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Charged rotating black holes in five dimensional U�1�3 gaugedN � 2 supergravity
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We obtain the general solution for nonextremal 3-charge dilatonic rotating black holes in the five
dimensional U�1�3 gauged N � 2 supergravity coupled to two vector multiplets, in the case where the
two rotation parameters are set equal. These solutions encompass all the previously-known extremal
solutions, and, by setting the three charges equal, the recently-obtained nonextremal solutions of N �
2 gauged five dimensional pure supergravity.
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Valuable tests of the AdS/CFT correspondence can be
performed by taking charged black holes with nonzero
cosmological constant as gravitational backgrounds [1,2].
The black-hole charges play the rôle of R-charges in the
dual field theory [3]. Furthermore, one can gain insight
into the phase structure of the strongly-coupled dual field
theory by studying the thermodynamic stability of the
black-hole solutions, and the analogue of the Hawking-
Page transition [3–5]. The first examples of nonextremal
charged black holes in five dimensions, as solutions of a
gauged supergravity theory, were obtained in [6]. These,
and some higher-dimensional generalizations obtained in
[7], were all nonrotating.

Charged rotating black holes in four dimensional theo-
ries with a cosmological constant were obtained long ago
[8], but until recently no analogous five dimensional
charged rotating solutions were known, except in certain
extremal supersymmetric (BPS) limiting cases [9,10]. In
a recent paper [11], we constructed general solutions for
charged rotating black holes in five dimensional gauged
N � 2 pure supergravity, in the case where the two
angular momenta are taken to be equal. These nonextre-
mal solutions encompass the extremal solutions of [9,10]
as special cases. By instead setting the charge to zero, the
solutions in [11] reduce to the rotating five dimensional
Kerr-de Sitter black holes of [12], in the special case
where the two rotation parameters are set equal.

In this letter we extend our previous results, by con-
structing a general class of nonextremal charged rotating
black-hole solutions in the five dimensional U�1�3 gauged
theory of N � 2 supergravity coupled to two vector
multiplets. We obtain the general nonextremal solutions
of this dilatonic theory, with three independent electric
charges, subject to the specialisation that the two angular
momenta in the orthogonal 4-space are set equal. These 3-
charge solutions are important for probing fully the mi-
croscopic degrees of freedom associated with the 3 R-
charges in the dual N � 4 CFTon the boundary, without
04=70(8)=081502(4)$22.50 70 0815
the loss of information that would be inherent if the three
charges were set equal.

Our new 3-charge solutions are generalisations to the
gauged theory of the 3-charge spinning black-hole solu-
tions (with two rotation parameters set equal) of the
corresponding five dimensional ungauged supergravity,
obtained in [13]. They also, of course, specialize to our
previous results in [11] if one sets the three electric
charges equal, under which circumstance the two dila-
tonic scalars decouple and become constant.

The bosonic sector of the five dimensional N � 2
gauged supergravity coupled to two vector multiplets is
described by the Lagrangian
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The gauge-coupling constant g is related to 	 by
	 � �g2.

The solutions that we have obtained are as follows:
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and si and ci are shorthand notations for

si 	 sinh"i; ci 	 cosh"i; i � 1; 2; 3: (7)
Note that in the expressions (4) for the vector potentials
Ai, the triplet indices �i; j; k� are all unequal: �i � j �

k � i�. The functions �f1; f2; f3; Y� are given by
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It is helpful to note that
�������
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p
takes a simple form, namely�������
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p

� rR sin� cos�.
We arrived at the above solution by making conjectures

for the expressions for the metric, vector potentials and
dilatonic scalars that reduced to previously-known cases
under appropriate limits. In particular, we were guided by
the results for the ungauged case in [13], and the results
for the nondilatonic gauged case (i.e., with three equal
charges) in [11]. Verifying that the conjectured configu-
ration solves the equations of motion following from (1)
is then a straightforward mechanical exercise, which is
most easily accomplished with the aid of a computer. (We
used Mathematica for this purpose.) There are six free
parameters in the solution, namely �; "1; "2; "3; ‘; $�.
The constant , together with the three ‘‘nonextremality
parameters’’ "i, characterize the mass and the three elec-
tric charges associated with the three vector potentials Ai.
The parameter ‘ characterizes the rotation of the black
hole. One can define ‘‘physical’’ mass, charge and angular
momentum parameters M, Qi and J, according to
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The sixth constant $ is trivial.
In order to make the global structure of the metrics

more apparent, it is convenient to rewrite the metric (3) in
terms of left-invariant 1-forms �i on S3. Defining
�1 � cos ~ d~�� sin ~ sin~�d ~�;

�2 � � sin ~ d~�� cos ~ sin~�d ~�;

�3 � d ~ � cos~�d ~�;

(11)

where
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we find that (3) can be rewritten as
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while the vector potentials in (4) become
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I. REDUCTIONS TO
PREVIOUSLY-KNOWN SOLUTIONS

Various limits of our new solutions reduce to
previously-known cases. These include the nonextremal
3-charge spinning black-hole solutions of the ungauged
theory in [13] (specialized to the case of equal angular
momenta); the nonextremal charged rotating solutions of
the pure N � 2 gauged theory found recently in [11]; the
BPS 3-charge rotating solutions of Klemm and Sabra
[14]; and the BPS 3-charge rotating solutions of
Gutowski and Reall [15]. In detail, these various cases
arise as follows:
(i) T
-2
he ungauged limit (i.e., 	 � 0) leads to the spe-
cial case of the solutions of [13] where one sets the
two angular momenta parameters equal, i.e., ‘1 �
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‘2 � ‘. This limit is obtained from our solution
by setting 	 � 0, replacing  by 2m, and by
redefining r2 ! r2 � ‘2.
(ii) T
he equal-charge limit, i.e., setting "1 � "2 �
"3 	 ", reduces to the solution found in [11].
Note that the parameters * and J in [11] are
related to $ and ‘ of the present paper by

* � $e"; J � ‘e�"; (15)

while the parameters M and Q in [11] can be read
off from (10). The radial variable in [11] is given
by sending �r2 �sinh2"� ! r2.
(iii) T
he Klemm-Sabra solution [14], which has closed
timelike curves, is a BPS limit of our solution,
obtained by taking
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where the three charges Qi and the constant + are
kept finite and nonzero. The black-hole mass and
angular momentum, defined in (10), are then
given by

M � ��Q1 �Q2 �Q3�; J � 2+
������������������
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p
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Note that since ‘! 0 and the $ parameter ap-
pears only in a product with ‘, the solution does
not depend on $.
(iv) T
he Gutowski-Reall solution [15] is a regular
BPS limit of our solution, obtained by taking
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where the charges Qi are kept finite and nonzero.
Note that $ goes to zero, while ‘ goes to infinity,
when the limit is taken. (The solution remains
finite, however.) The black-hole mass and the
angular momentum, following from (10), are:

M � ��Q1 �Q2 �Q3�;
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As in the solutions corresponding to setting all three
charges equal, obtained in [11], we can obtain more
general BPS limits from our general solutions, because
of the additional free parameter $.
081502
II. FURTHER REMARKS

The metric (13) has horizons at values of the radial
coordinate where RYf�1

1 vanishes. In order to avoid
naked singularities, the outer horizon at r � rH should
lie outside the curvature singularity at R � 0, and thus we
require that it occur at the largest positive root of Y�rH� �
0. In order to avoid having closed timelike curves
(CTCs), f1 should be positive for all r > rH. A detailed
analysis of the restrictions on the parameters in order to
obtain solutions free of naked singularities or closed
CTCs is quite involved, and we shall not present it here.
It is analogous to the one given in [11] for the case where
all three charges are equal. Clearly, there exist appropri-
ate ranges of the parameters for which such ‘‘regular’’
black holes arise.

On the horizon, the Killing vector
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becomes null, and thus r � rH corresponds to a Killing
horizon. The surface gravity ., which is constant over the
horizon, can be calculated from
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The area of the Killing horizon is given by
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The Hawking temperature and entropy are therefore
given by
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