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Negative energy and stability in scalar-tensor gravity
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Linearized gravitational waves in Brans-Dicke and scalar-tensor theories carry negative energy. A
gauge-invariant analysis shows that the background Minkowski space is stable at the classical level with
respect to linear scalar and tensor inhomogeneous perturbations.
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I. INTRODUCTION

It has recently been shown [1] that all the standard
energy conditions can easily be violated at the classical
level in the theory of a scalar field coupled nonminimally
with the spacetime curvature. Although there are some
ambiguities in the definition of energy density and effec-
tive pressure [2], the possibility of violating the energy
conditions is undeniable. Even allowing for the possibil-
ity of exotica such as traversable wormholes made pos-
sible by the violation of the energy conditions, one would
like to preserve the non-negativity of the energy density,
at least at the classical level. However, even this last
requirement may be violated in nonminimally coupled
scalar field theory. Even worse, the problem of negative
energy fluxes is not unique to nonminimally coupled
theory [3]—it also occurs when linearized gravitational
waves are considered in Brans-Dicke or more general
scalar-tensor theories [4–7]. To summarize the issue,
consider linearized gravitational waves in Brans-Dicke
theory, which is described by the action
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In the linearized version of the theory with V��� � 0 the
metric and scalar field are given by

gab � �ab � hab; � � �0 � ’; (1.2)

where �ab is the Minkowski metric, �0 is a constant and
O�hab� � O�’=�0� � O���, with � a smallness parame-
ter. The corresponding linearized field equations in a
region outside sources are

Rab �
@a@b’
�0

� O��2�; (1.3)

�’ � �ab@a@b’ � 0� O��2�: (1.4)

It is natural to interpret the right hand side of Eq. (1.3) as
an effective energy-momentum tensor Tab	’
 of the
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Brans-Dicke field. More generally, the interpretation of
the right hand side of the vacuum Brans-Dicke field
equations as an effective energy-momentum tensor is
widespread in the literature and may ultimately be ques-
tionable [4,8,9]. In fact, writing the vacuum Brans-Dicke
field equations as
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means forcing upon them an interpretation as effective
Einstein equations, which they are not —they are field
equations of a theory different from general relativity.
However, there is little doubt that this interpretation is
appropriate in the linearized approximation. Let us con-
sider a monochromatic component of the Fourier decom-
position of ’�t; ~x�

’~k � ’0 cos�kcx
c�: (1.6)

The effective energy density associated with the mono-
chromatic wave (1.6) by an observer with four-velocity ua

is

� � Tab	’
u
aub � ��kau

a�2
’~k

�0
: (1.7)

Because of the noncanonical form of Tab	’
—linear in
the second derivatives instead of quadratic in the first
derivatives—� is not positive definite but oscillates
with the frequency of ’~k. This has the disturbing conse-
quence that scalar-tensor waves emitted by a binary
massive stellar system such as, e.g., �-Sco, carry a nega-
tive energy flux over macroscopic times (of order 3�
105 s for �-Sco). The contribution of the tensor modes
hab is described by the Isaacson effective tensor and is
absent to order O(�).

The argument showing the presence of negative energy
presented in the context of Brans-Dicke theory is gener-
alized to arbitrary scalar-tensor theories of gravity with
gravitational sector described by the action
01-1  2004 The American Physical Society
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by expanding the coupling functions f��� and !���
around their present day values f0 and !0. From a con-
ceptual point of view it could be objected that the con-
sideration of Minkowski space is inconsistent with the
original motivation of Brans-Dicke theory (distant matter
in the universe determines the effective gravitational
coupling Geff � ��1 here and now, according to
Mach’s principle). However, Minkowski space is a per-
fectly legitimate solution of the Brans-Dicke field equa-
tions from the mathematical point of view. Moreover,
current interest in scalar-tensor gravity is not motivated
by Mach’s principle but rather by the fact that scalar-
tensor theories mimic properties of stringy physics
[4,10]. For example, the low energy limit of the bosonic
string theory is Brans-Dicke gravity with parameter! �
�1 [11].

The presence of negative energy fluxes is seen by
certain authors as a reason to abandon the usual Jordan
frame version of the theory and consider instead its
Einstein frame counterpart with fixed units of time,
length, and mass (see [4,12,13] for reviews). Little mat-
ters that the two conformally related formulations are
equivalent if one allows the Einstein frame units of mass,
time, and length to scale appropriately, as done in Dicke’s
original paper [14] introducing the Einstein frame ver-
sion of Brans-Dicke theory. Most of the current literature
considers instead a version of Brans-Dicke theory in the
Einstein frame with fixed units of mass, length, and time.
The result is a new theory physically inequivalent to the
original Jordan frame; in this new theory the scalar has
canonical (positive definite) kinetic energy. In this paper
we do not seek escape to the Einstein frame but we work
in the Jordan frame. Physicists shy away from negative
energy because it is usually associated with instability
and runaway solutions and intuitively this should also be
the case for classical Brans-Dicke theory and its scalar-
tensor generalizations. It comes therefore as a surprise
that, as we show in the following, the Minkowski space
taken as the background metric in Eqs. (1.2), (1.3), and
(1.4) is stable against inhomogeneous perturbations (sca-
lar and tensor) to first order and that there are no runaway
solutions to this order.

II. STABILITY OF MINKOWSKI SPACETIME

Inhomogeneous perturbations are gauge-dependent
and a stability analysis using gauge-independent
quantities is mandatory. These are conveniently obtained
by regarding Minkowski space as a trivial case
of a Friedmann-Lemaitre-Robertson-Walker (hereafter
‘‘FLRW’’) universe, for which there is a vast literature
081501
on gauge-independent perturbations. Recently [15] we
have carried out a stability analysis of de Sitter spaces
in generalized gravity theories described by the action
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which contains the scalar-tensor action (1.8) as a special
case. We employed the covariant and gauge-invariant
formalism developed by Bardeen [16], Ellis, Bruni,
Hwang and Vishniac [17,18] in general relativity, in a
version extended to encompass generalized gravity by
Hwang and Hwang and Noh [19]. The gauge-invariant
variables used are the Bardeen [16] potentials �H and �A
and the Ellis-Bruni [17] variable �� defined by
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where a is the scale factor of the background FLRW
metric with line element

ds2 � �dt2 � a2�t��dx2 � dy2 � dz2� (2.5)

and A;B;HL and HT are the metric perturbations defined
by

g00 � �a2�1� 2AY�; (2.6)

g0i � �a2BYi; (2.7)

gij � a2	hij�1� 2HL� � 2HTYij
: (2.8)

Here hij is the three-dimensional metric of the FLRW
background and the operator �ri is the covariant derivative
associated with hij. The scalar harmonics Y are the
eigenfunctions of the eigenvalue problem

�ri
�ri Y � �k2Y; (2.9)

while the vector and tensor harmonics Yi and Yij are
-2
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The general equations for inhomogeneous perturbations
[19] simplify considerably in a Minkowski background,
reducing to
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and � R is defined analogously to Eq. (2.4). An overdot
denotes differentiation with respect to the proper time t of
the FLRW background. In the cosmological analysis
�H0; �0� is the de Sitter fixed point of which one wants
to study the stability and R0 � 12H2

0 . Minkowski space
corresponds to the trivial caseH0 � 0 and Eqs. (2.13) and
(2.14) yield

�H � �A � �
� R
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Hence, we are interested in Eqs. (2.11) and (2.12) for the
scalar and tensor perturbations �� and HT . It is obvious
that the solutions of Eq. (2.12) are oscillating for any real
value of k, and hence Minkowski space is always stable
with respect to tensor perturbations. Let us turn now to
Eq. (2.11): stability is equivalent to
081501
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In scalar-tensor gravity  ��;R� � f���R and
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In the case of non self-interacting (V � 0) linearized
Brans-Dicke scalar ’ of Eq. (1.2), Minkowski space is
always stable with respect to linear inhomogeneous per-
turbations. The same conclusion holds for massive scalar
waves (V00

0 � m2 > 0) if !0 > 0 and f��0�> 0, which is
the usual range of parameters in Brans-Dicke theory.
Runaway potentials with V00

0 < 0 give unstable scalar
perturbations if the wavelength is larger than a critical
value —the usual phenomenon present in particle dynam-
ics with runaway potentials.
III. DISCUSSION AND CONCLUSIONS

Scalar-tensor theories are plagued by negative ener-
gies. Although it is not always clear how to unambigously
identify energy densities [2], it is clear that negative
energies are present in these theories. The situation of
linearized Brans-Dicke theory considered in Sec. I is
free of such ambiguities—the effective energy density
of scalar waves can be clearly identified and is not posi-
tive definite. One would therefore expect the background
Minkowski space to be unstable and to be destroyed by
small perturbations. However this is not the case: the
negative energy associated with linearized, massless,
scalar-tensor gravitational waves does not cause instabil-
ity or runaway solutions at the classical level—
Minkowski space is stable with respect to inhomogeneous
scalar and tensor perturbations at the linear order. The
reason for stability can be traced to the fact that the
energy density of each individual mode can be negative
but is bounded from below once the wave frequency and
amplitude are fixed. By contrast, one expects an insta-
bility when the energy of the system keeps decreasing and
decreasing ad infinitum. Hence the issue is not whether
the effective energy of the scalar is negative, but whether
it has a lower bound or not. It is not trivial to answer this
question in general because the scalar and the tensor fields
are explicitly coupled in the full field equations, while
they decouple to linear order. As a consequence one
expects an exchange of energy and momentum between
the scalar and the tensor field, and there is no fully
satisfactory solution to the problem of energy localization
for the gravitational field even in general relativity.

Instabilities may appear at the second or higher order or
when the theory is quantized. However, it is well known
-3



VALERIO FARAONI PHYSICAL REVIEW D 70 081501

RAPID COMMUNICATIONS
that also the full equations of Brans-Dicke cosmology
admit stable solutions. Their stability has been checked
only with respect to homogeneous perturbations in sev-
eral studies of the phase space, but the analysis goes well
beyond the linear order [20].

Regarding quantization, the covariant perturbation
scheme only works in the Einstein conformal frame
with fixed units and is not possible in the Jordan frame
([4] and references therein). Thus it would appear that the
conformal transformation to the Einstein frame is a
panacea for scalar-tensor gravity. However, the new the-
ory in the Einstein frame with fixed units of mass, length,
and time is physically inequivalent to the original one in
081501
the Jordan frame [21]. Moreover, the original theory in
the Jordan frame and its scalar-tensor generalizations are
still accepted as viable theories and are the subject of a
vast literature. Nevertheless, in order for scalar-tensor
theories to be fully satisfactory at least at the classical
level it would be desirable to have a better understanding
of the issues of negative energies and stability beyond
linear order and homogeneous and isotropic cosmology.
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