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Anisotropic Goldstone bosons of strong-coupling lattice QCD at high density
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We calculate the spectrum of excitations in strong-coupling lattice QCD in a background of fixed
baryon density, at a substantial fraction of the saturation density. We employ a next-nearest-neighbor
fermion formulation that possesses the SU�Nf� � SU�Nf� chiral symmetry of the continuum theory. We
find two types of massless excitations: type I Goldstone bosons with linear dispersion relations and
type II Goldstone bosons with quadratic dispersion relations. Some of the type I bosons originate as
type II bosons of the nearest-neighbor theory. Bosons of either type can develop anisotropic dispersion
relations, depending on the value of Nf and the baryon density.
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I. INTRODUCTION

In a previous paper [1] we constructed a framework for
calculating the effects of a background baryon density in
Hamiltonian lattice QCD at strong coupling. We used
strong-coupling perturbation theory to write an effective
Hamiltonian for color singlet objects [2,3]. At lowest
order we obtained an antiferromagnetic Hamiltonian
that describes meson physics with a fixed baryon back-
ground distribution. (Baryons move only at higher order.)
The Hamiltonian was then transformed to the path inte-
gral of a nonlinear � model. The latter is most easily
studied at large Nc.

The global symmetry group of the � model depends on
the fermion kernel of the lattice QCD Hamiltonian. For
Nf flavors of naive fermions we get an interaction be-
tween nearest-neighbor (NN) sites that is invariant under
U�N� with

N � 4Nf: (1.1)

This symmetry is too large and is indicative of species
doubling. We add next-nearest-neighbor (NNN) interac-
tions to the kernel and reduce the symmetry to

U�Nf�L �U�Nf�R; (1.2)

which is almost the symmetry of the continuum theory.
The unwanted U�1�A is inevitable if one starts with a
local, chirally symmetric theory [4]. It can easily be
broken by hand in the � model and we ignore it.

In [1] we studied the NN theory and found that the
ground state breaks U�N� spontaneously. The breakdown
pattern depends on the baryon density. In [5] it was shown
that the excitations of the NN theory divide into two
types: type I Goldstone bosons with linear dispersion
relations and type II Goldstone bosons with quadratic
dispersion relations. These excitations fit the pattern de-
scribed by Nielsen and Chadha [6] and studied by
Leutwyler [7]. Type II Goldstone bosons, typical of fer-
romagnets, are prominent in work on effective field theo-
ries for dense QCD [8,9]. Their existence is made possible
by the nonzero chemical potential (or baryon density),
04=70(7)=074512(7)$22.50 70 0745
which breaks Lorentz invariance by selecting a preferred
frame. It is not the lattice in itself that creates them: At
zero baryon density the NN theory possesses only Type I
bosons [3,10], like any (unfrustrated) antiferromagnet.

The NNN interactions may be treated as a perturbation
that removes some of the global degeneracy of the NN
vacuum. In Ref. [11] we found that for all baryon densities
studied, the ground state breaks the NNN theory’s axial
symmetries. In all cases with nonzero baryon density, the
discrete rotational symmetry is broken as well. In this
paper we investigate how the NNN interactions affect the
Goldstone boson spectrum, completing our picture of the
lattice theory that has the symmetry of continuum QCD.

II. NON-LINEAR � MODEL

We give here a brief description of the elements com-
prising the � model. More details may be found in [1].

The � field at site n is an N�N Hermitian, unitary
matrix given by a U�N� rotation of the reference matrix
�,

�n � Un�U
y
n; (2.1)

with

� �
1m 0
0 �1N�m

� �
: (2.2)

The � field thus represents an element of the coset space
U�N�=�U�m� �U�N �m��. The number m can vary from
site to site and is determined by the local baryon number
Bn according to

m � Bn 	 N=2: (2.3)

The Euclidean action is

S �
Nc

2

Z
d�
�
�
X
n

Tr�Uy
n@�Un 	

J1
2

X
ni

Tr��n�n	{̂�

	
J2
2

X
ni

Tr��n�i�n	2{̂�i�

�
: (2.4)

Here �i is the 4� 4 Dirac matrix, times the unit matrix in
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flavor space. The NN term is invariant under the global
U�N� transformation Un ! VUn (or �n ! V�nV

y)
while the NNN term is only invariant if Vy�iV � �i
for all i. This restricts V to the form

V � exp�i��aV 	 �5�
a
A��

a�; (2.5)

where �a are flavor generators. This is a chiral trans-
formation in U�Nf� �U�Nf�. [The U�1� corresponding
to baryon number is realized trivially on �n.]

Apart from its U�N� internal symmetry, the NN theory
is symmetric under the octahedral group of discrete
spatial rotations. The NNN term couples spatial rotations
to U�N� transformations, leaving the theory invariant
under the combined transformation

�n ! Ry�n0R; n0 � Rn: (2.6)

Here R is a 90� lattice rotation and R represents it
according to

R � exp

"
i
�
4

�j 0
0 �j

� �#
 1Nf

: (2.7)

This is just the transformation law of Dirac fermions
under these discrete rotations.

If the NNN fermion kernel is taken to be a truncated
SLAC derivative [12], then both couplings J1 and J2 are
positive, and J2 � J1=8. If we argue, however, that the
strong-coupling Hamiltonian is derived by block-spin
transformations applied to a short-distance
Hamiltonian, then we cannot say much about the cou-
plings that appear in it. We will assume that couplings in
the effective Hamiltonian fall off rapidly with distance;
indeed we will assume that

0< J2 � J1=Nc: (2.8)

This means that we take as our starting point the (glob-
ally degenerate) vacuum determined in [1] for the NN
theory with O�1=Nc� corrections. The NNN interaction is
a perturbation on this vacuum and its excitations.
1This degeneracy is not removed by the NNN interactions.
That is why we consider the O�1=Nc� corrections first.

2We have found, in fact, one case where a different ansatz
gives a more symmetric ground state than Eq. (3.2). This is the
case �N � 12; m � 8�, i.e., �Nf � 3; B � 2�.
III. THE GROUND STATE

Here we give a short reprise of the results of [1,11] for
the ground states of the NN and NNN � models with a
uniform baryon density Bn � B> 0 (i.e., a uniform value
of m>N=2).

The overall factor ofNc in Eq. (2.4) allows a systematic
treatment in orders of 1=Nc. In leading order, the ground
state is found by minimizing the action, which gives field
configurations that are time-independent and that mini-
mize the interaction. Minimizing the NN interactions
results in a locally degenerate ground state: We assign
� � � on the even sites and let the � field on each of the
odd sites wander freely in U�m�=�U�2m� N� �U�N �
m��, a submanifold of U�N�=�U�m� �U�N �m��. Since
the odd sites are independent, the degeneracy is exponen-
074512
tial in the volume.1 In Ref. [1] we showed that O�J1=Nc�
fluctuations generate a ferromagnetic interaction among
the odd sites, causing them to align to a common value
(‘‘order from disorder’’ [5]).

The resulting ground state has a Néel structure. The
even sites break U�N� to U�m� �U�N �m� and then the
odd sites break the symmetry further to U�2m� N� �
U�N �m� �U�N �m�. We can write explicitly

�even�U�evenU
y�U

1m 0

0 �1N�m

 !
Uy;

�odd�U�oddUy�U

12m�N 0 0

0 �1N�m 0

0 0 1N�m

0BB@
1CCAUy: (3.1)

The matrix U 2 U�N� represents the global degeneracy
due to spontaneous symmetry breaking.

We showed in Ref. [11] that the NNN interactions
partially remove this global degeneracy. We made the
ansatz

U �
1���
2

p
u u
�u u

� �
; (3.2)

and showed that it yields a ground state.When m � 3N=4,
the matrix u is free to take any value withinU�N=2�, but a
U�2m� 3N=2� �U�N �m� �U�N �m� subgroup of
U�N=2� acts trivially in Eq. (3.1) (i.e., matrices in this
subgroup give the same field configuration as choosing
u � 1). Vacua that are associated with different nontri-
vial choices of u are in general inequivalent, and give
different realizations of the U�Nf� �U�Nf� symmetry of
the theory. Since these vacua are not related by symmetry
transformations, there is nothing to prevent lifting of the
degeneracy in higher orders in 1=Nc. In the sequel, we set
u � 1N=2. This gives the vacuum with the largest sym-
metry accessible via the ansatz (3.2).

For m< 3N=4, u was found numerically by minimiz-
ing the NNN energy (2.4). In view of what happens for
m � 3N=4 this may be only one point in a degenerate
manifold of ground states.2 We emphasize that the degen-
eracy of these vacua is not related to the global U�Nf� �

U�Nf� chiral symmetry. It is an accidental global degen-
eracy of the ground state.

The symmetries of these ground states are summarized
in Table I, reproduced from [11]. In general, both chiral
symmetry and discrete lattice rotations are broken; in
some cases a symmetry under rotations around the z
axis survives. The spontaneous breaking of rotational
symmetry is inevitable in the Néel ground state selected
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TABLE I. Breaking of SU�Nf�L � SU�Nf�R �U�1�A for all
baryon densities (per site) accessible for Nf � 3.

Nf jBj Unbroken symmetry Broken charges

0 � � � 1
1 1 � � � 1

2 U�1�A 0

0 SU�2�V 4
1 U�1�I3 6

2 2 SU�2�V 4
3 U�1�I3 6
4 SU�2�L � SU�2�R �U�1�A 0

0 SU�3�V 9
1 U�1�Y � SU�2�V 13
2 U�1�Y 16

3 3 SU�3�V 9
4 U�1�I3 �U�1�Y 15
5 U�1�I3 �U�1�Y �U�1�A0 14
6 SU�3�L � SU�3�R �U�1�A 0
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by the NN term, since it cannot be symmetric under the
discrete rotation (2.6).3 The Néel state is in turn forced
upon us by the assumption (2.8); if the NNN coupling is
sufficiently strong then it might send the theory into a
ground state with more complex structure in a 2� 2� 2
unit cell, symmetric under Eq. (2.6).

Note that if we remove the unphysical axial U�1�
symmetry from the � model, all its realizations will
also drop from Table I, namely, there will be no unbroken
axial U�1� symmetries (third column) and no Goldstone
bosons corresponding to a broken axial U�1� (fourth
column).

IV. SPECTRUM OF EXCITATIONS

The Goldstone bosons of the NN theory were discussed
in [5]. As mentioned, they divide into two types. There
are 2�N �m�2 bosons of type I with !� J1jkj at low
momenta; these are generalized antiferromagnetic spin
waves (and are the only excitations at zero density). There
are also 2�2m� N��N �m� bosons of type II, that derive
their energy from quantum fluctuations in O�1=Nc�.
These are generalized ferromagnetic magnons with
!� �J1=Nc�jkj

2.
The two types of Goldstone bosons belong to different

representations of the unbroken subgroup U�2m� N� �
U�N �m� �U�N �m�. This means that they cannot
mix to any order in 1=Nc. The type I–type II classifica-
tion is robust in the NN theory.

Now we calculate the effects of the NNN interactions
on the spectrum. In view of Eq. (2.8), the NN contribu-
3In fact the Néel state is already symmetric under n ! Rn.
The particular alignment chosen by the NNN term is not
invariant under the internal rotation �n ! Ry�n0R.

074512
tions to the propagators, found in [5], remain unchanged.
In particular we can take over the self-consistent deter-
mination of the self-energy of the type II bosons.We need
consider the NNN contributions to the propagators in tree
level only.We proceed to calculate these for m � 3N=4. In
these cases, the calculations simplify (much as in [11])
and we perform them analytically.4 We believe that the
spectra of the other cases have similar features.

In the NN theory the � fields represent fluctuations
around the vacuum (3.1) with U � 1. We parametrize
them [5] as

�even �
1� 2##y �2#�y �2#S
�2�#y 1� 2��y �2�S
�2S#y �2S�y �1	 2$y$

0
B@

1
CA;
(4.1)

and

�odd �
1� 2##y �2#S 2#�y

�2S#y �1	 2$y$ 2S�y

2�#y 2�S 1� 2��y

0B@
1CA:
(4.2)

Here $ is an m� �N �m� complex matrix field written
as

$ �

�
#
�

�
; (4.3)

and S �
��������������������
1�$y$

q
. The field � is an �N �m� � �N �

m� complex matrix, representing the type I Goldstone
bosons. # is a �2m� N� � �N �m� complex matrix that
represents the type II bosons. If $ � 0, we have
�even;odd � �even;odd, which is the ground state of the
NN theory. We adapt Eqs. (4.1) and (4.2) to the NNN
theory by rotating them,

� ! U�Uy; (4.4)

with U as given in Eq. (3.2). Now $ � 0 corresponds to
the ground state of the NNN theory.

We substitute Eqs. (4.1) and (4.2) into the action (2.4).
The rotation U disappears from the kinetic term and from
the NN interaction—they are both U�N� invariant. This
means that the bare spectra found in [5], when U was
absent, remain intact.

We write the NNN energy as

Ennn �
NcJ2
4

X
aNi

Tr�i�a;N�i�a;N	2{̂; (4.5)

where a � �even; odd� and N denotes a site on the corre-
sponding fcc sublattice. We rescale $ ! $=

������
Nc

p
and ex-

pand Eq. (4.5) to second order,
4An exception is �N � 12; m � 10�, where we have no ana-
lytic solution. See below.
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Ennn�NcE0	
J2
4

������
Nc

p X
aNi

Tr ��i�a ��i��
�1�
aN	��1�

a;N	2{̂�

	
J2
4

X
aNi

Tr ��i�
�1�
aN ��i�

�1�
a;N	2{̂	

J2
4

X
aNi

Tr ��i�a ��i��
�2�
aN

	��2�
a;N	2{̂�	O

�
1������
Nc

p

�
: (4.6)

We have defined ��i � Uy�iU, and ��1;2� correspond to
the linear and quadratic deviations of the � fields from
their ground state values. The latter are given by

��1�
e �

0 0 �2#

0 0 �2�

�2#y �2�y 0

0BB@
1CCA;

��2�
e �

�2##y �2#�y 0

�2�#y �2��y 0

0 0 	2$y$

0BB@
1CCA

(4.7)

on the even sites, and

��1�
o � V

0 0 �2#

0 0 �2�

�2#y �2�y 0

0BB@
1CCAVy;

��2�
o � V

�2##y �2#�y 0

�2�#y �2��y 0

0 0 	2$y$

0BB@
1CCAVy

(4.8)

on the odd sites. Here

V �

1 0 0
0 0 1
0 �1 0

0@ 1A (4.9)

is the matrix that rotates �even to �odd. It is easy to show
that the terms linear in ��1� vanish.

In view of the block structure of �even;odd and of U, as
given in Eqs. (3.1) and (3.2), and of �i, it is convenient to
decompose # for m � 3N=4 as

# �
#1

#2

� �
(4.10)

Here #1 has N=2 rows, and #2 has 2m� 3N=2 rows. Both
have N �m columns. Substituting into Eq. (4.6) and
omitting the ground state energy we find that the O�1�
contribution of the NNN energy depends only on #1. The
� and #2 fields do not enter the NNN energy at this order
and remain of type I and of type II, respectively.

We now define a new N � N matrix #̂ that contains
only #1,

#̂ �

0 0 #1

0 0 0
#y
1 0 0

0@ 1A; (4.11)

and use it to write
074512
Ennn �
J2
4

X
N2fcc

i

f4Tr� ��i#̂e
N ��i#̂e

N	2{̂

	 ��i�V#̂o
NV

y� ��i�V#̂o
N	2{̂V

y��

� 4Tr� ��i�e ��i�e�#̂
e
N�

2 	 ��i�o ��i�o�V#̂
o
NV

y�2�g:

(4.12)

Next we expand #̂ � #*�*, where #* are real and �* are
the Hermitian generators of U�N�, normalized to

t r��*�*0
� � +**

0
: (4.13)

The form (4.11) of #̂ implies that #* � 0 for those gen-
erators whose elements ��*��, are nonzero for � 2

�1; N=2� and , 2 �m	 1; N� or vice versa. Thus

Ennn �
X
aN

X
*;*0

�
#a*
N �Na�

**0
#a*0

N 	
X
i

#a*
N �Mai�

**0
#a*0

N	2{̂

�
;

(4.14)

where

�Ne�
**0

� �J2
X
i

Tr��*�*0
��i�a ��i�a�;

�Mei�
**0

� J2Tr��
* ��i�

*0
��i�;

�No�
**0

� �J2
X
i

Tr�V�*�*0
Vy ��i�a ��i�a�;

�Moi�
**0

� J2Tr�V�*Vy ��iV�*0
Vy ��i�:

(4.15)

With a Fourier transform,

#a*
N �

���������
2

Ns,

s X
k2BZ
!

#a*
k eik�N	i!�; (4.16)

we write the energy in momentum space as

Ennn�
X
k2BZ
!>0

#ey
k �Ne	NT

e 	Me�k�	My
e �k��#e

k

	#oy
�k�No	NT

o 	Mo��k�	My
o ��k��#o

�k: (4.17)

Here Ma�k� �
P

iMaie
iki .

The NN action, including the time derivative and
O�1=Nc� self-energy, was written down in [5] in terms
of the Fourier transform ~# of the �2m� N� � �N �m�
matrix field # [Eq. (4.10)]:

Snn �
X
!;k

Tr��i!��1;k�~#
ey
k ~#e

k 	 ��i!� �1;k�~#
oy
�k ~#

o
�k

��2;k�~#
e
k ~#

oT
�k 	 c:c:��: (4.18)

The self-energies �a are of order J1=Nc and depend on N
and m. We set #2 � 0 and repeat the steps leading to
Eq. (4.17) to write Snn in terms of #*

k ,

Snn �
X
k

#ey
k Kee#

e
k 	 #oy

�kKoo#
o
�k 	 #eT

k Keo#
o
�k; (4.19)

with the matrices Kee, Koo, and Keo given by

�Kee�
**0

�
i!
2
Tr��e�

*�*0
� �

1

2
�1;k+

**0
; (4.20)
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�Koo�
**0

� �
i!
2
Tr��e�

*�*0
� �

1

2
�1;k+**

0
; (4.21)

�Keo�
**0

� ��2;kTr��
*�*0T�: (4.22)

Equation (4.19) is to be added to Eq. (4.17) to give the
quadratic action of the type II Goldstone bosons #1.

Diagonalizing the quadratic form is straightforward
but tedious. As noted above, only a subset of the gener-
ators �* of U�N� appear in the expansion of Eq. (4.11).
Since #1 has dimensions N=2� �N �m�, there are
N�N �m�=2 pairs of generators in the sum, which we
write (similar to the Pauli matrices �x; �y) as ~�*

x ; ~�
*
y ,
074512
with * � 1; . . . ; N�N �m�=2. Their coefficients are simi-
larly written as #*

x ; #
*
y . Thus for each k; * we have

#*
k �

#e*
xk

#e*
yk

#o*�
x;�k

#o*�
y;�k

0BBBB@
1CCCCA; (4.23)

and the action is

S �
X
!>0

X
k

#y
kG

�1
k #k: (4.24)

The inverse propagator is
G�1
k �

��1;k 	 ne 	me �! ��2;k 0
! ��1;k 	 ne �me 0 �2;k

��2;k 0 ��1;k 	 no 	mo �!
0 �2;k ! ��1;k 	 no �mo

0BBB@
1CCCA; (4.25)
where

�na�**
0
� �2J2

X
i

tr���*
x �2 ��i�a ��i�a�+**

0
; (4.26)

�ma�
**0

� 2J2
X
i

tr��*
x ��i�

*0

x ��i� coski: (4.27)
�1;2 and ! contain a factor of +*;*0 . If we write the 4� 4
matrix G�1

k in terms of 2� 2 blocks,

G�1
k �

A B
C D

� �
; (4.28)

then its determinant is easily calculated via
jG�1
k j � jCjjB� AC�1Dj

�

�����������
!2 	 �ne 	me � �1��no 	mo � �1� ��2

2 !�ne 	me � no 	mo�

!�no 	mo � ne 	me� !2 	 �ne �me � �1��no �mo ��1� � �2
2

�����������: (4.29)
TABLE II. Simultaneous eigenvalues of ne;o and me;o (in
units of 2J2) for all values of Nf and B considered. The
resulting spectra fall into four classes. Here vz � coskz and
v? � 2 sin

�
kx	ky

2

�
sin
�
kx�ky

2

�
.

Nf B ne no me mo multiplicity class

1 1 1 2 vz v? 4
2 1 v? vz 4

2 2 1 2 vz v? �3 4
2 1 v? vz �3 4
1 2 �vz �v? 4
2 1 �v? �vz 4

2 3 0 1 0 vz 2
1 0 vz 0 2
0 2 0 v? 3
2 0 v? 0 3

3 3 1 2 vz v? �6 4
2 1 v? vz �6 4
1 2 �vz �v? �3 4
2 1 �v? �vz �3 4

3 5 0 0 0 0 �2 1
0 1 0 vz 2
1 0 vz 0 2
0 2 0 v? 3
2 0 v? 0 3
For N � 4Nf � 12 (and m � 3N=4), the matrices
ne; no; me;mo all commute, except for the case (N �
12, m � 10). Dropping this last from consideration, we
are left with the values of �Nf; B� listed in Table II. For
each case, the simultaneous diagonalization of ne;o and
me;o gives the eigenvalues shown. The zeros of the deter-
minant (4.29) determine the spectrum !�k�, giving (after
! ! i!)

!2 � �2
1 ��2

2 	
1

2
�n2e �m2

e 	 n2o �m2
o� � �1�ne 	 no�

�

��
�1�no � ne� 	

1

2
�n2e �m2

e � n2o 	m2
o�

�
2

	�2
2��me 	mo�

2 � �ne � no�2�
�
1=2

: (4.30)

Because of the symmetries of Eq. (4.30), the spectra of
the various cases shown in Table II fall into four classes.
We examine each class in turn.

Class 1: Here there is no contribution at all from the
NNN interaction. As shown in [5], �1;2 are proportional
to J1=Nc and for small momenta they are quadratic in jkj;

the same holds for the NN energy
������������������
�2

1 � �2
2

q
. These fields

remain isotropic type II Goldstone bosons as in the NN
theory.
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Class 2: Fields that correspond to the minus sign in
Eq. (4.30) remain type II, but with anisotropic dispersion
laws of the form

!2 � c2k4
�
1	 a+

k2z
k2

�
: (4.31)

The plus sign in Eq. (4.30) gives a linear dispersion law,
again anisotropic,

!2 � 4c1J2�k
2
x 	 k2y 	 �1	 b+�k2z� (4.32)

The anisotropy in both cases is proportional to the ratio
+ � J2=�12J1=Nc� of NNN to NN couplings. The coef-
ficients c and c1 are defined as

c �

�
d

dk2

������������������
�2

1 � �2
2

q �
k�0

; (4.33)

c1 � �

�
d�1

dk2

�
k�0

> 0: (4.34)

They are of order J1=Nc. The coefficients

a �
Nc

6J1

c21 � c2

2c1c
2 and b �

Nc

6J1

2

c1
(4.35)

are of order 102 for the cases at hand.
Classes 3 and 4: Taking k � 0 in Eq. (4.30) we find that

the fields that correspond to the plus sign get a mass equal
to 2J2. This is a result of the explicit breaking of the
U�4Nf� symmetry by the NNN interaction terms; these
particles are no longer Goldstone bosons. The massless
bosons in Class 3, corresponding to the minus sign, are
type II bosons described by

!2 � c21k
4: (4.36)

(This is different from Class 1 where !2 � c2k4.) The
massless bosons in Class 4 are again anisotropic, obeying
Eq. (4.32), and are of type I.

These dispersion relations are correct to O�+� for mo-
menta of O�+� or smaller. In all cases the dispersion
relation to O�1� for k2 � + is quadratic and isotropic,
unchanged from the NN result presented in [5]. Since + is
a small parameter, this means that in most of the
Brillouin zone the propagator maintains its NN form.
This is the reason why the self-consistent calculations
in [5] that yield �1;2 do not change when we add the NNN
interactions.
V. SUMMARY AND DISCUSSION

In this work we have studied the nonlinear sigma
model derived in [1] for the description of lattice QCD
with a large density of baryons. The model has NN and
NNN interactions. Building on the results given in [1,5]
for the NN theory, and on the study of the NNN ground
state presented in [11], we have determined the disper-
sions relations for the Goldstone bosons in the NNN
theory.
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We find that the physics of the NN theory is mostly
undisturbed by the NNN interaction. At leading order, the
properties of the type I bosons (�) and of some of the
type II bosons (#2) do not change. The type II bosons
grouped in the #1 field suffer a variety of fates, falling
into four classes that appear for different values of Nf and
m. Class 1 bosons are unaffected by the NNN perturba-
tion. Class 2 bosons split into type I and type II, and all
gain anisotropic contributions of O�+� to their energies.
Some of the Class 3 bosons become massive while others
remain unaffected. In Class 4, some become massive
while the others become anisotropic type I bosons.

The symmetry of the theory, in all cases, is severely
broken by the NNN terms—from SU�4Nf� to SU�Nf� �

SU�Nf� �U�1�A. Not surprisingly, a simple count shows
that the total number of massless real fields is far greater
than the number of spontaneously broken generators of
SU�Nf� � SU�Nf� �U�1�A, as shown in Table I. The
particular NNN interaction we use is simply unable to
generate masses in lowest order for many of the particles
unprotected by Goldstone’s theorem. This is partly re-
flected in the accidental degeneracy of the ground state,
which we mentioned below Eq. (3.2). Just as this degen-
eracy should be lifted in higher orders in 1=Nc [beginning
with O�J2=Nc�], the corresponding massless excitations
should develop masses. The only particles protected from
mass generation are the minimal number needed to sat-
isfy Goldstone’s theorem (or the Nielsen-Chadha variant).

Another effect that is missing is the mixing of type I
and type II Goldstone bosons, which is certainly permit-
ted when the NNN interaction is turned on. In [5] we
proved that such a mixing is forbidden in the NN theory,
since the two types of boson belong to different repre-
sentations of the unbroken subgroup. The classification in
the NNN theory is less restrictive, and permits mixing of
the bosons. Whether mixing occurs is a dynamical issue
that can be settled only by calculating to higher order in
1=Nc.

To conclude we note that other recent work [8,9] on the
high density regime of QCD—in the continuum—also
predicts type II Goldstone bosons and anisotropic disper-
sion. There, the starting point is an effective field theory
that describes the low energy dynamics of QCD with
nonzero chemical potential ;. For ; � 0, Lorentz in-
variance is broken, and the field equations become non-
relativistic. This leads to the emergence of type II
Goldstone bosons. In addition, the ground state in [9]
can support a nonzero expectation value of vector fields.
This breaks rotational symmetry and makes some of the
dispersion relations anisotropic.
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