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High-precision interpolation of LISA phase measurements allows signal reconstruction and for-
mulation of time-delay interferometry (TDI) combinations to be conducted in postprocessing. The
reconstruction is based on phase measurements made at approximately 10 Hz (for a 1 Hz signal
bandwidth) at regular intervals independent of the TDI delay times. Interpolation introduces an error
less than 1� 10�8 with continuous data segments as short as 2 s in duration. The 10 Hz sampling rate
represents an increase from the 2 Hz sampling rate needed for the original implementation of TDI. The
advantages of this technique include increased flexibility of the data analysis and significantly
simplified hardware.
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I. INTRODUCTION

The Laser Interferometer Space Antenna (LISA) is a
mission to detect gravitational waves in the frequency
band from 0.1 mHz to 1 Hz. The LISA constellation
consists of three spacecraft flying in a heliocentric,
Earth-trailing orbit, with separations of L � 5� 109 m.
Each spacecraft contains two proof masses that are
shielded from external disturbances. To detect a passing
gravitational wave, the change in separation �L of the
proof masses in different spacecraft must be monitored
with a precision of �L=L & 10�20=

������
Hz

p
using laser inter-

ferometry. This fractional length stability is far better
than the fractional frequency stability of the laser source,
which is expected to be ��=� * 10�14=

������
Hz

p
. Degradation

in sensitivity due to laser frequency noise could be
avoided by operating the constellation as a Michelson
interferometer with equal arm lengths. Unfortunately,
the orbital dynamics of the constellation make it imprac-
ticable to equalize the LISA arm lengths accurately
enough to cancel the excess frequency noise. Time-delay
interferometry (TDI) [1] is a technique to remove the
otherwise overwhelming laser frequency fluctuations.
TDI cancels laser frequency noise by combining phase
measurements made at different times. The required tim-
ing of the measurements is set by the light travel times
between the LISA spacecraft, and it must be accurate to
100 ns to meet the laser frequency noise suppression
requirements [2].

One obvious method to achieve this timing accuracy is
to measure the phase with a 10 MHz sampling frequency.
Selecting the nearest-neighbor samples would then pro-
vide the requisite 100 ns timing resolution. This approach,
however, would require data to be transmitted between
spacecraft or back to Earth at the rate of approximately
109 bits=s. The current design for TDI is to sample the
phase at a much lower data rate, in the range of 2 to 10 Hz,
with 100 ns accuracy triggering of the phasemeters [2,3].
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This approach poses a number of technical challenges. To
ensure a timing accuracy of 100 ns, the absolute lengths
of the arms must be known to an accuracy of 30 m when
the measurement is made. For some TDI combinations,
each spacecraft must have knowledge of its nonadjacent
arm’s length. Also, the clocks on different spacecraft
must be synchronized at the 100 ns level. Errors in arm
length knowledge or clock synchronization would lead to
an irreversible corruption of the TDI combinations.

An alternative approach is to sample the phase with a
low rate at equally spaced times, and to reconstruct the
phase at intermediate times by interpolation.
Interpolation must be implemented with exceptional ac-
curacy for effective cancellation of laser frequency noise
by subsequent TDI processing. Tinto and colleagues [2]
examined one possible method of interpolation and found
that months of uninterrupted data around the time of
interest are needed to achieve the necessary accuracy.
This implies that months of data would be unusable at
the beginning and end of a measurement, and levies
extreme requirements on instrument reliability and oper-
ating duty cycle. The interpolation technique was deemed
infeasible, and the triggered measurement approach was
adopted.

In this article, we demonstrate that interpolation is
feasible and that it can produce the required accuracy
with less than 2 s of data. We discuss the significant
simplification in the design and operation of the LISA
mission resulting from this change. The method is based
on fractional-delay filtering [4], a mature technique in
digital signal processing.

II. INTERPOLATION BY
FRACTIONAL-DELAY FILTERING

We specify that the interpolation error be less than 1�
10�6 cycles=

������
Hz

p
for frequency components from 1 mHz

to 1 Hz. This noise level is approximately a factor of 10
below the phase noise contribution of shot noise. Below
1 mHz the requirement is relaxed, as the 1=f2 proof mass
displacement noise dominates shot noise and a larger
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FIG. 1 (color online). Sinc FIR filter kernel values (circles)
with delay set to (a) D � 0, and (b) D � 0:3.
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interpolation error can be tolerated. Assuming that the
laser frequency noise produces approximately
100 cycles=

������
Hz

p
cycles=

������
Hz

p
at the phasemeter output,

interpolation must have a fractional error of less than 1�
10�8 for frequency components in the 1 mHz to 1 Hz
range.

We assume that the LISA phase measurements will be
recorded with a fs � 10 Hz sampling rate. The sampling
rate must be high enough to accurately reproduce the
phase information in the LISA signal band, and to avoid
adding noise from aliasing of higher-frequency phase
noise, at the 10�6 level. Moreover, the performance of
the interpolation schemes considered below improves
with oversampling. Ultimately, the sampling rate will
be determined by filtering requirements on the phase-
meter and by the availability and cost of telemetry band-
width to Earth.

A. Perfect interpolation and fractional-delay filters

Interpolation is the process of reconstructing the
amplitude of a regularly sampled signal between sam-
ples. Shannon [5] proved that a bandlimited signal
sampled at a sufficiently high frequency can be re-
constructed perfectly by convolving the discrete time
series with a continuous sine cardinal function
sinc�fst� � sin��fst�=��fst�.

Sinc interpolation can also be viewed as applying an
acausal finite-impulse-response (FIR) filter to the
sampled time series. The filter kernel (impulse response)
is a sampled version of the sinc function. In effect, instead
of interpolating the signal we interpolate the filter kernel.
As the sinc function is a known analytic function, the
filter kernel can be interpolated with arbitrary accuracy
simply by time shifting the argument of the sinc. In
general, the interpolated signal s�n�D� is the discrete
convolution of the original signal s�n� with the shifted
kernel:

s�n�D� � s�n� � h�n�D�; (1)

where n is the sampling index, D is the delay in samples
�� 1

2 	 D< 1
2�, and h�n� is the filter kernel. For sinc

interpolation, h�n�D� � sinc�n�D�.
With zero delay (D � 0), sinc interpolation corre-

sponds to a FIR filter with delta function impulse re-
sponse [see Fig. 1(a)], since for integer n sinc�n� � �n0,
where �nk is the Kronecker delta function. If D � 0, we
obtain a FIR filter with a nondelta impulse response [see
Fig. 1(b)], which has the effect of applying the fractional
delay D to the original time series. Errors in fractional-
delay filtering are caused by the finite-length approxima-
tion of the infinitely long delayed-sinc filter.

B. Truncated-sinc fractional-delay filters

The simplest finite-length approximation to the ideal
delayed-sinc filter is obtained by truncating the kernel.
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Filtering by a truncated-sinc of kernel length N can be
written as

sN�n�D� �
X�N�1�=2

k��
�N�1�=2�

s�n� k�sinc�D� k�

�for odd N�:

(2)

In the following discussion we restrict ourselves to filters
where N is odd for simplicity.

Although for a given filter order N the truncated-sinc is
optimal in a least-squares sense [4], its frequency re-
sponse is far from ideal (unity magnitude), exhibiting
significant ripple even at low frequencies. This is unac-
ceptable for TDI, where very high fidelity is required in
the 1 mHz to 1 Hz measurement band. In fact, Ref. [2]
showed that truncated-sinc interpolation becomes suffi-
ciently accurate only for very large N. Figure shows the
interpolation error versus N for several filters, including
the truncated-sinc. The interpolation error " is defined as
the maximum difference of the filter’s frequency response
and the ideal frequency response, e�i2�fD=fs for frequen-
cies between 1 mHz and 1 Hz:

" � max
jH�f� � e�i2�fD=fs j1 mHz	f	1 Hz�; (3)

where H�f� is the Fourier transform of h�n�. We used D �
0:5, which is expected from theory to be the worst case.
With truncated-sinc interpolation, " � 1=N. Sampling at
10 Hz, this filter would require a kernel almost four
months long, N * 108, to achieve " < 10�8. This means
that two months of data at the beginning and end of each
measurement period would be unusable.

C. Windowed-sinc fractional-delay filters

The ripple in the frequency response of the truncated-
sinc filter can be significantly reduced by windowing the
filter,
-2
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sN�n�D� �
X�N�1�=2

k��
�N�1�=2�

s�n� k�w�k�sinc�D� k�; (4)

where the window w�k� goes smoothly to zero for k �
��N � 1�=2, so that the end points are tapered to zero
instead of abruptly truncated. Of several conventional
windows [6] tested, the Blackman function

wb�n� � 0:42� 0:5 cos
�

�n
N � 1

�
� 0:08 cos

�
2�n
N � 1

�
(5)

was best, producing " < 10�8 for N � 345 (see Fig. 2)
corresponding to a loss of 14.4 s of data at the beginning
and end of each measurement period. In comparison, the
TDI combinations need several L=c arm travel times, or at
least 65 s, to gather enough data to cancel laser noise. As
seen in Fig. 2, "� 1=N3 for Blackman windowed-sinc
filters.

One simple modification to the Blackman windowed-
sinc filter kernel is to apply the Blackman function more
than once. Our tests showed that using w3

b�n� (applying
the Blackman three times) produced " < 10�8 for N �
21, corresponding to a loss of 1.1 s of data at the begin-
ning and end of each measurement period.

D. Lagrange filter

A more accurate filter at low frequencies can be found
by requiring a maximally flat frequency response near
f � 0 [4]. This filter kernel is equal to the Lagrange
polynomial [7]

hL�n� �
Y�N�1�=2

k��N�1�=2
k�n

tD � k
n� k

; (6)

where tD � 
�N � 1�=2� �D. The Lagrange filter can be
FIG. 2 (color online). Comparison of interpolation error for
four interpolation methods; truncated-sinc filter kernel,
Blackman windowed-sinc filter kernel, Blackman3 windowed-
sinc filter kernel, and Lagrange interpolation.
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compared to filters in Sec. II C by expressing its kernel as
a windowed-sinc function [Eq. (4)], with the window

wL�n� �
�N

sin�tD

tD
N

� �
N � 1

n� �N � 1�=2

� �
; (7)

where the binomial coefficient is extended to noninteger
arguments by the generalized factorial function (Gamma
function) [8].

The performance of the Lagrange filter for this appli-
cation is excellent, meeting the requirements with N �
15 (1.5 s) as shown in Fig. 2. Although Lagrange inter-
polation is known to produce large spurious oscillations at
the ends of the interpolation interval, this does not occur
when the kernel is fully immersed in the signal. By
accepting only data where the kernel is completely im-
mersed, we obtain excellent performance at the expense
of losing N=2 points at the beginning and end of each
measurement period.

Lagrange interpolation is related also to the Thiran
infinite-impulse-response fractional-delay filter [4],
which has nominally flat frequency response. The per-
formance of the Thiran filter in our application is com-
parable to the Lagrange windowed-sinc FIR of the same
order; but the latter is favored on grounds of simplicity,
especially for time-dependent delays.

The filters were tested both by interpolating known
analytic functions and interpolating bandlimited white
noise. The bandlimited noise was generated with a sam-
pling rate of 10 MHz and resampled at times t � n=fs,
fs � 10 Hz. The 10 Hz signal was delayed by D samples
and compared to the original 10 MHz signal resampled at
times t�D=fs. The test results agreed with the calcu-
lated fractional error shown in Fig. 2.

E. Further tests

We have characterized the error of fractional-delay
filtering with fixed delays. In orbit, the delays will slowly
vary due to the changing arm lengths, and so we also
tested Lagrange filtering with varying delay. For this test,
we generated a time series of white noise, bandlimited to
2.5 Hz and sampled at 10 Hz; we then used Lagrange
filters of increasing order to interpolate the noise to the
original sampling times shifted by delays ranging line-
arly in time from D � �0:5 to D � 0 (no delay), during a
period of 5� 105 s. This arrangement approximately
simulates the slow variation in the LISA arm lengths
(which determine the TDI-mandated delays). Figure 3
shows spectra of the interpolation error, along with the
spectrum of the original white noise. The required inter-
polation accuracy is achieved at all frequencies in the
measurement band for N � 16 (window length of 1.6 s).

If the requirements become more stringent, for ex-
ample due to increased laser frequency noise, it is easy
to improve the performance to the desired level by in-
creasing the length of the filter kernel. By setting the filter
-3



FIG. 4. Real-time TDI, in which the delays must be known at
the time of measurement, and the TDI combinations are com-
puted before transponding to Earth. TDI combination X�t�
shown [Eq. (8)].

FIG. 3. Amplitude spectral density of interpolation error for
Lagrange filters, shown with the spectral density of the initial
2.5 Hz-bandlimited noise. Spectral density is estimated by a
triangle-windowed, averaged periodogram.
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to N � 31 (3 s in length at 10 Hz), " can be reduced to
1� 10�15.
FIG. 5. Post-processed implementation of TDI combination
X�t�.
III. IMPLICATIONS FOR LISA

To illustrate the design simplifications enabled by high-
precision interpolation, consider the simplest TDI com-
bination—the Michelson combination X�t� [1]:

X�t� � 
s21�t� � s31�t�� � 
s21�t� 2L3=c�

�s31�t� 2L2=c��; (8)

where sm1 is the phase measurement made at Spacecraft 1
of the light received from Spacecraft m, Ln is the length
of the arm opposite Spacecraft n, and we are assuming
that the six LISA lasers are phase locked [2]. The first two
terms represent the optical phase of two arms of a
Michelson interferometer, and the second two terms rep-
resent the same quantity with the specified delays.

The implementation of TDI based on timed triggering
[2], which we designate ‘‘real-time TDI,’’ calls for all
four terms in Eq. (8) to be explicitly measured, combined
on-board, and sent to Earth. This is illustrated in Fig. 4
for the measurement of X�t� aboard Spacecraft 1. The
blocks labeled pd21 and pd31 represent the radiofre-
quency beat signals from the photodiode outputs, con-
taining laser frequency noise superimposed on the
gravitational wave signal. The Ranging block represents
the system that measures distances between spacecraft,
and computes the delays 2L3=c and 2L2=c required to
assemble X�t�. The telemetry inputs to the ranging blocks
(not shown) contain ranging data measured on Spacecraft
1 and Spacecraft 2. Phase measurements are made by the
phasemeter (PM) blocks. In Fig. 4, the phase signals are
delayed electronically by the Delay blocks, which imple-
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ment a variable delay as controlled by the ranging system.
Equivalently, identical phase signals can be fed to two PM
blocks, and the timing of the phase measurements can be
set by adjustable triggers from the ranging system outputs.
The final output X�t� is free of laser frequency noise for
fixed arm lengths. For time-dependent arm lengths, we
expect [9] that velocity-correcting or ‘‘second genera-
tion’’ TDI combinations will be required. They have
roughly double the measurements of length-correcting
or ‘‘first generation’’ TDI combinations such as that
shown in Fig. 4.

As we have demonstrated in this paper, the delayed
phase measurements required for TDI can alternatively be
inferred by interpolation from an equally spaced se-
quence at a relatively low rate. This implementation is
referred to as post-processed TDI and is shown in Fig. 5.
The elimination of the need for ranging knowledge at the
time of measurement simplifies the implementation, as is
evident comparing Figs. 4 and 5. Ranging information
will still be needed as input to signal reconstruction, but
it can be transmitted to Earth independently of the pha-
semeter signals. Alternatively, post-processed TDI can be
implemented without explicit ranging by determining the
delays using autocorrelations [3], or by adjusting the
delays in postprocessing for minimum sensitivity to laser
frequency variations. With post-processed TDI it is no
longer necessary to synchronize the clocks on different
spacecraft. Clock synchronization error can be corrected
-4
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simply by time shifting the data in postprocessing. The
decoupling of ranging from phase measurements and the
removal of the need for clock synchronization allows
reduction—or possibly elimination—of interspacecraft
communications.

Post-processed TDI also allows complete flexibility in
combining phasemeter signals. All the raw data are avail-
able for processing by any TDI algorithm, including ones
not developed until after the data are in hand. The delays
can be adjusted to optimize the suppression of laser
frequency noise; by contrast, if there is an error in trig-
gering in real-time TDI, noise is irrevocably added. Post-
processed TDI simplifies the phase measurement hard-
ware, allowing all possible TDI combinations to be con-
structed from one constant-rate phase measurement per
photodetector.

A significant operating cost of LISA will be telemetry
to Earth of science data. Real-time TDI requires one data
stream per TDI combination. Post-processed TDI re-
quires one data stream per phasemeter; more precisely,
per phasemeter that does not have its output held fixed by
a high-gain control system.We expect that post-processed
TDI will require fewer telemetry signals than real-time
TDI, but this depends on details of hardware design and
on data requirements that are currently under
consideration.

Other factors influencing overall telemetry costs are
the data rate and number of bits per datum. The ultimate
LISA data will have a signal bandwidth of 1 Hz and a
dynamic range large enough to encompass both the larg-
est expected gravitational wave signal (or perhaps the
largest instrumental effect) and shot-noise limited sensi-
tivity. Each output of the real-time TDI signal chain [X�t�
for example] will have essentially eliminated laser fre-
quency noise before data are transponded to Earth, re-
ducing the dynamic range requirement. A nominal datum
size is 20 bits per sample. The data rate for each TDI
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combination is 2 samples=s, in keeping with the 1 Hz
requirement and the Nyquist limit.

In comparison, post-processed TDI must transpond
large laser frequency noise superimposed on the small
gravitational wave signal. Larger dynamic range is re-
quired, perhaps 30 bits per sample. The sample rate for
post-processed TDI is likely to be greater than
2 samples=s for two reasons. First, a larger sampling
frequency may be needed to provide the more stringent
antialiasing filtering needed when laser frequency noise
is present. Second, an oversampling factor may be needed
for the interpolation procedure. The minimum sample
rate imposed by post-processed TDI is still under study;
our initial estimate is 10 samples=s or less ( 	 5 times
higher than needed for real-time TDI). If the phase
measurements were bandlimited closer to 1 Hz, the sam-
pling rate could be reduced.

Although the interpolation algorithms presented here
may not be optimal, they demonstrate the feasibility of
post-processed TDI. They serve as a proof of principle,
and provide guidance for the design of LISAwith signifi-
cant simplification in several respects over real-time TDI.
The specific implementation details of post-processed
TDI (such as the sample rate, number of bits per sample,
and window parameters) will be refined in concert with
the LISA phasemeter development.
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