 1.

This class of models also opens a new phenomenologi-
cal avenue. Indeed nothing prevents the fields y, from
developing non-Gaussianity prior to the transition as in
the mechanism of Ref. [7]. In modulated inflation the
transfer of modes is not due to a bent of the trajectory
but to the modulation. The outcome of such a mechanism
could be the superposition of Gaussian perturbations and
non-Gaussian ones of the same variance. Let us stress that
no non-Gaussianity is generated by the transition itself so
that if fluctuations of the light field are initially Gaussian
so will be the modulated fluctuations.

The last remarks are about the nature of modulated
scalar fluctuations. First, note that this mechanism offers
an example of a situation in which the adiabatic mode is
not conserved, an issue raised in Ref. [43]. Second, before
the end of inflation, the moduli field fluctuations are
subdominant gravitationally and have a character of iso-

PHYSICAL REVIEW D 70 083004

curvature fluctuations. When the equation of state is
changed the moduli field remains to be gravitationally
subdominant (contrary to the curvaton scenario where
dominance of the curvaton is additionally assumed).
However, the moduli field fluctuations vary the time
hypersurface where equation of state is altered. At this
moment their isocurvature fluctuations are transferred
into adiabatic, scalar metric fluctuations (viz. the cou-
pling which control the change of the equation of state).
We have cosmological examples where initially isocurva-
ture inhomogeneities are transferred into adiabatic fluc-
tuations—examples include the isocurvature cold dark
matter scenario or the curvaton scenario—in both cases
the carrier of isocurvature fluctuations becomes gravita-
tionally dominant. What is qualitatively new in the modu-
lated fluctuations is the fact that the carrier of fluctuations
remains always gravitationally subdominant; however, its
isocurvature fluctuations are transformed into the adia-
batic one after it modulates the jump in the equation of
state.

ACKNOWLEDGMENTS

We thank Dick Bond, Nathalie Deruelle, Christophe
Grojean, Andrei Linde, Slava Mukhanov, Marco Peloso,
and Filippo Vernizzi for discussions. F. B. and J.P.U.
thank CITA for hospitality. The work of L. K. was sup-
ported in part by NSERC and CIAR.

[11 V.E Mukhanov and G.V. Chibisov, Pis’'ma Zh. Eksp.
Teor. Fiz. 33, 549 (1981) [JETP Lett. 33, 532 (1981)];
S.W. Hawking, Phys. Lett. 115B, 295 (1982); A.A.
Starobinsky, Phys. Lett. 117B, 175 (1982); A.H. Guth
and S.Y. Pi, Phys. Rev. Lett. 49, 1110 (1982); J. M.
Bardeen, P.J. Steinhardt, and M. S. Turner, Phys. Rev.
D 28, 679 (1983).

[2] L. A. Kofman, A.D. Linde, and A. A. Starobinsky, Phys.
Lett. 157B, 361 (1985).

[3]1 A. Linde, Phys. Lett. B 259, 38 (1991); Phys. Rev. D 49,
748 (1994).

[4] L. Kofman, Phys. Lett. B 173, 400 (1986); D. Polarski
and A. A. Starobinsky, Phys. Rev. D 50, 6123 (1994);
D. Langlois, Phys. Rev. D 59, 123512 (1999); C. Gordon
et al., Phys. Rev. D 63, 023506 (2001).

[5] L. A. Kofman and A.D. Linde, Nucl. Phys. B282, 555
(1987); L. A. Kofman and D. Yu. Pogosian, Phys. Lett. B
214, 508 (1988); D.S. Salopek, J.R. Bond, and J. M.
Bardeen, Phys. Rev. D 40, 1753 (1989).

[6] A.D. Linde and V. Mukhanov, Phys. Rev. D 56, 535
(1997).

[7]1 E Bernardeau and J.-P. Uzan, Phys. Rev. D 66, 103506
(2002); 67, 121301(R) (2003); E. Bernardeau, T. Brunier,

and J.-P. Uzan, Phys. Rev. D 69, 063520 (2004);
F Bernardeau and J.-P. Uzan, Phys. Rev. D 70, 043533
(2004).
[8] D.H. Lyth and D. Wands, Phys. Lett. B 524, 5 (2002).
[9] L. Kofman, in “Proceedings of the Cosmo02 Meeting,
Chicago, 2002, http://pancake.uchicago.edu/~cosmo02/

[10] G. Dvali, A. Gruzinov, and M. Zaldarriaga, Phys. Rev. D
69, 023505 (2004).

[11] L. Kofman, astro-ph/0303614.

[12] J. Polchinski, String Theory (Cambridge University
Press, Cambridge, England, 1998), Vol. 1.

[13] L. Kofman, A.D. Linde, and A. A. Starobinsky, Phys.
Rev. Lett. 73, 3195 (1994); Phys. Rev. D 56, 3258 (1997).

[14] G.N. Felder and L. Kofman, Phys. Rev. D 63, 103503
(2001); R. Micha and L I Tkachev, Phys. Rev. Lett. 90,
121301 (2003).

[15] G.N. Felder, J. Garcia-Bellido, P. B. Greene, L. Kofman,
A.D. Linde, and L. Tkachev, Phys. Rev. Lett. 87, 011601
(2001).

[16] G.N. Felder, L. Kofman, and A. D. Linde, Phys. Rev. D
64, 123517 (2001).

[17] S. Matarrese and A. Riotto, J. Cosmol. Astropart. Phys.
08 (2003) 007.

083004-11



BERNARDEAU, KOFMAN, AND UZAN

[18]
[19]

(20]
(21]
(22]
[23]
[24]
[25]

(26]
(27]

(28]

[29]
(30]

(31]

(32]

E Vernizzi, Phys. Rev. D 69, 083526 (2004).

J. Baacke, K. Heitmann, and C. Patzold, Phys. Rev. D 58,
125013 (1998); P. B. Greene and L. Kofman, Phys. Lett. B
448, 6 (1999); G.E Giudice, M. Peloso, A. Riotto, and
I. Tkachev, J. High Energy Phys. 08 (1999) 014.

N. Deruelle and V. E Mukhanov, Phys. Rev. D 52, 5549
(1995).

A.D. Linde and A. Riotto, Phys. Rev. D 56, 1841 (1997).
P. Binetruy and G. Dvali, Phys. Lett. B 388, 241 (1996).
D.H. Lyth and A. Riotto, Phys. Rep. 314, 1 (1999).

R. Kallosh and A. Linde, J. Cosmol. Astropart. Phys. 10
(2003) 008.

R. Kallosh, L. Kofman, A. D. Linde, and A. Van Proeyen,
Classical Quantum Gravity 17, 4269 (2000).

E. Witten, Phys. Lett. 155B, 151 (1985).

J.P. Hsu, R. Kallosh, and S. Prokushkin, J. Cosmol.
Astropart. Phys. 12 (2003) 0009.

G. Darmois, Mémorial des Sciences Mathématiques
XXV 1 (1927); K. Lanczos, Ann. Phys. (Leipzig) 74,
518 (1924); N. Sen, Ann. Phys. (Leipzig) 73, 365 (1924);
W. Israel, Nuovo Cimento B 44, 1 (1966).

J. Martin and D. Schwarz, Phys. Rev. D 57, 3302 (1998).
N. Deruelle, D. Langlois, and J.-P. Uzan, Phys. Rev. D 56,
7608 (1997).

A.R. Liddle and D. H. Lyth, Cosmological Inflation and
Large-Scale Structure (Cambridge University Press,
Cambridge, 2000).

V.E Mukhanov, H. A. Feldman, and R.H. Branden-

(33]

[34]
(35]

[36]

[37]
(38]
[39]

[40]
[41]

[42]

[43]

083004-12

PHYSICAL REVIEW D 70 083004

berger, Phys. Rep. 215, 203 (1992).

We assume that the slow-roll parameters € and 7 are
constant during inflation, which is the case at first order
in the slow-roll parameters. If € had varied between the
time of horizon crossing of the modes of cosmological
interest and the time of the transition then Eq. (67) will
be Pr, = (1/47%)(H/M,)*(1/e)(kn.) > [(kn.)*"~% +
47y2(1 — £,)(e/e.)(kn,)?™ /35 ] We will get the same
phenomenology but with y? replaced by y*e/«..

L. Pilo, A. Riotto, and A. Zaffaroni, Phys. Rev. Lett. 92,
201303 (2004).

L. Knox and Y.-S. Song, Phys. Rev. Lett. 89, 011303
(2002).

L. Knox and Y.-S. Song, Phys. Rev. D 68, 043518 (2003);
M. Kesden, A. Cooray, and M. Kamionkowski, Phys.
Rev. Lett. 89, 011304 (2002).

C. Armendariz-Picon, J. Cosmol. Astropart. Phys. 03
(2004) 009.

T. Damour, E Piazza, and G. Veneziano, Phys. Rev. D 66,
046007 (2002).

K. Sigurdson, A. Kurylov, and M. Kamionkowski, Phys.
Rev. D 68, 103509 (2003).

J.-P. Uzan, Rev. Mod. Phys. 75, 403 (2003).

D. Wands, N. Bartolo, and A. Riotto, Phys. Rev. D 66,
043520 (2002).

D. Langlois and E Vernizzi, astro-ph/0403258 [Phys.
Rev. D (to be published)].

S. Weinberg, Phys. Rev. D 67, 123504 (2003).



